
Hardware
Description
Languages

CMOS VLSI Design 4th Ed.

Outline
–  HDL Overview
–  Why not use “C”?

•  Concurrency
•  Hardware datatypes / Signal resolution
•  Connectivity / Hierarchy
•  Hardware simulation

–  Basic VHDL Concepts
–  Basic VerilogHDL Concepts
–  SystemC Introduction
–  SystemVerilog Introduction

CMOS VLSI Design 4th Ed.

HDL Overview
  Hardware Description Languages

–  Used to model digital systems
–  Can model anything from a simple gate to a

complete system
–  Support design hierarchy
–  Support Hardware Design Methodology

  Can model “real” hardware (synthesizable)
  Can model behavior only (e.g. for test)
  Both are non-proprietary, IEEE standards
  Behavioral and structural coding styles

CMOS VLSI Design 4th Ed.

Basic Design Methodology

Simulate RTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing
Model Simulate

Requirements

Device Libraries

CMOS VLSI Design 4th Ed.

Why Not Use C or C++?
•  HDLs need to support characteristics of “real”

hardware
– Concurrency
– Hardware datatypes / Signal resolution
– Connectivity / Hierarchy
– Circuit timing

•  HDLs must support hardware simulation
–  Time
– Cycle-accurate or Event-driven (for simulation

speed)

•  Note: C++ has been extended for hardware
–  SystemC

CMOS VLSI Design 4th Ed.

Basic Comparison

Verilog
  Similar to C
  Popular in commercial,

on coasts of US
  Designs contained in

“module”s

VHDL
  Similar to Ada
  Popular in Military,

midwest US
  Designs contained in

“entity” “architecture”
pairs

CMOS VLSI Design 4th Ed.

Concurrency
  HDLs must support concurrency

–  Real hardware has many circuits running at the
same time!

  Two basics problems
–  Describing concurrent systems
–  Executing (simulating) concurrent systems

CMOS VLSI Design 4th Ed.

Describing Concurrency
  Many ways to create concurrent circuits

–  initial/always (Verilog) and process (VHDL)
blocks

–  Continuous/concurrent assignment statements
–  Component instantiation of other modules or

entity/architectures
  These blocks/statements execute in parallel in every

VHDL/Verilog design

CMOS VLSI Design 4th Ed.

Executing Concurrency
  Simulations are done on a host computer executing

instructions sequentially
  Solution is to use time-sharing

–  Each process or always or initial block gets the
simulation engine, in turn, one at a time

  Similar to time-sharing on a multi-tasking OS, with
one major difference
–  There is no limit on the amount of time a given

process gets the simulation engine
–  Runs until process requests to give it up (e.g.

“wait”)

CMOS VLSI Design 4th Ed.

Process Rules
  If the process has a sensitivity list, the process is

assumed to have an implicit “wait” statement as the
last statement
–  Execution will continue (later) at the first

statement
  A process with a sensitivity list must not contain an

explicit wait statement

CMOS VLSI Design 4th Ed.

Sensitivity List

With Explicit List
XYZ_Lbl: process (S1, S2)
begin
 S1 <= ‘1’;

 S2 <= ‘0’ after 10 ns;
end process XYZ_Lbl;

Without Explicit List
XYZ_Lbl: process
begin
 S1 <= ‘1’;

 S2 <= ‘0’ after 10 ns;
 wait on S1, S2;

end process XYZ_Lbl;

CMOS VLSI Design 4th Ed.

Incomplete Sensitivity Lists

–  Logic simulators use
sensitivity lists to
know when to
execute a process
•  Perfectly happy not

to execute proc2
when “c” changes

•  Not simulating a 3-
input AND gate
though!

–  What does the
synthesizer create?

12

-- complete

proc1: process (a, b, c)
begin
 x <= a and b and c;
end process;

-- incomplete

proc2: process (a, b)
begin
 x <= a and b and c;
end process;

CMOS VLSI Design 4th Ed.

Datatypes
  Verilog has two groups of data types

•  Net Type – physical connection between
structural elements

–  Value is determined from the value of its drivers,
such as a continuous assignment or a gate output

– wire/tri, wor/trior, wand/triand, trireg/tri1/tri0, supply0,
supply1

•  Variable (Register) Type – represents an
abstract data storage element

–  Assigned a value in an always or initial statement,
value is saved from one assignment to the next

–  reg, integer, time, real, realtime

CMOS VLSI Design 4th Ed.

Datatypes
•  VHDL categorizes objects in to four classes

– Constant – an object whose value cannot be
changed

–  Signal – an object with a past history
–  Variable – an object with a single current value
–  File – an object used to represent a file in the host

environment

•  Each object belongs to a type
–  Scalar (discrete and real)
– Composite (arrays and records)
–  Access
–  File

CMOS VLSI Design 4th Ed.

Hierarchy
  Non-trivial designs are developed in a hierarchical

form
–  Complex blocks are composed of simpler blocks

VHDL Verilog
Entity and architecture Module

Function Function
Procedure Task

Package and package body Module

CMOS VLSI Design 4th Ed.

  A concurrent language allows for:
–  Multiple concurrent “elements”
–  An event in one element to cause activity in

another
•  An event is an output or state change at a

given time
•  Based on interconnection of the element’s

ports
–  Logical concurrency — software
–  True physical concurrency — e.g., “<=” in Verilog

Hardware Simulation

CMOS VLSI Design 4th Ed.

Discrete Time Simulation
•  Models evaluated and state updated only at

time intervals — nτ
–  Even if there is no change on an input
–  Even if there is no state to be changed
– Need to execute at finest time granularity
– Might think of this as cycle accurate — things only

happen
 @(posedge clock)

•  You could do logic circuits this way, but either:
–  Lots of gate detail lost — as with cycle accurate

above (no gates!)
–  Lots of simulation where nothing happens — every

gate is executed whether an input changes or not.

CMOS VLSI Design 4th Ed.

Discrete Event Simulation
•  Discrete Event Simulation…also known as

Event-driven Simulation
– Only execute models when inputs change
–  Picks up simulation efficiency due to its selective

evaluation

•  Discrete Event Simulation
–  Events — changes in state at discrete times. These

cause other events to occur
– Only execute something when an event has occurred

at its input
–  Events are maintained in time order
–  Time advances in discrete steps when all events for a

given time have been processed

CMOS VLSI Design 4th Ed.

Discrete Event Simulation
  Quick example

–  Gate A changes its output.
–  Only then will B and C execute

  Observations
–  The elements in the diagram don’t need to be logic

gates
–  DE simulation works because there is a sparseness

to gate execution — maybe only 12% of gates
change at any one time.
•  The overhead of the event list then pays off

A"
B"

C"

CMOS VLSI Design 4th Ed.

Synthesis
  Translates register-transfer-level (RTL) design into

gate-level netlist
  Restrictions on coding style for RTL model
  Tool dependent

CMOS VLSI Design 4th Ed.

Basic Verilog Concepts
  Interfaces
  Behavior
  Structure

CMOS VLSI Design 4th Ed.

A Gate Level Model
  A Verilog description of an SR latch

module nandLatch
 (output q, qBar,
 input set, reset);
 nand #2
 g1 (q, qBar, set),
 g2 (qBar, q, reset);
endmodule

A module is defined" name of the module"

The module has ports
that are typed"

primitive gates with
names and
interconnections"

type and delay of
primitive gates"

CMOS VLSI Design 4th Ed.

A Behavioral Model - FSM

X"

Q2"

Q1"

Q2ʼ"

D1" Q1"

D2" Q2"

Z"

clock"
reset"

reset"

reset"

CMOS VLSI Design 4th Ed.

Organization for FSM
  Two always blocks

–  One for the combinational logic — next state and
output logic

–  One for the state register

CMOS VLSI Design 4th Ed.

module FSM (x, z, clk, reset);
 input clk, reset, x;
 output z;
 reg [1:2] q, d;
 reg z;

endmodule

Behavioral Specification

always @(x or q)"
begin"
 d[1] = q[1] & x | q[2] & x;"
 d[2] = q[1] & x | ~q[2] & x;"
 z = q[1] & q[2];"
end"

always "
 @(posedge clk or negedge reset)"
 if (~reset)"
 q <= 0;"
 else q <= d;"

The sequential part
(the D flip flop)

The combinational
logic part

next state

output

CMOS VLSI Design 4th Ed.

SystemC
  C++ class library developed to support system level

design (Electronic System Level, ESL)
  Intended to cope with both hardware and software
  IEEE 1666 Standard
  Supports concurrency, hierarchy, signals, time
  Supports transaction level modeling
  Supported natively by Modelsim

CMOS VLSI Design 4th Ed.

SystemVerilog

CMOS VLSI Design 4th Ed.

Verilog-95

CMOS VLSI Design 4th Ed.

VHDL Richer Than Verilog

CMOS VLSI Design 4th Ed.

C Can’t Do Hardware

CMOS VLSI Design 4th Ed.

Verilog-2001

CMOS VLSI Design 4th Ed.

Verification and Modeling

CMOS VLSI Design 4th Ed.

SystemVerilog: Unified Language

CMOS VLSI Design 4th Ed.

Constrained Random

CMOS VLSI Design 4th Ed.

Basic Constraints

CMOS VLSI Design 4th Ed.

Weighted Random Case

CMOS VLSI Design 4th Ed.

Program Block

CMOS VLSI Design 4th Ed.

Why Use Assertions?
•  Limitations of Directed testing

–  To be practical, testing has to be high level
–  Locating a logic error can take a lot of time
– New tests may need to be written to close in on

failure
–  Signal relationships are complex and lower level.

•  Assertions target interesting signal
relationships

–  Like handshake signals, bus protocols etc.
–  Execute in parallel with Verification tests
–  Efficiently capture Verification IP (bus protocols etc)
– Often reusable across design and/or project

CMOS VLSI Design 4th Ed.

What Assertions Can Do
  Find logic errors earlier

–  Detect low-level errors that functional tests miss
–  Explicitly indicate time when a failure occurs
–  Explicit hierarchical locations and signal names

  Coverage of expected or unexpected events
–  Assertions coverage permits uses beyond

checking
•  How many times an event occurs
•  Proof that a negative event did NOT happen

CMOS VLSI Design 4th Ed.

Assertions

CMOS VLSI Design 4th Ed.

More Concise Than VHDL

CMOS VLSI Design 4th Ed.

Assertion Based Verification
– Make Assertions part of Design and Verification flows

»  Embed design assumptions into the design
»  Place protocol & functional spec checks outside (bind)
» Make use of Assertion Coverage data

– Consider Assertions in Test Plan
»  Identify key protocols and target-able blocks

»  Input assumptions, Output expectations
»  Leverage Assertion Libraries first

» OVL, QVL, Checkerware
» Write custom Assertions (e.g SVA)

»  Expertise and training

CMOS VLSI Design 4th Ed.

Assertion Characteristics

–  Automated checks on signal behavior &
functionality
•  Boolean statement that specifies the logical

relationship between a set of signals over a
specified period of time

•  Checks performed at user-specified intervals
(sample points)

property p_one_hot;
 @(posedge Clk) disable iff(Reset)
 $onehot({var1, var2, var3});
endproperty
rx_fsm_one_hot : assert property(p_one_hot);

CMOS VLSI Design 4th Ed.

Embedded Assertions
–  These are assertions embedded in procedural

code
•  Ideal for designers – almost like active

comments
•  Must have write access to the source-code to

add these
•  Likely to be of use ONLY to simulator tools
always @ (posedge clk)
 if (cond1_is_met)…
 if (cond2_is_met)begin
 access_grant = request1 || request2;
 assert(access_grant);

CMOS VLSI Design 4th Ed.

Concurrent Assertions
–  These are assertions outside of procedural code

•  Ideal for Verification - No source-code access
required.

•  Totally independent of design (black-box
checking)

•  Used by simulation and other tools
property p_one_hot;
 @(posedge Clk) disable iff(Reset)
 $onehot({var1, var2, var3});
endproperty

rx_fsm_one_hot : assert property(p_one_hot);

CMOS VLSI Design 4th Ed.

Debugging Assertions
•  Assertions are compact code structures

– Challenging to write, even moreso to debug
– Need good tools to help visualize the assertion

•  Questa has powerful visualization and debug tools
–  Analysis pane

»  Lists all assertions at current hierarchical level and their
stats.

– Waveform View of assertion and it’s signals
» Clear indication of status: active/inactive/pass/fail

–  Thread View
»  decomposes assertions clause by clause for easy debug

CMOS VLSI Design 4th Ed.

Assertion Summary
•  Limited visibility to signals within SOC’s

– One contributor to the Verification gap
–  Assertion Based Verification is a solution

•  Questa supports Assertion Based Verification
–  Industry leading implementation of SV

» OOP, Functional Coverage etc.
»  Broadest Assertion Library support
»  SV Assertions

– Comprehensive debug toolchain
»  Assertion Pane
» Waveform display of assertions
»  Assertion Thread Viewer

