55:131
Introduction to VLSI Design

Stick Diagrams
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells

- Standard cell design methodology
 - \(V_{DD} \) and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts
Example: Inverter
Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ
Stick Diagrams

- *Stick diagrams* help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers
Wiring Tracks

- A *wiring track* is the space required for a wire
 - 4 \(\lambda \) width, 4 \(\lambda \) spacing from neighbor = 8 \(\lambda \) pitch
- Transistors also consume one wiring track
Well spacing

- Wells must surround transistors by 6λ
 - Implies 12λ between opposite transistor flavors
 - Leaves room for one wire track

![Diagram](image)
Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ
Example: O3AI

- Sketch a **stick diagram** for O3AI and estimate area $Y = (A + B + C) \cdot D$
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area $Y = (A + B + C) \cdot D$
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area \(Y = (A + B + C) \cdot D \)
Problem 1.12

[Diagram: Level-sensitive latch stick diagram]
Problem 1.16

\[F = (AB + AC + BC)' = (AB + C(A+B))' \]

(c) 6 tracks wide x 7 tracks high = (48 x 56) = 2688 \(\lambda^2 \).