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Abstract

A large deformation particle method based on the Krongauz–Belytschko corrected-gradient meshfree method with

Lagrangian kernels is developed. In this form, the gradient is corrected by a linear transformation so that linear

completeness is satisfied. For the test functions, Shepard functions are used; this guarantees that the patch test is met.

Lagrangian kernels are introduced to eliminate spurious distortions of the domain of material stability. A mass allo-

cation scheme is developed that captures correct reflection of waves without any explicit application of traction

boundary conditions. In addition, the Lagrangian kernel versions of various forms of smooth particle methods (SPH),

including the standard forms and the Randles–Libersky modification are presented and studied. Results are obtained

for a variety of problems that compare this method to standard forms of SPH, the Randles–Libersky correction and

large deformation versions of the element-free Galerkin method.
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1. Introduction

Meshfree particle methods provide many advantages for modelling severe deformations and failure of

solids as compared to Lagrangian finite element and finite difference methods. Although most meshfree

methods are basically Lagrangian in character, the absence of a mesh enables them to deal with larger local
distortion than finite element methods. Furthermore, phenomena such as fracture and other material

instabilities are more easily modelled than with finite elements, particularly when they are not aligned with

the nodes.

Particle methods can be classified into those based on kernel approximations, as smooth particle

hydrodynamics (SPH) methods, and those based on field approximations, as the element-free Galerkin

method (EFG). One of the first meshfree methods was the SPH-method introduced by Lucy [32] and

Gingold and Monaghan [20]. It was first utilized for gas dynamic problems. The method was extended to

solid continua by Libersky et al. [28], who applied SPH to dynamic fracture and fragmentation of solids,
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where mesh-based methods have had difficulties. Fracture was modelled by letting the stresses go to zero
after a critical strain.

However, SPH suffers from some inherent difficulties: a lack of consistency that can lead to poor

accuracy and a tensile instability that results from the combination of an Eulerian kernel with a Lagrangian

description of motion. The latter is more generally a manifestation of the distortion of the domain of

material stability, see Belytschko et al. [6,7,47].

In the last 10 years, many improvements have been made in particle methods. Liu et al. [29,30] proposed

a correction function that restores linear (first-order) completeness of the kernel function. First-order

completeness appears to be a necessary condition for convergence. Furthermore, zeroth-order completeness
guarantees global conservation of linear momentum while first-order completeness guarantees global

balance of angular momentum as shown in Krongauz and Belytschko [27] and Belytschko et al. [2]. Be-

lytschko et al. [4] showed that these correction methods yield approximations that are identical to the

moving least square (MLS) approximation used in EFG [5]. The particle methods based on MLS (or

corrected functions), unlike SPH, do not satisfy local conservation of momentum or angular momentum.

Dilts [15–17] developed SPH methods based on MLS approximations and extensively studied the issue of

local conservation properties.

Johnson and Beissel [24] proposed a modification of the extensional strains of the SPH shape functions,
so that they would give the correct values of the extensional strains for linear fields. Subsequently, Randles

and Libersky [41] proposed a more general transformation of the gradient that gives the correct values of all

strains for linear fields, which they called normalization. Krongauz and Belytschko [27] developed a similar

transformation but showed that a standard Bubnov–Galerkin discretization then failed the patch test. Since

the patch test is apparently necessary for convergence, this may be quite detrimental to the method. They

showed that a Petrov–Galerkin method employing the Shepard functions as test functions and a kernel with

a corrected gradient as trial functions meets the patch test. The failure of corrected gradient methods to

meet the patch test was subsequently noted by Bonet et al. [13] who proposed solving a subsidiary set of
equations to enforce them.

As shown by Swegle et al. [45], particle methods suffer from tensile instabilities. To stabilize SPH, Dyka

et al. [18,19] introduced stress points into SPH. This approach was later extended to higher dimensions by

Randles et al. [42]. It was shown in [6] that the stress point technique stabilizes SPH by suppressing spurious

singular modes observed in SPH, but it does not eliminate the distortion of the domain of material

instability. Chen et al. [14] have developed an integration technique based on contour integrals that avoids

volumetric locking and appears to eliminate spurious singular modes.

In most of the SPH literature an Eulerian kernel is taken as the weighting function. Recently, Belytschko
et al. [6,7] investigated Eulerian and Lagrangian kernels. They pointed out that SPH with stress points and

an Eulerian kernel cannot eliminate the tensile instability, because Eulerian kernels distort the domain of

material instability; they showed that stress points only remove the instability that arises due to rank

deficiency, i.e. spurious singular modes. They also showed that the tensile instability can be avoided by

a Lagrangian kernel. However this limits the magnitude of the distortions that can be treated.

Other meshfree methods are the EFG method which uses the MLS approximation [5]. The main con-

tribution of the EFG was the development of methods for treating arbitrary discontinuities, see Belytschko

et al. [5,8,9]. It was also used for modeling nonlinear material response under dynamic loading, see [9].
Unlike SPH, the EFG method is discretized by a Galerkin method. The integrals are usually evaluated over

background cells based on an octree structure, see [5]. For dynamic applications, cell integration becomes

computationally expensive. Beissel and Belytschko [1] developed a nodal integration for EFG, which

corresponds to a particle method based on MLS.

In this paper, a meshfree particle method for large deformation, nonlinear problems that employs a

Lagrangian kernel with correction of the derivatives, as in Krongauz and Belytschko [27], is described.

Stress points are used to eliminate the rank deficiency. It is also shown that through an appropriate con-
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struction of the mass matrix, the method accurately treats traction-free boundaries and boundaries with
applied tractions, without any special boundary treatment. The method is, however, limited in the amount

of deformation it can handle; it is not suitable for problems of fluid flow. Nevertheless, it appears to be able

to treat many problems of interest in the simulation of solids, where the deformations of interest are less

severe than in fluids. Furthermore, it is stable and robust for this class of problems.

This article is arranged as follows. First, the governing equations are given. After some remarks about

Eulerian and Lagrangian kernels, several meshfree approximations are summarized: the original SPH

method, the Randles–Libersky [41] correction of the derivatives, the Krongauz–Belytschko correction [27]

and the MLS approximation. The discrete governing equations are obtained by collocation as in SPH and
by Petrov–Galerkin and Bubnov–Galerkin procedures, respectively. In Section 5, nodal integration, nodal

integration with stress points and cell integration used in EFG are reviewed. Then, applications to concrete

and metals under quasistatic and dynamic loading are given and compared with experimental data.
2. Governing equations

The governing equations for large deformation problems will first be presented in the total Lagrangian
formulation, where the conservation equations and constitutive equations are expressed in terms of the

material coordinates X. They will then be presented in the updated Lagrangian formulation, where the

equations are described in the current configuration, see Belytschko et al. [10]. We will give both forms of

many of the equations.

2.1. Total Lagrangian formulation

We consider a body X in Rn (n ¼ 2 or 3) with boundary C; their images in the initial state are X0 and C0,
respectively. The initial state will also serve as the reference state. The motion is described by

x ¼ /ðX; tÞ; ð1Þ

where x are the spatial (Eulerian) coordinates and X the material (Lagrangian) coordinates. The dis-

placement is then given by

uðX; tÞ ¼ x� X ¼ /ðX; tÞ � X: ð2Þ

Neglecting thermomechanical and frictional forces, the conservation equations in the total Lagrangian

formulation are given by [10]

.J ¼ .0J0; €u ¼ 1

.0
r0 � Pþ b; _e ¼ 1

.0
_F : PT; ð3Þ

where J and J0 are the Jacobian determinant and initial Jacobian determinant, respectively, u is the dis-

placement vector, . is the current density, .0 is the initial density, P are the nominal stresses (note P is the

transpose of the first Piola Kirchhoff stress tensor as discussed in Belytschko et al. [10]), b are the body

forces per mass unit, e is the internal energy, r0 is the gradient or divergence operator expressed in material

derivatives and F denotes the deformation gradient. Note that the mass conservation equation is written in
algebraic form since it is integrable for a Lagrangian description.

The boundary conditions are:

uðX; tÞ ¼ �uðX; tÞ on Cu
0 ; ð4Þ

n0 � PðX; tÞ ¼ �tðX; tÞ on Ct
0; ð5Þ
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where �u and �t are the prescribed displacement and traction, respectively, n0 is the outward normal to the

domain and Cu
0 [ Ct

0 ¼ C0, C
u
0 \ Ct

0 ¼ 0.

2.2. Updated Lagrangian formulation

In the updated Lagrangian formulation the equations are expressed in the current domain of the body. It

should be understood that the governing equations in the total and updated Lagrangian formulation are

identical, they are only different descriptions (or transformations) of the same equations.
Neglecting thermomechanical and frictional forces, the conservation equations in the strong form are

_. ¼ �.r � v; _v ¼ 1

.
r � rþ b; _e ¼ r

.
: r� v; ð6Þ

where v is the velocity vector, r is the Cauchy stress tensor, e is the internal specific energy and the r is the
gradient or divergence operator expressed in spatial coordinates. The energy conservation equation is only

necessary as a PDE if heat transfer is relevant. The continuity equation can also be in the form (3a) for an

updated Lagrangian description [10]. The boundary conditions are:

vðX; tÞ ¼ �vðX; tÞ on Cv; ð7Þ

n � rðX; tÞ ¼ �tðX; tÞ on Ct; ð8Þ
where �v and �t are the prescribed velocity and traction, respectively, n is the outward normal to the domain

and Cv [ Ct ¼ C, Cv \ Ct ¼ 0.

In the updated Lagrangian formulation the constitutive equations are commonly formulated in rate

form for large deformations:

rr ¼ _rðD; qÞ; ð9Þ
where q are internal state variables which depend on the material behavior, D is the rate of deformation or

velocity strain and rr is a frame invariant rate. The velocity strain is the symmetric part of the velocity

gradient L:

D ¼ 1
2
ðr � _xþ _x�rÞ: ð10Þ

The antisymmetric part of L

W ¼ 1
2
ðr � _x� _x�rÞ ð11Þ

is the spin-tensor and is needed to calculate certain frame-indifferent rates.
3. Meshfree approximations

Meshfree approximations for a scalar function u in terms of the material (Lagrangian) coordinates can

be written as

uðX; tÞ ¼
X
J2S

UJðXÞuJðtÞ; ð12Þ

where UJ ðXÞ are the shape functions and uJ is the value at the particle parameter (it is nearly equal to the
displacement) at the position XJ and S is the set of particles J for which UIðXJ Þ 6¼ 0. Note, that the above

form is identical to the form of an FEM approximation. However, in contrast to FEM, UIðXÞ is only an

approximant and not an interpolant, since uðXIÞ 6¼ uI . Therefore special techniques are needed to treat

displacement boundary conditions, see e.g. [2,17].
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The approximation can also be formulated in terms of the spatial (Eulerian) coordinates. In that case,
it is conventional to approximate the velocities, instead of the displacements, so

_uðx; tÞ ¼
X
J2S

UJ ðxÞ _uJ ðtÞ: ð13Þ

Eqs. (12) and (13) correspond to Lagrangian and Eulerian descriptions of motion, respectively. Note,

that (13) does not correspond to the standard description of motion for a solid as given in (1). Furthermore,

if all dependent variables such as the stress, strain and state variables are expressed in terms of the spatial

coordinates x and time t, then transport terms must be included in the update equations. The shape

functions UJðXÞ or UJðxÞ are obtained from the kernel functions, which are denoted by WJ ðXÞ or WJðxÞ for
Lagrangian and Eulerian kernels, respectively. Usually radial kernel functions are chosen. For Lagrangian
radial kernels WJ ðXÞ ¼ W ðr0Þ where r0 ¼ kX� XJk while for Eulerian kernels WJ ðx; tÞ ¼ W ðrÞ where

r ¼ kx� xJ ðtÞk. As noted later, the time dependence of Eulerian kernels is always neglected, see Monaghan

[33,34].

The kernel functions are chosen to have compact support. A widely used kernel which has been em-

ployed in our calculations is the cubic spline [14]:

W ðrÞ ¼

C
hD

ð1� 1:5z2 þ 0:75z3Þ 06 z < 1;

C
4hD

ð2� zÞ3 16 z6 2;

0 z > 2;

8>>><
>>>:

ð14Þ

where D is the dimension of the space, h is the interpolation radius or radius of the support, z ¼ r=h, and
C is a constant depending on the dimension

C ¼
2=3 for D ¼ 1;

10=ð7pÞ for D ¼ 2;

1=p for D ¼ 3:

8<
: ð15Þ

The support of the kernel function is also called the domain of influence since it determines which

neighboring particles effect a given particle and corresponds to S. The relationship of the kernel function to

the shape function depends on the approximation technique and is explained in the Sections 3.2–3.5.
3.1. Eulerian and Lagrangian kernels

In most SPH procedures [15–17,41,42] the shape function is directly expressed in terms of an Eulerian

kernel:

WJ ðxÞ ¼ W ðx� xJ ðtÞ; hðx; tÞÞ: ð16Þ
Note that the Eulerian kernel is expressed in terms of spatial coordinates. The radius h of the support can

depend on the spatial coordinates.

Belytschko et al. [6] have shown that particle discretizations of solids with an Eulerian kernel with or

without stress points lead to a distortion of the stable domain of the material in stress space; the tensile

instability analyzed in Swegle et al. [46] is one manifestation of this distortion.
The Lagrangian kernel is expressed in terms of material coordinates, so:

WJ ðXÞ ¼ W ðX� XJ ; h0Þ: ð17Þ
For Lagrangian kernels, the neighbors of influence do not change during the course of the simulation,

but the domain of influence in the current configuration changes with time. For radial kernel functions, the
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domain of influence in the initial configuration is a circle in two dimensions and a sphere in three
dimensions.

The Lagrangian kernel eliminates the tensile instability, but the instability due to a rank deficiency of the

discrete equations remains unless stress points are added. Therefore, the representation of the kernel in

terms of material coordinates provides a more consistent procedure when simulating material fracture or

other material instabilities because instabilities will not occur due to numerical artifacts.

The distortion of material instability is illustrated for the case of a particular material in Fig. 1 [47],

which shows the domains of material stability for the Lagrangian kernel, an Eulerian kernel and that of the

governing partial differential equation, i.e. the momentum equation (3) for a particular hyperelastic
material. The stable domains are shown in the space of the two principal stretches, k1 and k2. The hy-

perelastic material model is given by [25]:

r ¼ 1ffiffi
I

p
3

ðc1
h

þ c2I1ÞB� c2B
2 � c1I

1
3

3

�
þ 2c2I

2
3

3 � k ln I3
�
I
i
; ð18Þ

where B ¼ FFT. The material constants are c1 ¼ 1:265e5 N/m2, c2 ¼ 1:012e4 N/m2 and k ¼ 1:012e7 N/m2.

I1 ¼ trðBÞ and I3 ¼ detðBÞ. The material density is q ¼ 125:4 kg/m3. In an ideal discretization, the stable
domains of the discretization and the PDE should coincide, which is almost the case for the Lagrangian

kernel (in fact, the two domains are almost indistinguishable in the figure, but differ numerically). However,

for the Eulerian kernel we can see a substantial domain (indicated by grayscale in Fig. 1) where the material

should be stable but the discrete model is not. In other words, the shaded area are states of deformation for

which the Eulerian kernel is unstable whereas the PDE indicates a stable response.

In the current configuration the domain of influence of a Lagrangian kernel can be extremely distorted.

This is a disadvantage in simulating fluid flow problems and other problems with very large distortions. In

the following sections the approximation techniques are described in terms of a Lagrangian kernel. The
equations for an Eulerian kernel can be derived similarly.

3.2. The SPH approximation

In the SPH method with a Lagrangian kernel, the shape functions are given by a product of the particle

volume and the weighting function:
λ1

λ 2 λ 2

λ1

1 2 3

1

2

3

Lagrangian kernel

PDE

(a) (b)
0 1 2 3

0

1

2

3

PDE

Eulerian kernel

Fig. 1. (a) Stable domain for MLS particle method with stress point integration and Lagrangian kernel compared to the stable domain

for the PDE; (b) Stable domains of MLS particle methods for stress point integration with Eulerian and Lagrangian kernel for hy-

perelastic material; dashed and solid lines bound the stable domains for Lagrangian and Eulerian kernels, respectively.
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UJ ðXÞ ¼ W ðX� XJ ; h0ÞV 0
J ; ð19Þ

where V 0
J is the volume associated with the particle J in the initial configuration. For an Eulerian kernel the

shape functions are

UJ ðxÞ ¼ W ðx� xJ ; hÞVJ ; ð20Þ
where VJ is the current volume associated with particle J .

In the application to PDEs, an approximation of a function gradient is needed. In SPH, an approxi-

mation of the gradient of a function in terms of the Lagrangian kernel is given by

ruh ¼ �
X
J2S

uJr0UJ with r0UJ ¼ r0W ðX� XJ ; h0ÞV 0
J ; ð21Þ

where the r0 indicates the gradient in terms of the material coordinates. The minus sign on the right-hand

side of Eq. (21) results from the integration by parts, that is standard in SPH [33,34].

One drawback of the standard SPH-method is its inability to accurately approximate a function when

particles are unevenly spaced. This is evidenced by its inability to reproduce linear fields (called the

reproducing conditions), which is generally necessary for convergence. The momentum equations with

stress rates depending on the velocity gradient are second-order PDEs, so linear completeness, i.e. the

ability to reproduce linear functions, is necessary for convergence. These are among the properties checked

by the well known patch test. For boundary particles, the constant reproducing conditions are violated even
for uniformly spaced particles.

The reproducing conditions (or completeness) of an approximation correspond to the order of the

polynomial which can be represented exactly. The following are the conditions for zeroth- and first-order

completeness in R3:X
J2S

UJ ðXÞ ¼ 1
X
J2S

r0UJ ðXÞ ¼ 0; ð22Þ

X
J2S

UJ ðXÞXJ ¼ X
X
J2S

UJ ðXÞYJ ¼ Y
X
J2S

UJ ðXÞZJ ¼ Z: ð23Þ

Approximations that satisfy (22) have zeroth-order completeness. Since the approximation (21) does not

fulfill zeroth-order completeness on the boundary even for a regular particle configuration, Monaghan [34]

introduced a so called symmetrization. In this procedure he assumed that

X
J2S

r0W ðXI

 
� XJ ; h0ÞV 0

J

!
uI � 0; ð24Þ

although this is only true for a uniform distribution of particles away from any boundary. Note that (24) is
equivalent to assuming zeroth-order completeness (note the quantity inside the parenthesis in (24)). Adding

Eq. (24) to Eq. (21) gives

ruhðXIÞ ¼ �
X
J2S

ðuJ � uIÞr0W ðXI � XJ ; h0ÞV 0
J : ð25Þ

A remarkable feature of the symmetrization procedure is that it yields zeroth-order completeness for the

derivatives of a function for an irregular particle arrangement.

3.3. Krongauz–Belytschko correction

Johnson and Beissel [24] noted that errors in the extensional strains due to lack of linear completeness

could be corrected by simple scaling, thus improving accuracy. A correction that enables the derivatives of



1042 T. Rabczuk et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1035–1063
constant or linear fields to be reproduced exactly was developed by Randles and Libersky [41] and
Krongauz and Belytschko [27]. We extend those ideas here to large deformations. The corrected derivatives

are approximated by

r0uhðX; tÞ ¼
X
I2S

GIðXÞuIðtÞ; ð26Þ

where GI is a linear combination of the derivatives of the Shepard functions. GI is obtained by a linear

transformation

GIðXÞ ¼ aðXÞ � r0W S
I ðXÞ; ð27Þ

where aðXÞ are arbitrary parameters and W S
I ðXÞ are the Shepard functions given by

W S
I ðXÞ ¼

WIðXÞP
I2S WIðXÞ

: ð28Þ

Note that aðXÞ is invariant with respect to time for a Lagrangian kernel, so they need only be computed
once and stored. The following reproducing condition for the derivative of a linear function must be ful-

filled:X
I2S

GIðXÞ � XI ¼ I; ð29Þ

where I is the identity matrix. Eq. (29) can be combined with (27) to yieldX
I2S

aðXÞ � r0W S
I ðXÞ � XI ¼ I: ð30Þ

If we let A be the outer product of the derivatives of the Shepard function and X

A ¼

W S
I;XXI W S

I ;Y XI W S
I;ZXI

W S
I;X YI W S

I ;Y YI W S
I;ZYI

W S
I ;XZI W S

I;Y ZI W S
I ;ZZI

2
664

3
775

then (30) can be rewritten as

AaT ¼ I; ð31Þ
where

a ¼
aXX aXY aXZ
aYX aYY aYZ
aZX aZY aZZ

2
4

3
5:

Thus, the parameters a can easily be determined from the set of three linear algebraic equation (31). Finally,
we obtain the approximation for the derivatives of a function from (27) and (29) as

r0uhðX; tÞ ¼
X
I2S

aðXÞ � r0W S
I ðXÞuIðtÞ: ð32Þ

Since only the derivatives of the approximation are modified they are usually not integrable. Note that

for Lagrangian kernels, the correction parameters a only need to be computed once.

Krongauz and Belytschko [27] showed that correction of the derivatives for both the test functions and

the trial functions lead to a violation of the patch test. However, they showed that the patch test can be

satisfied if Shepard functions are the test functions in a Petrov–Galerkin method. In this case, the test
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functions do not meet linear completeness, so that global angular momentum is not conserved. However, in
linear problems they observed excellent convergence. This procedure will herein be extended to large

deformation problems.

3.4. Randles–Libersky correction

Randles et al. [41] developed a similar correction which they called normalization (NSPH). We develop

it here for a Lagrangian kernel, which is a straightforward extension of their work. To fulfill the first-

order completeness, they modified the SPH approximation for the gradient of the function u with a
matrix B:

ruhðXI ; tÞ ¼
 

�
X
J2S

ðuJ ðtÞ � uIðtÞÞr0W ðXI � XJ ; h0ÞV 0
J

!
� BðXIÞ ð33Þ

with

BðXÞ ¼
 

�
X
J2S

ðXJ � XÞ � r0W ðX� XJ ; h0ÞV 0
J

!�1

: ð34Þ

A B-matrix that correctly gives the derivatives of linear fields can also be considered using the Shepard

function W S instead of the symmetrization in (34). The expression for B becomes:

BðXÞ ¼
 

�
X
J2S

XJ �r0W SðX� XJ ; h0Þ
!�1

; ð35Þ

which is similar to the Krongauz–Belytschko correction [27]. There are subtle differences between (34) and

(35). The approximation for the gradient of the function u can then be formulated in the unsymmetrized

form because the Shepard functions are zeroth-order complete by construction:

ruhðX; tÞ ¼
 

�
X
J2S

uJðtÞr0W SðX� XJ ; h0ÞV 0
J

!
� BðXÞ: ð36Þ
3.5. The MLS-approximation

The MLS-approximation fulfills the reproducing conditions by construction, so no corrections are

needed. The MLS approximation was introduced in the EFG-method by Nayroles et al. [36] and Bely-
tschko et al. [5,31], and was first applied in a SPH setting by Dilts [16]. To satisfy the linear reproducing

conditions linear base functions p are chosen to be

pðXÞ ¼ ð1 X Y ZÞ 8X 2 R3: ð37Þ

The MLS approximation is

uhðX; tÞ ¼
X
J2S

pJ ðXÞaðX; tÞ ð38Þ

with a chosen to minimize

J ¼
X
J2S

ðpJ ðXÞ
T
aðX; tÞ � uJ ðtÞÞ2W ðX� XJ ; hÞ: ð39Þ
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Minimizing Eq. (39) with respect to a leads to the approximation

uhðX; tÞ ¼
X
J2S

uJ ðtÞUJ ðXÞ ð40Þ

with

UJ ¼ pðXÞT � AðXÞ�1 � pJ ðXÞW ðX� XJ ; hÞ; ð41Þ

AðXÞ ¼
X
J2S

pJ ðXÞpTJ ðXÞW ðX� XJ ; hÞ: ð42Þ

For zeroth-order completeness (pðXÞ ¼ ½1�) the shape function U is

UJ ðXÞ ¼
WJIP
J2S WJI

; ð43Þ

which is known as the Shepard function where WJI ¼ W ðXJ � XI ; hÞ. A fast evaluation procedure for the
gradient of the shape function UJ can be found in Belytschko et al. [3].
4. Discrete equations

4.1. Galerkin methods

4.1.1. The total Lagrangian formulation

In EFG, the discrete equations are obtained from a weak form of the momentum equation, which is

given in the total Lagrangian description byZ
X0

.0du � €udX0 þ
Z
X0

ðr0duÞT : PdX0 �
Z
X0

.0du � bdX0 �
Z
Ct
0

du ��tdC ¼ 0 ð44Þ

8du 2 V0 where V0 is the space of test functions and u 2 V where V is the space of trial functions. The spaces
V0 and V are as follows:

V ¼ ðuðX; tÞjuðX; tÞ 2 H 1ðXÞ; uðX; tÞ ¼ �u on CuÞ; ð45Þ

V0 ¼ V \ ðduðXÞjduðXÞ ¼ 0 on CuÞ: ð46Þ
The test and the trial functions are approximated by

duhðXÞ ¼
X
J2S

UJðXÞduJ ; ð47Þ

uhðX; tÞ ¼
X
J2S

WJ ðXÞuJ ðtÞ: ð48Þ

In a Petrov–Galerkin procedure, different approximating functions duh and uh are chosen, so UJ differ

from WJ . We will use MLS shape functions (38) for the trial functions W and Shepard functions for the test

functions U. Furthermore, an assumed strain approach [44] is employed so that the gradient is approxi-

mated by (32). However, the formulation differs from [44] in that the gradient of the test function (not the

assumed gradient) is used in computing the internal forces; Black and Belytschko [12] have given a con-

vergence proof for this class of methods for the Laplace equation. Substituting (47) and (48) into (44) the
discrete form of the momentum equation is obtainedX

J

mIJ €uJ ¼ fextI � f intI ; ð49Þ
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where fextI and f intI are the external and the internal forces, given by

fextI ¼
Z
X0

.0UIbdX0 þ
Z
Ct
0

UI�tdC0; ð50Þ

f intI ¼
Z
X0

r0UI � PdX0 ð51Þ

and

mIJ ¼
X
I2S

Z
X0

.0WIðXÞUJ ðXÞdX0: ð52Þ

The above mass matrix is the consistent mass matrix. It can be diagonalized by a row sum method (see

e.g. [10]). However, in particle methods the diagonal mass is usually obtained by an ad hoc procedure. It is

shown in Belytschko et al. [2] that if the test and the trial functions satisfy the linear reproducing conditions,

then global linear and angular momentum are conserved. Bonet et al. [13] have also demonstrated this

property.
As mentioned before, the standard derivation of SPH of the acceleration omits the time dependence of

xJ ðtÞ in (16). If we let

vðx; tÞ ¼
X
I2S

W ðx� xIðtÞÞvIðtÞ; ð53Þ

then the accelerations are

a ¼
X
I2S

W ðx� xIðtÞÞ _vI þrW ðx� xIðtÞÞ _xI � vI : ð54Þ

The second term is neglected in all versions of SPH that we know of, so it is also dropped in all cal-

culations reported here.
4.1.2. The updated Lagrangian formulation

In the updated Lagrangian method, the weak form of the momentum equation is

�
Z
X
ðrdvÞT : rdXþ

Z
X
dv � ð.b� ._vÞdXþ

Z
Ct

dv � �sdC ¼ 0: ð55Þ

Using the same procedure as for the total Lagrangian formulation, the discrete linear momentum

equation for a Petrov–Galerkin method is

�
Z
X
rUJ � rdXþ

Z
Ct

UJ�sdCþ
Z
X
.UJbdX ¼

X
I

Z
X
.UJ ðxÞWIðxÞdX

dvI

dt
: ð56Þ
4.2. Collocation methods

In SPH, the discrete equations are obtained from the strong form by collocation, i.e. the governing
equations are enforced at each particle. Neglecting body forces and boundary conditions, the momentum

equation with the Lagrangian kernel is

mI€u ¼ V 0
I

X
J2S

V 0
J r0WIJ � PJ : ð57Þ
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In Eulerian coordinates the momentum equation is

mI _v ¼ VI
X
J2S

VJrWIJ � rJ : ð58Þ

Usually the symmetrization given in Section 3.2 is applied to SPH methods. When the supports of all

particles are of the same size, the above discrete SPH equations are equivalent to the discrete equations

obtained from a nodal integration of the Galerkin form, except at the boundaries.
5. Integration schemes

5.1. Nodal integration

An efficient way to discretize the momentum equation in a Galerkin method is by nodal integration. In

most computations of transient phenomena spatial integration by background cells is quite expensive. To

obtain the discrete governing equations from the weak form, Beissel and Belytschko [1] proposed a nodal

integration:Z
X0

f ðXÞdX0 �
X
J2S

f ðXJ ÞV 0
J ; ð59Þ

where V 0
J is the initial particle volume. Applying this technique to the computation of the internal forces

(51) gives:

f intI ¼
X
J2S

V 0
J r0UIðXJÞ � PJ : ð60Þ

The momentum equation is then

mI
d _uI
dt

¼
X
J2S

ð�r0UIðXJ Þ � PðXJ ÞV 0
J þ UIðXJ Þ�sðXJÞC0

J þ UIðXJÞbðXJ Þ.ðXJ ÞV 0
J Þ: ð61Þ

In Eulerian coordinates the momentum equation is

mI
dvI

dt
¼
X
J2S

ð�rUIðxJ Þ � rðxJÞVJ þ UIðxJ Þ�sðxJÞCJ þ UIðxJ ÞbðxJ Þ.ðxJ ÞVJ Þ: ð62Þ
5.2. Stress point integration

Stress point integration was proposed by Dyka et al. [18,19] to stabilize the SPH method. Randles et al.

[42] extended stress point integration to higher dimensions to stabilize the normalized form of SPH. Stress

point integration eliminates instabilities due to rank deficiency but not those due to the tensile instability,

see Belytschko et al. [6].

In stress point integration methods, stress points are interspersed between the particles and the contri-

butions of the stresses are added to the integration of (59) as described later. There are different methods for

arranging the stress points between the original particles, see Belytschko et al. [6]. In the applications in this

article, stress points are added as shown in Fig. 2. The additional stress points are only needed for the
computation of the internal forces. All kinematic values at the stress points such as displacements and

velocities are obtained from the original particles:

uSPI ¼
X
J2S

UJ ðXSP
I ÞuPJ ; vSPI ¼

X
J2S

UJ ðXSP
I ÞvPJ ; r0v

SP
I ¼

X
J2S

GJ ðXSP
I ÞvPJ ; ð63Þ



Fig. 2. Arrangement of the stress points.

master particles
slave particles

Fig. 3. Scheme of stress point integration.
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where the superscript SP indicate stress points and the P the original particles. UJ ðXSP
I Þ is the shape function

value of the supporting master particle J at XSP
I . Note that the displacements are approximated by the trial

functions, whereas the gradient is obtained by the corrected derivatives.

The internal forces are calculated by

f intI ¼
X
J2S

V 0P
J r0UIðXP

J Þ � PðXP
J Þ þ

X
J2SSP

V 0SP
J r0UIðXSP

J Þ � PðXSP
J Þ; ð64Þ

where SSP is the set of supporting stress points to the particle XP
I . The volumes V 0P

J and V 0SP
J are computed

from a Voronoi diagram (see Fig. 3) so that their sums give the total initial volume:

V 0 ¼
XNP

J

V 0P
J þ

XNS

J

V 0SP
J ; ð65Þ

where NP is the number of particles and NS is the number of stress points.

5.3. Cell integration

In EFG the integrals are usually evaluated over background cells based on an quadtree structure [5]. In

each integration cell Gauss quadrature is performed. The number of Gauss points depends on the number

of particles in a cell. Here, as in [5], at least nQ � nQ Gauss points are used with
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nQ ¼
ffiffiffiffi
m

p
þ 2; ð66Þ

where m denotes the number of particles in one cell.

In 2D the integral of a function is given byZ
X0

f ðXÞdX0 ¼
Z þ1

�1

Z þ1

�1

f ðn; gÞdet Jnðn; gÞdndg ¼
Xm
J¼1

wJf ðnJÞdet JnðnJÞ; ð67Þ

where n ¼ ðn; gÞ are scaled local coordinates, m is the total number of quadrature points, wJ ¼ wðnJ ÞwðgJ Þ
are the quadrature weights which is the product of the weight at the corresponding Gauss point in n- and
g-direction, and Jn is the Jacobian given by

Jn ¼ oX

on
: ð68Þ

The internal forces in 2D are then

f int ¼
Xm
J¼1

wJdet J
nðnJ Þr0UðXðnJ Þ � XPÞPðnJ Þ; ð69Þ

where the superscript P indicates the particle position.
6. Computation of the mass matrix

In dynamic problems with explicit time integration, a diagonal mass matrix is preferable for compu-

tational efficiency. A diagonal mass corresponds to assigning a mass to every particle. The masses are

calculated in terms of nodal volumes obtained from a Voronoi diagram:

mJ ¼ V 0
J .

0
J : ð70Þ

Crucial is how to consider and discretize the �real� geometric volume of a body. It can be discretized with

particles arranged as in Fig. 4(a) where the particles are inside the volume. No particles lie on the
boundaries of the body. The body can also be discretized as illustrated in Fig. 4(b) where particles are

placed exactly on the boundaries. For Fig. 4(a), all masses are equal; this leads to poor reflection conditions

on boundaries. For the discretization in Fig. 4(b), the boundary particles have only half of the mass of the

interior particles for a Voronoi method. The masses of the particles at the corners are only a quarter of the

masses of the interior particles. We will show that this assignment of nodal masses leads to more accurate

wave reflections.

The boundary integrals for natural boundary conditions (external forces) (50) also differ for the two

models shown in Fig. 4. When the particles are located directly on the boundary, the value of the shape
function differs from when the particles are at a certain distance from the boundaries (see Fig. 4).
7. Boundary conditions

In standard SPH, no conditions are imposed on stress free boundaries. This is sometimes considered

justifiable because of compensating errors between the desired boundary conditions and errors in the

boundary derivatives. It can also be justified by the integration by parts in the SPH derivation underlying
(21) and the expression for the nodal forces, which is similar to the procedure in deriving a Galerkin weak

form from the strong form. However, Randles and Libersky reported that SPH with corrected derivatives

and no special treatment of boundary conditions led to errors. Traction boundary conditions in SPH are



(a) (b)

Fig. 4. Two arrangements of particles relative to a boundary and the corresponding shape functions.
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investigated by Dilts [15,17] and Randles et al. [42]. We will show that the procedure developed here

correctly treats traction-free boundaries.
8. A summary of particle methods

The standard SPH-procedure, a Randles–Libersky correction,a Krongauz–Belytschko correction and an

MLS-approach have been reviewed. Many different discretizations can be constructed starting from these

approximations by using a Petrov–Galerkin or Bubnov–Galerkin method or by point collocation (SPH). In

the following we consider:

(1) The standard SPH-procedure with collocation (SPH).

(2) The Randles–Libersky correction with collocation (RLM ni).
(3) The Krongauz–Belytschko correction and Shepard functions in a Petrov–Galerkin method with nodal

integration and stress points (KBM si).

(4) The EFG method with nodal integration (EFG ni).

(5) The EFG method with cell integration (EFG ci).

The equations for the internal forces and the deformation gradient are summarized in Table 1 for a

Lagrangian kernel and in Table 2 for an Eulerian kernel. For the constitutive model in terms of the

Eulerian kernel the velocity gradient L is given instead of the deformation gradient. As mentioned in
Section 3.2, the equations can also be formulated in symmetrized versions. This is done for the SPH and the

Randles–Libersky correction (RLM) shown in Tables 1 and 2, where PI and rI , respectively, are the stresses

at the central particle.
9. Numerical results

9.1. Cantilever beam

In this section the cantilever beam illustrated in Fig. 5 is considered. Linear elastic material behavior is

assumed. The beam is loaded with a parabolic traction at the end of the beam as shown in Fig. 5. The



Table 1

Discrete internal forces and deformation gradient for a Lagrangian kernel for various methods

Internal forces Deformation gradient

SPH f intI ¼
P

J2SðPJ þ PI Þ � r0WJV 0
J FI ¼ �

P
J2SðuJ � uI Þ � r0WJV 0

J

f int
iI ¼

P
J2SðPijðXJ Þ þ PijðXI ÞÞ

oWJ

oXj
V 0
J FijI ¼ �

P
J2SðuiJ � uiIÞ

oWJ

oXj
V 0
J

RLM (ni) f intI ¼ �
P

J2SðPJ þ PI Þ � r0WJV 0
J

� �
: B FI ¼ �

P
J2SðuJ � uI Þ � r0WJV 0

J

� �
� B

f int
iI ¼ �

P
J2SðPijðXJ Þ þ PijðXI ÞÞ

oWJ

oXk
V 0
J

� �
Bkj FijI ¼ �

P
J2SðuiJ � uiIÞ

oWJ

oXk
V 0
J

� �
Bkj

KBM (si) f intI ¼
P

J2S r0W S
I ðXP

J Þ � PðXP
J ÞV 0P

J þ
P

J2SSP r0W S
I ðXSP

J Þ � PðXSP
J ÞV 0SP

J FP ¼
P

J2S uJ �GðXP
J Þ

FSP ¼
P

J2SSP uJ �GðXSP
J Þ

f int
iI ¼

P
J2S

oW S
I ðXP

J Þ
oXj

PjiðXP
J ÞV 0P

J þ
X
J2SSP

oW S
I ðXSP

J Þ
oXj

PjiðXSP
J ÞV 0SP

J F P
ij ¼

P
J2S uiJGjðXP

J Þ
F SP
ij ¼

P
J2SSP uiJGjðXSP

J Þ

EFG (ni) f intI ¼
P

J2S PJ � r0UI ðXJ ÞV 0
J FI ¼ �

P
J2SðuJ � uI Þ � r0UI ðXJ Þ

f int
iI ¼

P
J2S PijðXJ Þ

oUI ðXJ Þ
oXj

V 0
J FijI ¼ �

P
J2SðuiJ � uiIÞ

oUI ðXJ Þ
oXj

EFG (ci) f intI ¼
Pm

J¼1 wJdetJ
n
JPJ � r0UðXJ � XP

I Þ FI ¼
PNP

J¼1 uJ �r0UðXGP
I � XJ Þ

f int
iI ¼

Pm
J¼1 wJdetJ

n
J PijðXJ Þ

oUðXJ � XP
I Þ

oXj
FijI ¼

PNP

J¼1 uiJ
oUðXGP

I � XJ Þ
oXj

WJ ¼ W ðXI � XJ Þ; UIðXJ Þ ¼ UðXI � XJ Þ; PJ ¼ PðXJ Þ, etc.
SPH––symmetrized SPH with collocation

RLM (ni)––Randles–Libersky correction with nodal integration

KBM (si)––Krongauz–Belytschko correction with stress point integration

EFG (ni)––EFG with nodal integration, EFG (ci)––EFG with cell integration
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analytic solution for this problem can be found in [21]. The five methods summarized in Section 8 are
considered. The normalized L2 error in the displacement as well as the error in the energy is checked. The

normalized L2 error in the displacement is computed by

kerrkL2 ¼
kuh � uanalytickL2

kuanalytickL2
ð71Þ

with

kukL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X0

u � udX0

s
: ð72Þ

The error in the energy is obtained by

kerrkenergy ¼
kuh � uanalytickenergy

kuanalytickenergy
ð73Þ

with

kukenergy ¼
Z
X0

P : FT dX0: ð74Þ

The integrals are evaluated numerically by the procedure that is used to evaluate the nodal forces, i.e. by

Gauss quadrature in EFG. The results are presented in Fig. 6. The best results are obtained with EFG with



Table 2

Discrete internal forces and deformation gradient for an Eulerian kernel for various methods

Internal forces Velocity gradient

SPH f intI ¼
P

J2SðrJ þ rI Þ � rWJVJ LI ¼ �
P

J2SðvJ � vI Þ � rWJVJ

f int
iI ¼

P
J2SðrijðxJ Þ þ rijðxI ÞÞ

oWJ

oxj
VJ LijI ¼ �

P
J2SðviJ � viIÞ

oWJ

oxj
VJ

RLM (ni) f intI ¼ ð�
P

J2SðrJ þ rIÞ � rWJVJ Þ : B LI ¼ �
P

J2SðvJ � vI Þ � rWJVJ
� �

� B

f int
iI ¼ �

P
J2SðrijðxJ Þ þ rijðxI ÞÞ

oWJ

oxk
VJ

� �
Bkj LijI ¼ �

P
J2SðviJ � viIÞ

oWJ

oxk
VJ

� �
Bkj

KBM (si) f intI ¼
P

J2S rW S
I ðxP

J Þ � rðxP
J ÞV P

J þ
P

J2SSP rW S
I ðxSP

J Þ � rðxSP
J ÞV SP

J LP ¼ r� vP ¼
P

J2S vJ �GðxP
J Þ

LSP ¼ r� vSP ¼
P

J2SSP vJ �GðxSP
J Þ

f int
iI ¼

P
J2S

oW S
I ðxP

J Þ
oxj

rjiðxP
J ÞV P

J þ
X
J2SSP

oW S
I ðxSP

J Þ
oxj

rjiðxSP
J ÞV SP

J LP
ij ¼

P
J2S viJGjðxP

J Þ

LSP
ij ¼

P
J2SSP viJGjðxSP

J Þ

EFG (ni) f intI ¼
P

J2S rJ � rUI ðxJ ÞVJ LI ¼ �
P

J2SðvJ � vI Þ � rUI ðxJ Þ

f int
iI ¼

P
J2S rijðxJ Þ

oUI ðxJ Þ
oxj

VJ LijI ¼ �
P

J2SðviJ � viIÞ
oUI ðxJ Þ

oxj

EFG (ci) f intI ¼
Pm

J¼1 wJdetJ
n
JrJ � rUðxJ � xP

I Þ LI ¼
PNP

J¼1 vJ �rUðxGP
I � xJ Þ

f int
iI ¼

Pm
J¼1 wJdetJ

n
JrijðxJ Þ

oUIðxJ � xP
I Þ

oxj
LijI ¼

PNP

J¼1 viJ
oUI ðxGP

I � xJ Þ
oxj

WJ ¼ W ðxI � xJ Þ, UI ðxJ Þ ¼ UðxI � xJ Þ, rJ ¼ rðxJ Þ, etc.
SPH––symmetrized SPH with collocation

RLM (ni)––Randles–Libersky correction with nodal integration

KBM (si)––Krongauz–Belytschko correction with stress point integration

EFG (ni)––EFG with nodal integration, EFG (ci)––EFG with cell integration

q

L

D

Fig. 5. Model for the cantilever beam.
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cell integration. The Randles–Libersky and Krongauz–Belytschko corrections combined with a nodal
integration yield poor results. We have not considered the Randles–Libersky method with stress points

which would probably perform like the Krongauz–Belytschko correction with stress points.

SPH does not converge at all; this is a striking result that was also observed in Belytschko et al. [2].

Convergence for SPH can be achieved if the domain of influence is kept constant during refinement. Fig.

7(a) shows the error in the displacement norm, Fig. 7(b) shows the error in the energy norm for SPH and

EFG with cell integration if the domain of influence is kept constant when refining the discretization. Note
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that the EFG results are also more accurate for large R (R is the distance of the particles); compare Figs. 6

and 7. It should be mentioned that for practical reasons the domain of influence cannot be kept constant

during refinement since too many particles will contribute to the sum which increases the computational

cost enormously.
EFG with nodal integration and the Krongauz–Belytschko method with stress point integration provide

pretty good results. The rate of convergence is only a little bit less than for EFG with a cell integration, but

the relative error is larger.

9.2. Linear elastic rod with initial displacement

To investigate these methods for wave propagation and reflection, another simple example is studied: a

linear elastic rod. The major aim here is to examine the effect of the mass lumping described in Section 6.
The rod is discretized in 2D (plane strain). It is 60 mm long and its height is 5 mm. Again, the five methods

summarized in Section 8 are investigated. A rectangular impulse with a velocity of 50 m/s is applied to the

left hand end for 5.8 ms. The same number of particles (number of particles¼ 19,721) is used in the
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numerical simulation. This correspond to 481 particles in x-direction. The particle separation is 0.125 mm;
Young�s modulus E ¼ 210; 000 and Poisson�s ratio m ¼ 0:0. The L2 error in the velocities is given before and

after the wave reflection:

kerrkL2 ¼
kvh � vanalytick

kvanalytick
: ð75Þ
Fig. 8. Velocity field in the rod for a rectangular impulse for different particle methods and integration schemes before the wave

reflection.

Fig. 9. Velocity field in the rod for a rectangular impulse for different particle methods and integration schemes after the second wave

reflection.
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In Fig. 8 the velocity is shown for the rectangular impulse before the wave reflection. Fig. 9 shows the
velocity after the wave reflects from the left-hand side. The best resolution is obtained by EFG with full

quadrature, but EFG with nodal quadrature is also able to reproduce the analytic velocity field quite well.

For SPH and the Randles–Libersky correction (we did not include the explicit enforcement of traction

boundary conditions that Randles and Libersky advocate), some oscillations before the maximum pressure

peak can be observed, which results in a significantly higher error. It should be mentioned that different

artificial viscosities with different damping factors were tried to keep the wave dispersion as small as

possible.
Fig. 10. Velocity profiles in the rod for an initial velocity condition (Gauss distribution of the velocities) for EFG with cell integration

at different times.
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Fig. 11. Velocity profile in the middle of the rod for SPH and EFG with cell integration compared to the analytical solution at

t ¼ 0:011563 ms.
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Next, an initial velocity of v ¼ eð�aðx�30Þ2Þ, a ¼ 0:025 was prescribed. The sound speed is c ¼
ffiffiffiffiffiffiffiffi
E=.

p
with

E ¼ 210; 000 MPa and . ¼ 0:0078 g/mm3, so the wave returns to its original position at t ¼ 0:011563 ms.

Fig. 10 shows the velocity field at different times for EFG with cell integration. It can be seen how the wave

propagates to the left and right hand ends, is reflected and after 0.011563 ms reaches its original position

again. Fig. 11 illustrates the velocity field at t ¼ 0:011563 ms for a section in the middle of the rod for SPH

and EFG with cell integration compared to the analytical solution. As can be seen, the EFG simulation and

the analytic solution match almost exactly. The wave dispersion is greater for SPH. Also, the maximum

velocity is not reached for the SPH computation. In Table 3, the error in the velocity is given for the

different methods at two times. At t ¼ 0:011563 ms, the wave first reaches its original position, at
t ¼ 0:023126 ms it reaches its original position for the second time. As expected, the best results are ob-

tained with EFG and cell integration; for SPH the error is approximately 5% (see Table 3).

Table 3 gives also the computation times for the different particle methods. Approximately 2500 time

steps were needed for the computation. The computations were performed on an IBM RS6000SP-SMP

with 192 Gflop/s performance. The longest computation is the EFG with cell integration.

9.3. Notched concrete beam in bending

This example is an unreinforced notched concrete beam under a static load as shown in Fig. 12, see

Peterson [38]. The beam is 2 m long and has a rectangular cross section 20 and 10 cm in height and depth,

respectively. In the middle, the beam has a 4 cm wide notch over half the height of the cross section. The

initial elastic modulus is 30,000 MPa and the concrete tensile strength is 3.3 MPa. The constitutive model

for concrete is a combined damage plasticity model as proposed in Rabczuk and Eibl [40]. It was originally

developed by Schmidt–Hurtienne [43] and modified in some points. The material parameters are listed in

Table 4. A Lagrangian kernel was used. The beam was discretized with 396,000 particles. The load was
Table 3

L2 error in the velocities for an initial condition (Gauss distribution of the velocities) for different particle methods before and after the

wave reflection

Error at

0.0116 ms

Error at

0.0231 ms

Number of

particles

Number of

str. points

Number of

cells

CPU time

(min)

SPH (ni) 0.05026 0.04999 20,000 – – 6.2

RLM (ni) 0.01301 0.01297 20,000 – – 7.8

KBM (si) 0.00813 0.00842 10,500 10,200 – 8.4

EFG (ni) 0.008322 0.008232 20,000 – – 7.6

EFG (ci) 0.006817 0.006834 4100 – 15,700 20.1

0.1 m

0.2 m

0.04 m
2.0 m

0.1 m

Fig. 12. Notched unreinforced concrete beam of Peterson [38] under static concentrated loading.



Table 4

Material parameters of the constitutive model for concrete

E0 ¼ 30; 000 MPa e0 ¼ 2:5� 10�5 ep2 ¼ 0; 4

m ¼ 0:22 ed ¼ 2:2� 10�4 . ¼ 2:4� 10�3

c1 ¼ 0:0123424 gd ¼ 1:5 ndam ¼ 70

c2 ¼ 0:025166 rt ¼ 1:2 av ¼ 0:7

c3 ¼ 0:782058 rc ¼ 100 bv ¼ 3:5

c4 ¼ 0:346384 cp ¼ 0:9 ev ¼ 0:02

cc ¼ 0:08 ep1 ¼ 1:1� 10�3 ev;th ¼ 0:008
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applied as a linear function in time in the middle of the beam, so that the strain rate does not exceed
1 · 10�6/s.

Fig. 13 compares the experimental load–midpoint displacement curves to the simulations with different

numbers of particles. In addition, the influence of the different methods is shown for the fine mesh. It can be

seen that the EFG method provides the best results, but the Krongauz–Belytschko method also reproduces

the experimental data quite well. The SPH results, for a reason we cannot explain, decay much faster than

the experimental results. Nevertheless, the influence of the numerics does not seem to be very high. Overall,

it can be said that the experimental results can be reproduced reasonably well, without spurious discreti-

zation dependence. The results for an Eulerian and Lagrangian kernel gave almost identical results. We did
not observe any tensile instabilities in SPH which is expected because of the low tensile strength of concrete.

For this example we will discuss the computational efficiency of the particle methods. We used 20

processors and a parallelization technique described in [39]. Approximately 12,000 time steps were needed

for the computation. Except for the full Gauss quadrature, the computation time for the different particle

methods do not differ too much when a Lagrangian kernel is used (see Table 5). Since for a Lagrangian

kernel the shape functions are computed only once and a neighbor search is performed only at the

beginning of the computation, the Lagrangian kernels perform better than the Eulerian kernel. For an

Eulerian kernel the neighbor search is performed every thirtieth time step. The most important factor is the
Middle displacement [mm]
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N
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0
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0.3
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0.7

0.8

0.9

experiments
EFG-ni (fine)
EFG -ni (coarse)
KBM-si (fine)
RLM-ni (fine)
SPH (fine)

Fig. 13. Load–middle displacement curves of the experiment (the two curves give the range of results) of Peterson [38] compared with

the numerical results.



Table 6

Computation times for an Eulerian kernel for 12,000 time steps

Method Number of particles Number of stress points Number of Gauss points Total CPU time (CPU h)

SPH (ni) 396,000 – – 36.8

RLM (ni) 396,000 – – 45.0

KBM (si) 175,000 173,000 – 48.3

EFG (ni) 396,000 – – 84.0

Table 5

Computation times for a Lagrangian kernel for 12,000 time steps

Method Number of particles Number of stress points Number of Gauss points Total CPU time (CPU h)

SPH (ni) 396,000 – – 34.8

RLM (ni) 396,000 – – 39.5

KBM (si) 175,000 173,000 – 39.3

EFG (ni) 396,000 – – 38.2

EFG (ci) 43,000 – 340,000 68.7
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number of computation of the shape functions, as can be seen from Tables 5 and 6. The CPU time for EFG
with nodal integration is twice that for SPH. Also the CPU-time for the Randles–Libersky and Krongauz–

Belytschko method is somewhat greater but not as severely.
9.4. Shear band propagation in metals

We next consider the simulation of shear band development in metals. The KBM with stress point

integration was used with Eulerian and Lagrangian kernel. Shear band formation is related to material

instabilities, so this is an area where Lagrangian kernels are expected to perform better. A square plate
under compressive load is considered. A viscoplastic constitutive model as described by Needleman [37] was

used. The model description and parameters can be found in Belytschko et al. [11] and in Fig. 14. The plate

is discretized with 250,000 particles. Fig. 16 shows the effective plastic strain (in [%]) in the specimen at
2 mm

2 mm

v(t)

0.1 0.2 0.3 0.4

30.0

v[m/s]

time [microsec]

Fig. 14. Model description for the quadratic plate under compression.



Fig. 16. Effective plastic strain of the plate under compressive loading to different time steps.
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Fig. 15. Stress–strain curve of the viscoplastic model with (a) and (b) for an Eulerian and (c) and (d) for a Lagrangian kernel.
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different time steps. They are in good agreement with the results obtained by Needleman [37] and Belyt-
schko et al. [11]. Fig. 15 illustrates the stress strain behavior for a particle in the middle of the shear band.

With an Eulerian kernel, the calculations evidences an instability in the softening domain; continuing the

calculations leads to further growth of the oscillations. This instability wasn�t observed for a Lagrangian

kernel with stress points, see Fig. 15(c) and (d), although some slightly increasing oscillations are apparent.
9.5. Shear bands in rings

Here we will examine the performance of Lagrangian and Eulerian kernels for a problem exhibiting
several shear bands. The Krongauz–Belytschko method with stress point integration is used. A J2 flow

constitutive model is applied and the stress rate relation is

srJ ¼ CsJ
el : De ¼ Cs J

el : ðD�DpÞ; ð76Þ

where s is the Kirchhoff stress computed by s ¼ F � P. The yield condition is

f ðs; qÞ ¼ �r� rYð��Þ ¼ 0;

of
os

¼ 3

2�r
sdev

of
o��

¼ � d

d��
rYð��Þ ¼ �Hð��Þ;

where rYð��Þ is the yield stress in uniaxial tension, �� is the effective plastic strain, �r is the von Mises effective

stress ½3
2
sdev : sdev�1=2, sdev is the deviatoric stress and Hð��Þ is the plastic modulus. For strain softening, H

is negative.

The steel ring is loaded along the inner ring. A pressure of 1.0e10 N/m2 is first applied and is then
decreased exponentially in time. The material constants are q ¼ 7800 kg/m3, E ¼ 2:0e11 N/m2, H ¼ �E=10,
rYð0Þ ¼ 1:0e10 N/m2. One thousand and fifty particles and 900 stress points are used.

Fig. 17 shows the distribution of the effective strain in the deformed steel ring. The shear bands occur

because of the unstable material behavior. According to [26], the field of shear bands around a circular hole

loaded by a uniform pressure is known since at every point of the field the principal stress coincides with the

radial and peripheral directions. The shear bands will be logarithmic spirals emerging from the inner

surface at an angle � p
4
.

Regardless of whether we use a Lagrangian or an Eulerian kernel, the shear bands have the above
mentioned morphology. When a shear band has grown through the ring, the ring breaks into fragments

[22,23,35].

The shear bands usually are initiated where stress or strain concentrations occur due to geometric or

material inhomogeneities. In a numerical simulation with uniformly distributed stresses, a slight imperfection
Fig. 17. Deformed steel ring by stress points (t ¼ 0:5 ms): (a) Lagrangian kernal and (b) Eulerian kernal.
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from either the material or the numerics may trigger the localization. So shear bands will occur at different
positions in different patterns for different models. With an Eulerian kernel, the positions of the shear bands

differ from those in Lagrangian kernel simulation but it may simply be a reflection of these effects. The re-

sponse observed for the Eulerian kernel is quite acceptable. This is not always the case, as shown in the next

example.
9.6. Spurious material instability

This example shows the onset of a spurious instability for an Eulerian kernel in a 2D problem. Again, the
KBM with stress point integration is applied with Eulerian and Lagrangian kernels. The material model is

given in Eq. (18) and the related text. This material was studied in Xiao et al. [47] where it was shown

analytically that stress point integration with Lagrangian kernels can reproduce the material instability but

Eulerian kernels distort it severely.

A pressure of 6.2e7 N/m2 is applied for 0.1 ms on the inner surface of the rubber ring. The discrete model

with stress points consists of 540 particles and 480 stress points. Fig. 18 shows the deformed rubber ring at

the same time for the Lagrangian kernel and an Eulerian kernel computations. Fig. 18(b) exhibits a

clustering of particles in the Eulerian kernel which is typical of the tensile instability. Fig. 19 shows the
distribution of rhh in the deformed configuration. As can be seen, the stress is concentrated at discrete

locations around the circumference of the ring for the Eulerian kernel but it is still rotationally symmetric

for the Lagrangian kernel.

9.7. Fluid flow in a funnel

To illustrate a problem where the Eulerian kernel is more suitable than the Lagrangian kernel consider a

fluid flow in a funnel. The KBM with stress point integration is used. The material behavior of the fluid is
described via an equation of state:
Fig. 18. Deformed rubber ring by stress points (at t ¼ 0:12 ms): (a) Lagrangian kernel and (b) Eulerian kernel.

Fig. 19. rhh distribution at t ¼ 0:12 ms: (a) Lagrangian kernel and (b) Eulerian kernel.



Fig. 20. Fluid flow in a funnel using an Eulerian kernel, (a) at the beginning of the computation, (b) at the end of the computation;

the model sizes are rescaled to fit.
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p ¼ B
.
.0

� �c�
� 1

�
: ð77Þ

The initial density .0 for water is 0.001 g/mm3, the exponent c ¼ 7 and B ¼ 0:4704 MPa. Fig. 20 shows the

flow out of the funnel for an Eulerian kernel. With a Lagrangian kernel the simulation becomes unstable.

The velocities explode suddenly, so that the flow cannot even be drawn after the instability.
10. Conclusions

A meshfree particle method based on Krongrauz and Belytschko [27] has been developed and tested. In

this method, the trial functions are corrected derivatives of the kernel functions and the test functions are

Shepard functions. Quadrature of the Galerkin weak form was performed over the particles and a set of

slave particles, often called stress points. It was shown that this method is substantially more robust for

solid mechanics problems than SPH and that it is able to deal with unstable phenomena such as shear

bands and fracture. The rate of convergence of the approximation is close to two in the displacement norm;
two is the optimal rate for an approximation with linear completeness.

We have also reviewed the original symmetrized SPH method, the Randles–Libersky normalization, and

MLS-based methods such as EFG and compared the results of EFG–KBM with these other methods. In

making these comparisons, we have considered both problems that have closed-form solutions, some where

only experimental results are available, and some where only qualitative evaluations can be made.

A noteworthy result, which was also reported in Belytschko et al. [2] for a nonsymmetrized version of

SPH, is that for a beam problem, symmetrized SPH solutions do not converge when the domain of

influence (smoothing length) is decreased at the same rate as the particle spacing. The method is convergent
when the domain of influence is kept constant in size. However, constant domains of influence are not

suitable for practical computations since the sparsity of the discrete equations is severely diminished.

We also showed that EFG–KBM is capable of treating natural boundary conditions, such as traction

free boundaries without any explicit enforcement of these conditions. This was demonstrated in a problem

of plane wave reflection; Randles and Libersky [41] have argued that a similar correction that they called

a normalization requires explicit treatment of the traction boundary conditions.

It is interesting to note that the best results were obtained for the EFG method with cell integration.

However, this method is significantly more expensive than SPH or stress point methods, and our results
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indicate that its accuracy per computation time is inferior to EFG–KBM. The SPH and Randles–Libersky
methods are more dispersive than the other methods, which results in a higher error in the L2 velocity norm,

but the peak as well as the wave velocity are matched quite well.

This new particle method, EFG–KBM, was applied to failure problems involving concrete and metals and

its performance was compared to some of the other particle methods reviewed here, such as SPH. Concerning

the kernel, it can be said that the Lagrangian kernel seems to bemore effective for solids than Eulerian kernels.

For a metal plate under compressive loading with viscoplastic material behavior, it was shown that the

Lagrangian kernel yielded stable solutions in the tensile regime while for the Eulerian kernel large oscillation

could be observed. Similarly, for a hyperelastic ring, the Eulerian kernel exhibited a distinct instability. These
instabilities confirm the analysis by Xiao et al. [47] that showed that Eulerian kernels distort the domain (in

stress space) of material stability. However, several cases were reported, such as the formation of shear bands

in the metallic ring, where Eulerian kernels performed quite well even in tension.

The influence of the Lagrangian and Eulerian kernel with respect to the computational effort cannot be

answered definitively. The advantage of the Lagrangian kernel is that a time consuming neighbor search and

the calculation of the shape functions needs to be done only once at the beginning of the calculation.

However, whereas Eulerian kernels naturally handle contact, Lagrangian kernels require contact algorithms.

However, themore pertinent issue is the relative capability of Eulerian and Lagrangian kernels to handle large
deformations. Lagrangian kernels cannot handle very large deformations, such as found in fluids, at least not

without some kind of reinitialization of the domains of influence. However, for the simulations of the failure

of solids, Lagrangian kernels appear to be more robust and they are easily able to handle the magnitude of

deformations encountered in this class of problems. Therefore, in fluid structure interaction problems, it

is probably preferable to model the solid with Lagrangian kernels and the fluid with Eulerian kernels.
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