55:131 Introduction to VLSI Design

Flash and DRAM

Adapted from Weste and Harris notes except as noted Flash and DRAM sections adapted from "Digital Integrated Circuits", copyright 2003 Prentice Hall/ Pearson

Outline

- Memory Arrays
- Flash
- DRAM

Memory Arrays

Array Architecture

- 2ⁿ words of 2^m bits each
- If n >> m, fold by 2^k into fewer rows of more columns

- Good regularity easy to design
- Very high density if good cells are used

Non-Volatile Memories

Floating-gate transistor

Floating-Gate Transistor Programming

0 V	20 V	20 V	20 V	10 V
ل		<u> </u>	<u> </u>	
<u></u>	兲	0 \ 0 \	8 V J ~ 8 V	ذ ب_ر ذ
20 V	20 V	0 V	0 V	0 V
Erase	Inhibit Erase	Program 0	Do Not Program	Inhibit Program

FN Tunneling Remove e-Negative Vt "1" FN Tunneling Add e-Positive Vt "0"

NAND Flash Memory

NAND Flash Memory

Read-Write Memories (RAM)

Static (SRAM)

- Data stored as long as supply is applied
- Large (6 transistors/cell)
- Fast
- Differential
- Dynamic (DRAM)
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Single Ended

3-Transistor DRAM Cell

- No constraints on device ratios
- Reads are non-destructive
- Value stored at node X when writing a "1" = V_{wwl}-V_{tn}

3T-DRAM — Layout

1-Transistor DRAM Cell

- Write: Cs is charged or discharged by asserting WL and BL
- Read: Charge redistribution takes place between bit line and storage capacitance
- Voltage swing is small; typically around 250 mV

DRAM Cell Observations

- IT DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- DRAM memory cells are single ended in contrast to SRAM cells.
- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

Sense Amp Operation

1-T DRAM Cell

Layout

Uses Polysilicon-Diffusion Capacitance Expensive in Area

Advanced 1T DRAM Cells

DRAM Timing

Redundancy

