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HDL Overview

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

1 Hardware Description Languages
— Used to model digital systems

— Can model anything from a simple gate to a
complete system

— Support design hierarchy

— Support Hardware Design Methodology
d Can model “real” hardware (synthesizable)
[ Can model behavior only (e.g. for test)
1 Both are non-proprietary, IEEE standards
 Behavioral and structural coding styles
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Basic Design Methodolog
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Why Not Use C or C++?

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

« HDLs need to support characteristics of “real”
hardware
— Concurrency
— Hardware datatypes / Signal resolution
— Connectivity / Hierarchy
— Circuit timing
« HDLs must support hardware simulation
— Time
— Cycle-accurate or Event-driven (for simulation
speed)
 Note: C++ has been extended for hardware
— SystemC
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Basic Comparison

R

Verilog VHDL

d Similarto C 1 Similar to Ada

O Popular in commercial, d Popular in Military,
on coasts of US midwest US

 Designs contained in  Designs contained in
“module”s “entity” “architecture”
pairs

e e e e s
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A R A R A
O HDLs must support concurrency

— Real hardware has many circuits running at the
same time!

d Two basics problems
— Describing concurrent systems
— Executing (simulating) concurrent systems

e e e e s
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Describing Concurrency

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

d Many ways to create concurrent circuits

— initial/always (Verilog) and process (VHDL)
blocks

— Continuous/concurrent assignment statements

— Component instantiation of other modules or
entity/architectures

1 These blocks/statements execute in parallel in every
VHDL/Verilog design

e e e e s
e e e e e et
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Executing Concurrency

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

EI Simulations are done on a host computer executing
iInstructions sequentially

O Solution is to use time-sharing

— Each process or always or initial block gets the
simulation engine, in turn, one at a time

d Similar to time-sharing on a multi-tasking OS, with
one maijor difference

— There is no limit on the amount of time a given
process gets the simulation engine

— Runs until process requests to give it up (e.g.
“Wait”)

e e
E"H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘Hﬂ'&ﬂ'ﬁ'&ﬁ?}k&kﬂ'}k&k
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Process Rules

A R A R A
 If the process has a sensitivity list, the process is

assumed to have an implicit “wait” statement as the
last statement

— Execution will continue (later) at the first
statement

L A process with a sensitivity list must not contain an
explicit wait statement

e e e e s
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Sensitivitv List
" '-E'-'-‘-'-E'-'-'-'-E'-'-‘-'-E'-'-'-'-ﬁ'-':‘-'-ﬁ'-':'-'-ﬁ'-':‘-'-ﬁ'-':'-'-ﬁ'-':‘-'-ﬁ '-'-E'-':‘-'-E

e e e e e s
With Explicit List Without Explicit List
XYZ Lbl: process (S1, S2) ||XYZ Lbl: process
begin begin

Sl <= '17; S1 <= ‘17;

S2 <= ‘0’ after 10 ns; S2 <= ‘0’ after 10 ns;
end process XYZ Lbl; wait on S1, S2;

end process XYZ Lbl;

e e e e s
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Incomplete Sensitivity Lists

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

— Logic simulators use
sensitivity lists to
know when to
execute a process

 Perfectly happy not

—-— complete

procl: process (a, b,
begin
X <= a and b and c;

end process;

C)

to execute proc2

when “c” changes

* Not simulating a 3-
input AND gate
though!

— What does the

—-— 1ncomplete

procZ: process (a, b)

begin

X <= a and b and c;

end process;

CMOS VLSI DeS|gn ath Eq.
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Datatypes

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

d Verilog has two groups of data types

* Net Type — physical connection between
structural elements

— Value is determined from the value of its drivers,
such as a continuous assignment or a gate output

— wire/tri, wor/trior, wand/triand, trireg/tri1/tri0, supplyO,
supply1
 Variable (Register) Type — represents an
abstract data storage element

— Assigned a value in an always or initial statement,
value is saved from one assignment to the next

— reg, integer, time, real, realtime

e e e e s
e e e e e et
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~ Datatypes

e
« VHDL categorizes objects in to four classes

— Constant — an object whose value cannot be
changed

— Signal — an object with a past history
— Variable — an object with a single current value
— File — an object used to represent a file in the host
environment
» Each object belongs to a type
— Scalar (discrete and real)
— Composite (arrays and records)
— Access
— File

e e e e s
e e e e e et
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Hierarchy
1 Non-trivial designs are developed in a hierarchical
form

— Complex blocks are composed of simpler blocks

VHDL

Entity and architecture Module

Function Function
Procedure Task

Package and package body Module

s
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Hardware Simulation

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

O A concurrent language allows for:
— Multiple concurrent “elements”

— An event in one element to cause activity in
another

* An event is an output or state change at a
given time

 Based on interconnection of the element’s
ports

— Logical concurrency — software
— True physical concurrency — e.g., “<=" in Verilog

e e e e s
e e e e e et
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Discrete Time Simulation

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

* Models evaluated and state updated only at
time intervals — nt
— Even if there is no change on an input
— Even if there is no state to be changed
— Need to execute at finest time granularity

— Might think of this as cycle accurate — things only
happen
@(posedge clock)

* You could do logic circuits this way, but either:

— Lots of gate detail lost — as with cycle accurate
above (no gates!)

— Lots of simulation where nothing happens — every
gate is executed whether an input changes or not.

e e e s
e e e e e et
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Discrete Event Simulation

. Dlscrete Event Slmulatlon...also known as
Event-driven Simulation
— Only execute models when inputs change
— Picks up simulation efficiency due to its selective
evaluation
* Discrete Event Simulation

— Events — changes in state at discrete times. These
cause other events to occur

— Only execute something when an event has occurred
at its input

— Events are maintained in time order

— Time advances in discrete steps when all events for a
given time have been processed

e e s
e e e e e et
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Discrete Event Simulation

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

O Quick example

— Gate A changes its output. )
— Only then will B and C execute )
O Observations °
— The elements in the diagram don’t need to be logic

gates

— DE simulation works because there is a sparseness
to gate execution — maybe only 12% of gates
change at any one time.

* The overhead of the event list then pays off

e e
E"H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘ﬁ'&ﬁ'H‘Hﬂ'&ﬂ'ﬁ'&ﬁ?}k&kﬂ'}k&k
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Synthesis

o R R R R R R R R

e e e e e e e e e e s

O Translates reqister-transfer-level (RTL) design into
gate-level netlist

1 Restrictions on coding style for RTL model
d Tool dependent

e e e e s
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'-

Ba5|c Verilog Concepts

'-'- R R R

e
EI Interfaces
d Behavior
d Structure

e e e e s
e e e e e et
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A Gate Level Model

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

EI A Verilog description of an SR Iatch

A module is defined name of the module

module nandLatch The module has ports

(output  q, qBar, that are typed
input set, reset);

nand #2
g1 (g, qBar, set),
g2 (gBar, q, reset);

type and delay of
primitive gates

primitive gates with
names and
endmodule interconnections

e
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A Behavioral Model - FSM

) —J> 1 OF— ,

Y reset

___ZD D2 Q2
>

reset |

s s
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Organization for FSM

au

e

d Two always blocks

— One for the combinational logic — next state and
output logic

— One for the state register

e e e e s
e e e e e et

CMOS VLSI Design 4th Ed.




vioral Specification

e

module FSM (x, z, clk, reset);

input clk, reset, x;
outputz;
reg [1:2] q,d;
rcg zZ,
always -
@ (posedge clk or negedge reset) B The sequentlal part
if (~reset) .
q<=0; (the D flip flop)
else q<=d;
It @) The combinational
egin .
d1]=q[1]1&x | q[2] & x; lOglC part
di2] =q[1] & x | ~q[2] & x;
L — next state
endmodule T
output

e e e e !
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SystemC

R

d

U 00 D00

C++ class library developed to support system level
design (Electronic System Level, ESL)

Intended to cope with both hardware and software
IEEE 1666 Standard

Supports concurrency, hierarchy, signals, time
Supports transaction level modeling

Supported natively by Modelsim

e e e e s
e e e e e et
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HEEE

SystemVerilog

- Charter: Extend Verilog IEEE 2001 to higher
abstraction levels for Architectural and
Algorithmic Design , and Advanced

Verification.

Transaction-Level
Full Testbench
Language with

Coverage

Design
Abstraction:
Interface
semantics, abstract
data types,
abstract operators
and expressions

Advanced
verification capability
for semiformal and
formal methods.
The Assertion
Language Standard
For Verilog

Direct C interface,
Assertion APl and
Coverage API
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Verilog-95

R

Event handling | | Basic datatypes (bit, int, reg, wire...)

Basic programming (for, if, while,..)

Verilog-95:
Single language
Hardware concurrency Gate level modelling for design &
design entity modularization || and timing testbench

Switch level modeling and timing ” ASIC timing I
4

s
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VHDL Richer Than Verilog

R

Operator | VHDL adds
R higher level
Architecture | [ Simple assertions| | DYame data types and
. ory
configuration | 5o em e es 1 Lallocatior management
- records/ functionality
Dynamic multi-D arrays enums || structs

hardware
generation | | Automatic variables | | Signed numbers | | Strings

Event handling Basic datatypes (bit, int, reg, wire...)

4 state logic Basic programming (for, if, while,..)

Hardware concurrency Gate level modelling
design entity modularization and timing

Switch level modeling and timing || ASIC timing

5
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C Can’t Do Hardware

R

Architecture
configuration

Simple assertions
| User-defined types

e e
verloadin
CCLR Associative
& Sparse arrays

records/ programming

Dynamic
hardware

multi-D arrays

Dynamic .
|memo,, \
I | void type | | Further

structs (do while,

generation

Automatic variables || Signed numbers

break, continue,

Event handling

Basic datatypes (bit, int, reg, wire...)

4 state logic

Basic programming (for, if, while,..)

Hardware concurrency
design entity modularization and timing

Gate level modelling

Switch level mo

b __

deling and timing || ASIC timing
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Verilog-2001

R

Verilog-2001 adds a lot of
VHDL functionality but still

lacks advanced data
structures i
[Packages | | Overioading |
verloadin
Packages Associative
Architecture Simple assertions 2"2:::)": pointers SRR
configuration || ser-defined types | \-ﬂlﬂmﬂmJ o [voidtype | [ Further
: [ recor rogrammin
Dynamic i enums || structs :)d:g while ¢
hardware | break, continue
neration | | Automatic variables | | Signed numbers ||| Strings ' '
ge on i . > ?__ o | ++ .. +=, efc)
Event handling Basic datatypes (bit, int, reg, wire...)
4 state logic Basic programming (for, if, while,..)

Hardware concurrency

design entity modularization

Gate

and timing

level modelling

Switch level modeling and timing |

| ASIC timing |

7
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Verification and Modeling

R

Constrained Program || Clocking || Enhanced Scheduling for Cycle Sequence
Random Data || Block Domain || Testbench and Assertions | | Delays || Events
Generation . EE—
= — zequf:ﬁﬂ' | Semaphores | | Persistent | [ Queues Cl:\'ferI:::

lasses, methods egular = events =)
& inheritance Expressions Process| [ virtual
Interface Temporal '[ Operator_ Control | | Interfaces
Specification | | Properties Packages | | Overloading Associative
Architecture |i| Simple assertions g'ynamuc safe pointers| | | & Sparse arrays
configuration

g [ User-defined types | Void type Further

emory
records/ rogrammin
enums |strucw | : :)d:g while, .
- break, continue,
Signed numbers |}| Strings | ++, . +=, etc)

Packed structs
Gate level modelling R
and timing Coverage & || ¢ interface
______________________________________ Assertion
API

el modeling and timing || ASIC timing

8
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SystemVerllog Unified Language
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Constrained Random

Test Scenarios

+ Valid Inputs Specified as Constraints

Const(alnts / » Declarative

Constraints

Input Space

Exercise Hard-to-Find Corner Cases
While Guaranteeing Valid Stimulus

CMOS VLSI DeS|gn 4th Ed.




! e T e e e M e

e

Basic Constraints
.'-'-':'-'.ﬁ' :‘-'.E'-':‘-'.E' " '-'.E'-':‘-'.ﬁ'-':'-'.E'-':‘-'.E'-‘:‘-‘.E'.':'-'.E'-':‘-'.E'-‘:‘-‘.E'.'.

an e -'-'-'-E'-'
!

e

-':'-'-E'-':

ey

« Constraints are Declarative

class Bus;

rand bit[15:0] addr;

rand bit[31:0] data;

randc bit[3:0] mode;

constraint word align {addr[l:O] == 2’b0;}
endclass

Calling randomize selects values for all
random variables in an object such that all

constraints are satisfied

Generate 50 random data and word_aligned addr values

Bus bus = new;
repeat (50)
if ( bus.randomize() == 1 ) //l=success,0=failure
Sdisplay ("addr = %16h data = %h\n", bus.addr,
bus.data) ;
else

G $display ("Randomization failed.\n"); e
e sz

CMOS VLSI Design 4th Ed.




Welghted Random Case

an e e e )

S S SR e

- Randomly select one statement
+ Label expressions specify distribution weight

randcase
3 : x = 1; // branch 1
1l : x = 2; // branch 2
a: x = 3; // branch 3
endcase
- lfa==

—branch 1 taken with 3/8 probability (37.5%)
—branch 2 taken with 1/8 probability (12.5%)
—branch 3 taken with 4/8 probability (50.0%)

e e e e s
e e e e e et
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- Purpose: Identifies verification code

* A program differs from a module

« Only initial blocks allowed
« Special semantics
— Executes in Reactive region
design — clocking/assertions — program

 Program block variables cannot be modified by
the design

program name (<port lists>);
<declarations>;// type, func, class, clocking...
<continuous assign>
initial <statement block>
endprogram

The Program block functions pretty much like a C program

Testbenches are more like software than hardware
S e T T
CMOS VLSI Design 4th Ed.




Why Use Assertions?

. Limitations of Directed testing
— To be practical, testing has to be high level
— Locating a logic error can take a lot of time

— New tests may need to be written to close in on
failure

— Signal relationships are complex and lower level.

» Assertions target interesting signal
relationships
— Like handshake signals, bus protocols etc.
— Execute in parallel with Verification tests
— Efficiently capture Verification IP (bus protocols etc)
— Often reusable across design and/or project

e e e e s
e e e e e et
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What Assertions Can Do

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

U Find logic errors earlier
— Detect low-level errors that functional tests miss
— Explicitly indicate time when a failure occurs
— Explicit hierarchical locations and signal names
1 Coverage of expected or unexpected events

— Assertions coverage permits uses beyond
checking

« How many times an event occurs
 Proof that a negative event did NOT happen

e e e e s
e e e e e et
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Assertions

R

A concise description of [un]desired behavior

0 1 2 3 4 5

R
ack /—S‘/ /

Example intended behavior

req

“After the request signal is asserted, the

acknowledge signal must come 1 to 3 cycles later”

CMOS VLSI Design 4th Ed.




More Concise Than VHDL

R

. property req ack;
SVA Assertion @ (posedge clk) req ##[1:3] $rose (ack);

endproperty
as req ack: assert property (req_ ack); e —

sanple_inpute : procese (olk)
S VHDL
if rieing_edge(olk) then
S8TROBE_REQ «= REQ)
S8TROBE_ACK «= ACK)
end i1,

1 end process;
! x protocol: proosso
re i . ‘;Kiablo CICLE_CNT : Natural;
q i loop
: walt until rieing_edge(CLE) ;
H H H H oxit when (2TROBE REQ = '0') and (REQ = '1');
aCk i 0 0 | . : end loop;
Lo ' ' P CYCLE_CNT := 0;
Example intended behavior 1cop

walt until rieing_edge(CLE)

CICLE_CHT := CICLE_CHT + 1;

oxit when ((STROBE ACK = '0') and (ACK = '1')) or (CYCLE_CNT = 3);
end loop;
if ({8TROBE_ACK = '0') and (ACK = '1')) then

report "Ascertion succece® severity Hote,

eloe

report "Ascertion failure* eseverity Error;
end ir
HDL Assertion | «= pvoa:au protocoly ZC

s
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Assertion Based Verificatiod

— Make Assertions part of Design and Verification flows
» Embed design assumptions into the design
» Place protocol & functional spec checks outside (bind)
» Make use of Assertion Coverage data
— Consider Assertions in Test Plan
» ldentify key protocols and target-able blocks
» Input assumptions, Output expectations
» Leverage Assertion Libraries first
» OVL, QVL, Checkerware
» Write custom Assertions (e.g SVA)
» Expertise and training

e e e e s
e e e e e et
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Assertion Characteristics

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

— Automated checks on signal behavior &
functionality

» Boolean statement that specifies the logical
relationship between a set of signals over a
specified period of time

» Checks performed at user-specified intervals
(sample points)

property p_one_hot;
@(posedge Clk) disable iff(Reset)
$onehot( {var1, var2, var3} );
endproperty
rx_fsm_one hot : assert property( p_one_hot );

e e e e s
e e e e e et
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Embedded Assertions

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

— These are assertions embedded in procedural
code

* |[deal for designers — almost like active
comments

 Must have write access to the source-code to
add these

* Likely to be of use ONLY to simulator tools

always @ (posedge clk)
if (cond1_is_met)...
if (cond2_is_met)begin
access_grant = request1 || request?,;
assert(access_grant);

e e e e s
e e e e e et
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Concurrent Assertions

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

— These are assertions outside of procedural code

* |deal for Verification - No source-code access
required.

 Totally independent of design (black-box
checking)

« Used by simulation and other tools
property p_one_hot;
@(posedge Clk) disable iff(Reset)
$onehot( {var1, var2, var3} );
endproperty

rx_fsm_one_hot : assert property( p_one_hot );
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Debugging Assertions

. Assertions are compact code structures
— Challenging to write, even moreso to debug
— Need good tools to help visualize the assertion

« Questa has powerful visualization and debug tools
— Analysis pane

» Lists all assertions at current hierarchical level and their
stats.

— Waveform View of assertion and it’s signals
» Clear indication of status: active/inactive/pass/fail
— Thread View

» decomposes assertions clause by clause for easy debug
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Assertion Summary

. Limited visibility to signals within SOC’S
— One contributor to the Verification gap
— Assertion Based Verification is a solution

* Questa supports Assertion Based Verification
— Industry leading implementation of SV
» OOP, Functional Coverage etc.
» Broadest Assertion Library support
» SV Assertions
— Comprehensive debug toolchain
» Assertion Pane
» Waveform display of assertions
» Assertion Thread Viewer
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