55:131 Introduction to VLSI Design

Final Exam Preparation

Topics

- Sequential Circuits
 - Flip-Flops
 - Latches
 - Setup and Hold Timing
 - Skew
- Adders
 - Propagate and Generate Signals
 - Carry-Ripple Adder
 - Carry-Skip Adder
 - Carry-Lookahead Adder
 - Carry-Select Adder

Topics

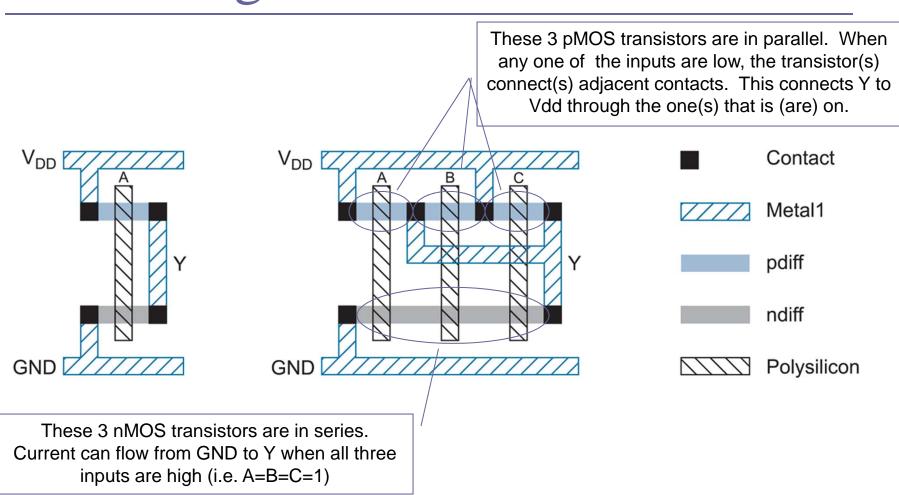
- Datapath Units
 - Comparators
 - Shifters
 - Multipliers
- Memories
 - Arrays
 - Decoders
 - Column Circuitry
 - SRAM
 - DRAM
 - Flash

Topics, cont'd

- Design For Test
 - Fault Models
 - Observability and Controllability
 - Scan
 - BIST
 - Boundary Scan
- Chip-Level Issues
 - Packaging
 - Power Distribution
 - Clock Distribution

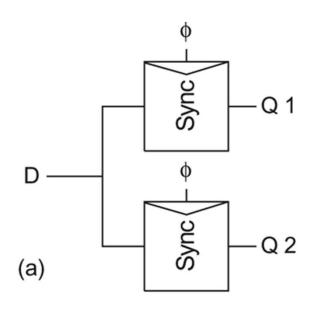
Topics, cont'd

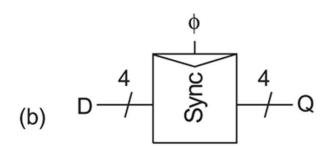
- Basic I/O Pads
- I/O Channels
- Transmission Lines
- Noise and Interference
- High-Speed I/O
- Transmitters
- Receivers
- Clock Recovery
- Source-Synchronous
- Mesochronous


Other Notes

- If at all possible, make your design synchronous
 - One clock signal, delivered to each flop, without gating
 - State changes occur synchronously with clock
 - One reset signal, delivered to each flop, without gating
 - Puts circuit into a pre-defined (default) state
 - Benefits of Synchronous design
 - Avoids hazards
 - Better noise immunity
 - Easier to design and debug
 - Better tool support
 - Many others!
 - KISS Principle: Keep it Strictly Synchronous!

Other Notes


- Device verification generally costs as much or more than design
 - Plan it out and do it right
- Setup and hold times of flip-flops and latches must be met for reliable circuit operation
 - Write constraints
 - Do Static Timing Analysis
 - Pay attention to asynchronous inputs and signals that cross clock domains
- CMOS logic slows down with increasing temperature and decreasing supply voltage
 - Use the heat gun and freeze mist in the lab


Stick Diagrams

Bad Synchronizer Designs

Data must remain consistent

