

Lecture 0: Introduction

Introduction

- Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI): bucketloads!
- □ Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- □ How to build a CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication

Introduction (cont'd)

□ Course Outline

- Physical, circuit, and logical design
- Microarchitecture
- Design issues
- Verification
- Test
- Reliability

Introduction (cont'd)

□ Course Overview

- Design of digital integrated circuits (vs analog)
- VLSI Very Large Scale Integration
 - Millions of transistors
 - Many designers and verifiers for a large chip
- CMOS Complementary Metal Oxide Semiconductor
 - Both nmos and pmos transistors
 - Fast, cheap, low power transistors
 - Easily constructed in very large numbers

0: Introduction

Introduction (cont'd)

- □ Course Overview (cont'd)
 - Practitioner's perspective
 - Real-world issues
 - Topic coverage will emphasize breadth over depth
 - Many types of tasks and jobs in VLSI
 - Common among all of them is attention to detail
 - Topic coverage, in general, will be bottom up
 - Physical -> structural -> behavioral

0: Introduction

CMOS VLSI Design 4th Ed.

Administrative

□ Instructor

- Dave Matthews (not that Dave Matthews!)
- Design engineer for Rockwell Collins (25 years)
- PhD Student at U of I
- Office 1126 SC, hours M,W,F 3:30 4:30
- Email: david-matthews@uiowa.edu

J TA

– Email: @uiowa.edu

0: Introduction

Administrative (cont'd)

Grading

0: Introduction

- Approximately 1 homework per week
- 4 projects, all individual
- 2 closed-book exams (1 mid-term, final)
- Weighting
 - Homework 10%
 - Projects 10%, 15%, 15%, 10% respectively
 - Midterm 15%
 - Final 25%

CMOS VLSI Design 4th Ed.

Administrative (cont'd) Collaboration – Discussion of the material is encouraged, but... All students are expected to do their own work **Disabilities** – Please contact me (office hours or email) **0: Introduction** CMOS VLSI Design 4th Ed.

VLSI Growth

- Growth in VLSI device capabilities and speeds has made this industry exciting and dynamic
- And also beneficial to society!
 - cell phones, PCs, iPods, automobile features, etc.
- ❑ With this growth has come many issues:
 - High frequencies difficult timing, power dissipation, reliability issues, etc.
 - Design Complexity millions of gates, time-tomarket, reliance on automation, etc.
 - Several others...

Example Design

Intel's First Processor

□ Intel 4004 uP

- 1971
- 1000 transistors
- 1 MHz operation

0: Introduction

Recent - Core i7

- Quad core (& more)
 - Pentium-style architecture
 - 2 MB L3\$ / core
- Characteristics
 - 45-32 nm process
 - 731M transistors
 - 2.66-3.33+ GHz
 - Up to 130 W
 - 32/64 bit word size
 - 1366-pin LGA
 - Multithreading
- □ On-die memory controller

0: Introduction

Intel uP Summary

	10 ⁴ increase in t	ransistor count,	clock frequency	over 3 decades!
--	-------------------------------	------------------	-----------------	-----------------

Processor	Year	Feature	Transistors	Frequency	Word	Power	Cache	Package
		Size (µm)		(MHZ)	Size	(W)	(L1 / L2 / L3)	
4004	1971	10	2.3k	0.75	4	0.5	none	16-pin DIP
8008	1972	10	3.5k	0.5-0.8	8	0.5	none	18-pin DIP
8080	1974	6	6k	2	8	0.5	none	40-pin DIP
8086	1978	3	29k	5-10	16	2	none	40-pin DIP
80286	1982	1.5	134k	6–12	16	3	none	68-pin PGA
Intel386	1985	1.5 - 1.0	275k	16–25	32	1–1.5	none	100-pin PGA
Intel486	1989	1-0.6	1.2M	25-100	32	0.3–2.5	8K	168-pin PGA
Pentium	1993	0.8-0.35	3.2–4.5M	60–300	32	8–17	16K	296-pin PGA
Pentium Pro	1995	0.6-0.35	5.5M	166-200	32	29–47	16K / 256K+	387-pin MCM PGA
Pentium II	1997	0.35-0.25	7.5M	233-450	32	17–43	32K / 256K+	242-pin SECC
Pentium III	1999	0.25-0.18	9.5–28M	450-1000	32	14-44	32K / 512K	330-pin SECC2
Pentium 4	2000	180–65 nm	42–178M	1400-3800	32/64	21-115	20K+/256K+	478-pin PGA
Pentium M	2003	130–90 nm	77–140M	1300-2130	32	5-27	64K / 1M	479-pin FCBGA
Core	2006	65 nm	152M	1000-1860	32	6–31	64K / 2M	479-pin FCBGA
Core 2 Duo	2006	65–45 nm	167–410M	1060-3160	32/64	10-65	64K / 4M+	775-pin LGA
Core i7	2008	45 nm	731M	2660-3330	32/64	45-130	64K / 256K / 8M	1366-pin LGA
Atom	2008	45 nm	47M	800-1860	32/64	1.4–13	56K / 512K+	441-pin FCBGA

0: Introduction

Slowing Clock Increases

So many transistors...

- □ Technology shrinks by 0.7/generation
- Each generation can integrate 2x more functions per chip; while chips cost about the same
- ☐ Cost of a function decreases by 2x
- But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- □ Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

0: Introduction

CMOS VLSI Design 4th Ed.

Various VLSI Jobs

- Architect
- Performance analysis
- RTL design
- Synthesis
- Test insertion
- Layout
- Signal Integrity
- Verification
- Common characteristic Attention to detail!

Silicon Lattice

- □ Transistors are built on a silicon substrate
- □ Silicon is a Group IV material
- □ Forms crystal lattice with bonds to four neighbors

0: Introduction

Dopants

- □ Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

0: Introduction

nMOS Transistor

- □ Four terminals: gate, source, drain, body
- □ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain

р

bulk Si

nMOS Operation

- □ Body is usually tied to ground (0 V)
- □ When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

0: Introduction

pMOS Transistor

- □ Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

0: Introduction

CMOS Fabrication

- □ CMOS transistors are fabricated on silicon wafer
- □ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Fabrication

□ Chips are built in huge factories called fabs

□ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

0: Introduction

Fabrication Steps

- □ Start with blank wafer
- □ Build inverter from the bottom up
- □ First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate
0: Introduction CMOS VLSI Design ^{4th Ed.}

Photoresist Spin on photoresist - Photoresist is a light-sensitive organic polymer - Softens where exposed to light Photoresist SiO₂ p substrate **0: Introduction** CMOS VLSI Design 4th Ed.

Strip Photoresist				
Strip off remaining photoresist				
 Use mixture of acids called piranah etch 				
Necessary so resist doesn't melt in next step				
SiO ₂				
n substrato				
0: Introduction CMOS VLSI Design ^{4th Ed.}				

n-well

Diffusion

- Place wafer in furnace with arsenic gas
- Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - lons blocked by SiO₂, only enter exposed Si

Strip	Oxide					
Strip off the remaining oxide using HF						
Back to bare wafer with n-well						
Subsequent steps involve similar series of steps						
p substrate	n well					
0: Introduction CMOS VLSI Design ^{4th Ed.}						

Layout

- □ Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size *f* = distance between source and drain

- Set by minimum width of polysilicon

- □ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- **Express rules in terms of** $\lambda = f/2$

- E.g. λ = 0.3 μm in 0.6 μm process

0: Introduction

Summary

- □ MOS transistors are stacks of gate, oxide, silicon
- □ Act as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing a schematic and layout for a simple chip