
 Int. J. Computational Science and Engineering, Vol. 2, Nos. 3/4, 2006    
 

Copyright © 2006 Inderscience Enterprises Ltd. 

213

A meshfree particle method with stress points  
and its applications at the nanoscale 

Shaoping Xiao* and Weixuan Yang 
Department of Mechanical and Industrial Engineering, 
Centre for Computer-Aided Design, 
University of Iowa, Iowa City, IA, USA 
E-mail: shaoping-xiao@uiowa.edu 
E-mail: weixuan-yang@uiowa.edu 
*Corresponding author 

Abstract: In this paper, a meshfree particle method with the stress point integration scheme is 
studied. It has been shown that this meshfree particle method with Lagrangian kernel can 
provide a stable method. A finite element mapping technique is introduced to insert stress 
points and to calculate volumes associated with particles/stress points so that the triangulation 
and the Voronoi diagram can be avoided. This meshfree particle method can be used for 
nanoscale simulations via the implementation of the Cauchy-Born rule. It can also be coupled 
with molecular dynamics based on the bridging domain coupling technique. 

Keywords: meshfree particle method; Lagrangian kernel; stress points; stability; nanoscale. 

Reference to this paper should be made as follows: Xiao, S. and Yang, W. (2006)  
‘A meshfree particle method with stress points and its applications at the nanoscale’,  
Int. J. Computational Science and Engineering, Vol. 2, Nos. 3/4, pp.213–220. 

Biographical notes: Shaoping Xiao received his PhD in Mechanical Engineering from 
Northwestern University in 2002. Currently, he is an Assistant Professor in the Department of 
Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA, USA. He is also a 
Research Engineer affiliated with the Centre for Computer-Aided Design (CCAD) at the 
University of Iowa. His current research interests include computational nanotechnology, 
nanotube technology and computational solid mechanics. 

Weixuan Yang is a Graduate Student in the Department of Mechanical and Industrial 
Engineering, University of Iowa, Iowa City, IA, USA. He is pursuing PhD in Mechanical 
Engineering under the supervision of Dr. Xiao. His current research focuses on nanoscale 
continuum modelling and simulation. 

 

1 Introduction 

There are two types of meshfree particle methods: field 
approximation based methods such as Element-Free 
Galerkin (EFG) methods (Belytschko et al., 1994) and 
kernel approximation based methods, such as Reproduced 
Kernel Particle Methods (RKPM) (Liu et al., 1996) and 
Smoothed Particle Hydrodynamics (SPH) (Randles  
and Libersky, 1996). The meshfree particle methods are 
advantageous to treat large deformation problems 
(Belytschko et al., 1997; Chen et al., 1998) as well as 
fracture problems (Krysl and Belytschko, 1999; Liu et al., 
1999). There are two kernel functions used in the kernel 
based meshfree particle methods: the Lagrangian kernel, 
which is a function of the material coordinates and the 
Eulerian kernel, which is a function of the spatial 
coordinates. Belytschko and Xiao (2002) found that the 
kernel based meshfree particle methods had two instability 
properties: an instability due to rank deficiency and a 
tensile instability. Nodal integration scheme (Beissel and 
Belytschko, 1996) is usually used in kernel approximation 
based meshfree particle methods, but it results in the 
instability due to rank deficiency. As well, the tensile 

instability takes place due to the usage of Eulerian kernels. 
It has been shown that the additional quadrature points, 
that is, stress points, can eliminate the above instabilities if 
using Lagrangian kernels (Belytschko and Xiao, 2002; 
Rabczuk et al., 2004). In general, the triangulation and the 
Voronoi diagram are needed to accomplish the insertion of 
stress points and the calculation of volumes associated 
with particles/stress points for the stress point integration 
scheme. Such procedures will be complicated when 
irregular particle arrangement is considered as well three-
dimensional problems. Alternatively, a finite element 
mapping technique will be introduced in this paper to 
insert stress points and to calculate volumes associated 
with particles/stress points. 

Numerical simulation has become a powerful tool and 
has made a significant contribution to nano science and 
technology. Continuum methods, typically finite element 
methods, can be used to model and simulate large nano 
systems via the homogenisation technique, that is, the 
Cauchy-Born rule (Milstein, 1982). This continuum 
approach, known as one of hierarchical multiscale 
methods, is also called the quasicontinuum method 
(Tadmor et al. 1996). Rodney and Phillips (1999) 
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generated quasicontinuum simulations of dislocations 
lying in intersecting slip planes, and calculated the 
threshold stress required to break the dislocation junction. 
Shenoy et al. (1999) developed a finite-temperature 
quasicontinuum method. Chen et al. (2005) developed a 
Discontinuous Galerkin (DG) method, within the 
framework of the Heterogeneous Multiscale Method 
(HMM), to solve hyperbolic and parabolic multiscale 
problems. 

Another multiscale modelling is called concurrent 
multiscale modelling, in which continuum methods are 
coupled with molecular methods. In a pioneering work, 
Abraham et al. (1998) developed the Macro-Atomistic-Ab 
initio-Dynamics (MAAD) methodology, in which a  
tight-binding quantum mechanical calculation is coupled 
with MD and in turn, coupled with a finite element 
continuum model. Recently, various concurrent multiscale 
techniques, particularly coupling methods between 
continuum and molecular models, have been developed. 
Park et al. (2005) developed a multiscale method in which 
the molecular displacements are decomposed into fine 
scale (molecular) and coarse scale (continuum). 
Belytschko and Xiao (2003) (Xiao and Belytschko, 2004) 
coupled molecular dynamics with continuum mechanics 
via a bridging domain. Fish and Chen (2004) proposed a 
concurrent multiscale approach based on multigrid 
principles with the intent of solving large molecular 
dynamics systems. 

Since meshfree particle methods are more attractive for 
usage in a variety of situations (Belytschko et al., 1997; 
Chen et al., 1998; Krysl and Belytschko, 1999; Liu et al., 
1999), including problems with moving boundaries, 
discontinuities and extremely large deformations, the 
incorporation of them with a homogenisation technique 
will benefit the multiscale methods at the nanoscale. 

The outline of this paper is as follows. A meshfree 
particle method is introduced in Section 2. A finite element 
mapping technique for the insertion of particles/stress 
points and their volume calculation is proposed to avoid 
usage of the triangulation and the Voronoi diagram. 
Section 3 will describe the implementation of the Cauchy-
Born rule into the meshfree particle method. A concurrent 
multiscale method, in which the meshfree particle method 
is coupled with molecular dynamics, is also proposed. 
Several examples are studied in Section 4 followed by the 
conclusions. 

2 Meshfree particle method 

2.1 Governing equations 

The Galerkin weak form of the momentum conservation 
equation is 
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where ρ0 is the initial density, P is the first Piola-Kirchhoff 
stress tensor, X are the material (Lagrangian) coordinates, 
b is the body force per unit mass, δu is the test function,  

t  is the prescribed boundary traction and u is the 
displacement and the superposed dots denote material time 
derivatives.* 

Equation (1) is written in the reference configuration, 
0Ω , with the boundary, 0Γ . In meshfree particle methods, 

the field of displacements, uh(X, t), are approximated by 
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where w1(X) are called Lagrangian kernels because they 
are functions of the material (Lagrangian) coordinates, X. 
If the kernel functions are functions of the spatial 
(Eulerian) coordinates, X, they are called Eulerian kernels. 
In this paper, we use Lagrangian kernels unless otherwise 
noted. The Lagrangian kernel functions are calculated 
from weight functions, W(X) that is, 
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In our analysis, a quartic spline weight function is used: 
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where R=X–XJ and R0 is the support radius. 
It is obvious that the kernel functions reproduce the 

constant functions that is, ( )X 1II
w =∑ , but not the 

linear functions. In other words, one can find that 
( ),I i Ij ijI

w X δ≠∑ X . A correction, developed by 

Belytschko et al. (1998), is used to enable the derivatives 
of constant or linear functions to be reproduced exactly.  

Substituting Equation (2) into the weak form of Equation 
(1), the following discrete equations of motion are derived: 

ext int 0
0,I iI iI iI I Im u F F m Vρ= − =  (5) 

where m1 represents the mass of the particle I, 0
IV  is the 

volume associated with this particle, ext
iIF  are the external 

nodal forces and int
iIF  are the internal nodal forces  
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It should be noted here that Equation (5) can be rewritten 
as the discrete equations for static problems by setting 
accelerations zero. 

2.2 Numerical integration 

EFG method (Belytschko et al., 1994) needs a background 
mesh so that Gaussian quadratures can be used for 
numerical integration of Equation (6), but it is 
computationally intensive. Beissel and Belytschko (1996) 
proposed nodal integration to reduce the computer time 
and the internal forces are calculated via 
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However, it will result in one of the instabilities due to 
rank deficiency for some problems (Belytschko and Xiao, 
2002). The stress point integration scheme (Dyka et al., 
1997) was proposed to stabilise this instability. Stress 
points play the same role as additional quadrature points 
during numerical integration. Those additional quadrature 
points are called slave points/particles and the original 
particles are called master particles. The motion of  
stress points is completely determined by the motion of 
master particles through kinetics relations. In other words, 
the kinetic variables of stress points, such as displacements 
and velocities, are evaluated from the neighbouring master 
particles by the approximation Equation (2). Discrete 
equations, Equation (5), are only solved for motion of 
master particles. 

According to the stress point integration scheme, the 
integration for internal forces is thereafter written as 
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where ‘M’ represents master particles, while ‘S’ represents 
stress points. NM and NS are the sets of master particles  
and stress points, respectively, which contribute to the 
master particle at M

IX . The volumes M
JV 0  and S

JV 0  are the 

volumes associated with master particles and stress points. 
They are different from 0

JV  in Equation (5) and 
0 0 0M S

J J JV V V= +∑ ∑ ∑ . Those volumes are usually 

computed from a Voronoi diagram. 

2.3 Stability analysis 

In a linearised stability analysis (Belytschko and Xiao, 
2002), we investigate the stability of the slab to a 
perturbation in the displacement. The perturbation can be 
expressed as = +x x x . x  is a plane wave perturbation as 

ω κ+= = 0i t i n Xgex u  (9) 

where, κ  is wave number, ω  is frequency and g is 
polarisation of the wave. Equation (9) can be substituted 
into governing equations or discrete equations to obtain  
the characteristic equations, which can be solved for 
frequencies. 

An isotropic hyperelastic material (Belytschko et al., 
2000) is considered here. Its potential is given by 
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where 1I , 2I  and 3I  are the principal invariants of  

the right Cauchy-Green deformation tensor C . The 
constitutive relationship can be derived via obtaining the 
second Piola-Kirchhoff stress tensor from the first 
derivatives of potential function with respect to the right 
Cauchy-Green deformation tensor. In this paper, the 
following materials are considered constants: C1 = 
0.1256MPa, C2 = 0.01012MPa and λ = 10.12MPa.  

To simplify the analysis, we consider a diagonal 
deformation gradient F for the initial state of deformation, 
which is characterised by three stretches, λi (λ3 is assumed 
to be 1 here). For a given deformation, the frequency of the 
plane wave perturbation can be obtained by solving the 
characteristic equations. If there exists ω  such that 

( ) 0Im <ω , the simulated system will be unstable. Stable 
domains for the considered material are shown in Figure 1. 
The exact solution was obtained from the linearised 
stability analysis of the governing equations, that is, PDEs 
and it represents the material stability itself. From  
Figure 1, it can be seen that the Lagrangian kernel can 
exactly reproduce the material instability, but the Eulerian 
kernel severely distorts it.  

Figure 1 Stable domains of the meshfree particle method  
with stress points (a) Lagrangian kernel and 
(b) Eulerian kernel 

 

2.4 Insertion of stress points 

In meshfree particle modelling of an object with arbitrary 
geometry, master particles are arranged irregularly. 
Triangulation is usually conducted to construct a triangular 
(or tetrahedral in 3D) mesh as shown in Figure 2(a). 
Master particles are vertices of those triangles. The stress 
points are then inserted at the centre of triangles (or 
tetrahedrons). Next, the Voronoi diagram is performed to 
generate Voronoi cells for both master particles and stress 
points, as shown in Figure 2(b). The volumes of these cells 
are calculated as M

JV 0  and S
JV 0 for the stress point 

integration scheme as in Equation (8). However, since the 
algorithms of triangulation and Voronoi diagram are 
complicated, especially for three-dimensional problems, 
they are not applicable for multiple dimensional problems 
with an arbitrary geometry. In this paper, we introduce a 
simple technique of finite element mapping to insert stress 
points and to calculate volumes associated with master 
particles and stress points. 
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Figure 2 Stress point insertion and volume calculation (a) 
Triangulation and (b) Voronoi cells 

 

With current powerful finite element mesh generation 
software it is easy to construct triangular or tetrahedral 
meshes in the reference configuration for any given 
problem. The nodes can be taken as master particles in 
meshfree particle methods. In finite element methods, the 
reference configuration can be mapped from the parent 
configuration (Belytschko et al., 2000) via ( )ξXX =  where 
ξ  represents coordinates in the parent configuration.  

If stress point I  is at the centre of an equilateral triangle 
ABC in the parent configuration as shown in Figure 3,  
the co`ordinate of this stress point in the reference 
configuration can be obtained via the finite element 
approximation, which is  

( ) ( ) , , ,S M
I J I JJ

N J A B Cξ ξ= =∑X X  (11) 

where N(ξ) are finite element interpolation functions 
evaluated in the parent configuration. In other words,  
stress points are also inserted at the centres of triangular 
meshes in the reference configuration. 

Figure 3 The finite element mapping technique 

 

In the parent configuration, it is easy to calculate volume 
0

IV  of the Voronoi cell, which is associated with stress 

point I . Through the finite element mapping technique, 

the volume associated with this stress point in the 
reference configuration is calculated by: 
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gradient of the mapping function evaluated at stress point 
I  in the parent configuration. A similar procedure can be 
performed to calculate volumes associated with master 
particles in the reference configuration. 

3 Meshfree particle methods at the nanoscale 

3.1 Implementation of the Cauchy-Born rule 

With a homogenisation technique, such as the Cauchy-
Born rule (Chen et al., 1998), it is possible to impose the 
continuum mechanics methods to perform simulations at 
the nanoscale because the intrinsic properties of material 
can be sought at the atomic level and embedded in the 
continuum. Such methods are also called the hierarchical 
multiscale methods. Finite element methods are always 
used in multiscale methods with the implementation of  
the Cauchy-Born rule. Since the meshfree particle methods 
are advantageous to treat large deformation problems as 
well as fracture problems, they will have potential to be 
used in nanoscale numerical modelling and simulation. 
The Cauchy-Born rule states the deformation is locally 
homogeneous, so it is assumed there is a constant gradient 
of deformation in each volume that is associated with a 
master particle or a stress point. 

As Figure 4 shows, an undeformed lattice vector A   
in the reference configuration is mapped into a in the 
current configuration by the gradient of deformation F via 
a = FA. In the continuum model, the potential energy 
depends on the elongations and angle changes of the 
atomic bonds that underlie the volume of master particles 
or stress points. The total potential of the continuum model 
is defined by 
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where wc is the potential energy per unit volume. Then, the 
first Piola-Kirchhoff stresses, P, at master particles or 
stress points are computed as follows  
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Equation (14) serves as the constitutive equation for the 
meshfree particle method based on atomistic potentials via 
the Cauchy-Born rule. However, the Cauchy-Born rule has 
some difficulties for many important situations, such as in 
single-layer curved crystalline sheets. Therefore, an 
extension of the Cauchy-Born rule – the exponential 
Cauchy-Born rule developed by Arroyo and Belytschko 
(2002) – will be used for those simulations. 

Figure 4 Cauchy-Born rule in meshfree particle methods 

 

3.2 Coupling of the meshfree particle method with 
molecular dynamics 

With the development of multiscale modelling at the 
nanoscale, Xiao and Belytschko (2004) proposed a 
bridging domain coupling method. In this paper, this 
technique is used to develop a concurrent multiscale model 
in which the meshfree particle method is coupled with 
molecular dynamics. In expressing the total Hamiltonian 
of the system, a scaling parameter β in the bridging 
domain, int

0Ω , which is the overlapping domain between 

the molecular domain, M
0Ω  and the continuum domain, 

C
0Ω , as shown in Figure 5, is employed. The Hamiltonian, 

H , for the complete domain is taken to be a linear 
combination of the molecular and continuum 
Hamiltonians, as shown in  

( )

( ) ( ) ( )

( )( )
( )( ) ( )( )

0

1

1

2

1
1

2

1

M C

M
I I I I I I

I I

I I I I
I

C

H H H

m W

M

w d

β β

β β

β

β
Ω

= + −

= +

+ − +

− Ω

∑ ∑

∑

∫

X X X

X

X F X

d d

u u
 (16) 

where mI and MI are mass for atoms and master particles, 
respectively. WM is the potential function in the molecular 
model. HM and HC are molecular and continuum 
Hamiltonians, respectively. d are atomic displacements. 

The constraints in the bridging domain are 

{ } ( ){ } ( ){ } 0I iI i I iI J I iJ iIJ
u w= = − = − =∑X Xg g d u d (17) 

that is, the atomic displacements, d, are required to 
conform to the continuum displacements, u, at the 
positions of the atoms. The continuum displacement field 
can be obtained from the meshfree particle approximation 
as Equation (2). The constraints are applied to all 
components of the displacements. With the Lagrange 
multiplier method, the total Hamiltonian is written as 

T T
L I II

H H Hλ λ= + = +∑g g  (18) 

where λ1 = {λiI} is a vector of Lagrange multipliers. Note 
that the Lagrange multipliers are assigned to the discrete 
positions of atoms in the bridging domain. 

Figure 5 A bridging coupling model for a molecular chain 

 

The discrete equations can be derived from Equation (18) 
via classical Hamiltonian mechanics. In equations  
of motion there exist constraint forces applied on  
the atoms/particles in the bridging domain besides external 
and internal forces. Xiao and Belytschko (2004) developed 
an explicit time integration algorithm. At first, so-called 
trial velocities are obtained by solving equations of motion 
independently in the continuum and molecular domains 
without the consideration of constraints. Then, constraints 
are applied to calculate the Lagrange multipliers. Finally, 
the constraint forces are considered to correct the 
velocities of atoms/particles in the bridging domain. The 
details can be found in Xiao and Belytschko (2004). 

4 Examples 

4.1 Taylor bar impact 

A classical benchmark problem, the Taylor bar impact, is 
examined here. In this example, a cylindrical bar impacts a 
rigid, frictionless anvil with an initially high speed, 227 
m/s. Von Mises J2 flow theory (see Belytschko  
et al., 2000) with linear isotropic hardening is applied for 
the computation. The material data are: density  
ρ = 8930 kg/m3, Young’s modulus E = 117 GPa, Poisson’s 
ratio µ = 0.35, plastic modulus EP = 100 MPa and yield 
strength σY = 400 MPa. 

Table 1 Results of meshfree particle methods comparing 
with DYNA3D 

Particles 
number 

Stress points 
number 

Final 
radius 

(mm) 

Final 
length 

(mm) 

Maximum 
plastic strain 

520 1920 6.88 21.70 2.10 

6171 30000 7.02 21.47 3.16 

 DYNA3D 7.03 21.47 2.96 

In this three-dimensional example, the tetrahedral 
arrangement of master particles is considered based on 
finite element mesh generation. Master particles are placed 
on the vertices of tetrahedrons. Based on the finite element 
approximation and mapping as described in Section 2.3, 
the positions of stress points in the reference configuration, 
as well as the volumes associated with master particles  
and stress points, can be obtained. Here, an equilateral 
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tetrahedron is considered as the parent element. Figure 6 
shows deformed shapes and the equivalent plastic strain 
evolution of the middle section of the Taylor bar. The 
results shown in Table 1 are in good agreement with the 
ones from DYNA3D. 

Figure 6 Effective plastic strain evolution in Taylor bar  
(a) t = 0.015 ms (b) t = 0.03 ms and (c) t = 0.06 ms 

 

 

4.2 Wave propagation in a molecule chain 

In this example, the wave propagation in a molecular 
chain, which contains 2001 atoms, is simulated. The LJ  
6–12 potential function is used as the interatomic potential 
function between the nearest atoms, and it is 

( ) ( )12 6
4 / /Mw r rε σ σ⎡ ⎤= −⎣ ⎦  (19) 

where the constants are chosen as: σ = 3.4e–10m and  
ε = 1.65e–21J. The mass of each atom is set to  
be 3.8 × 10–10 kg. 

Figure 7 The initial wave in a molecule chain 

 

In the bridging domain coupling modelling of this 
molecule chain, there are 1001 atoms in the molecular 
domain and 100 master particles in the continuum domain. 
The initial wave is the combination of high frequency and 
low frequency waves as shown in Figure 7 in the 
molecular domain. 

A handshake technique (Broughton et al., 1999) was 
developed for coupling a finite element method and 
molecular dynamics. In that method, the element size was 
graded down to the lattice spacing in the handshake region. 
This technique will result in a non-physical phenomenon 
as shown in Figure 8(a) at the interface between the 
continuum domain and the molecular domain if the 
artificial viscosity is not applied. We can see that high 
frequency waves are reflected while the low frequency 
wave passes the continuum domain. Such a phenomenon is 
also called spurious wave reflection. However, with the 
bridging domain coupling technique, the spurious wave 
reflection can be eliminated as shown in Figure 8(b). 

Figure 8 Multiscale methods simulations (a) handshake 
method and (b) bridging domain coupling method 
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4.2 A nanoplate with a central crack 

Since meshfree particle methods are beneficial in treating 
fracture problems, in this example the meshfree particle 
method with the implementation of the Cauchy-Born  
rule will be used to study the stress concentration of  
a nanoplate containing an initial central crack. The 
dimensions of the nanoplate are: a length of 270 nm  
and a width of 280 nm. The crack is initialised by  
taking a number of bonds out and the initial crack length is 
135 nm. This nanoplate contains 86,915 atoms with the 
triangular/hexagonal molecular structure. The meshfree 
particle model contains 400 master particles and 722 stress 
points. The LJ (6–12) potential function in Equation (19) 
is used in this example with the following constants:  
σ = 1.833 nm and ε = 8.25e–9J. A visibility criterion in the 
meshfree particle model is used to construct the kernel 
functions for the particles near the crack or around the 
crack tip. 

In this example, the bottom of the nanoplate is fixed 
while prescribed displacements are applied on the top of 
the nanoplate. The constitutive relationship can be 
achieved through the Cauchy-Born rule, that is, Equation 
(14). For the purpose of comparison, molecular mechanics 
calculations are also performed. Computation time for 
molecular mechanics calculation is 2400 sec, which is 
dramatically reduced to 10 sec for meshfree particle 
simulation. Figure 9 shows that the evolution of potential 
obtained from the meshfree particle method is in accord 
with the evolution of potential from the molecular 
mechanics calculation. If more particles, for example, 900 
particles, are employed, the comparison is more 
advantageous, as shown in Figure 9. 

Figure 9 Comparison of potential between the meshfree 
particle method and molecular mechanics  
calculation 

 

Figure 10 Convergence of the meshfree particle method 

 

We study the convergence by using the l2 error in 
displacement for the meshfree particle method as shown in 
Figure 10. The error in displacement is defined as 
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MM PM

MM

−
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u u

u
 (20) 

where uMM and uPM are the atomic displacements from  
the molecular mechanics calculation and the meshfree 
particle method, respectively. Note here that one can 
calculate the atomic displacements from the particle 
displacements in the meshfree particle method based on 
the meshfree particle approximation, that is, Equation (2). 
The norm is defined as follows:  

1/ 2
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2
Ω
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⎝ ⎠
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As well, we investigate the stress concentration around the 
crack tip while the nanoplate is under the uniaxial strain  
of 2%. At the atomic level, the Cauchy stress is calculated 
as the following formula: 
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r fσ
≠

⎛ ⎞
= ⊗⎜ ⎟
Ω ⎝ ⎠
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where rij = ri–rj is the spatial vector between atoms i and j, 
and ⊗ denotes the tensor product of two vectors. The 
interatomic force fij applied on atom i by atom j is: 

ij ij
ij

ij ij

r

r r

φ∂
= −

∂
f  (23) 

where Φij is the interatomic potential between atoms i and 
j. The sign is adopted here for force, which is positive for 
repulsion and negative for attraction. 

Figure 11 shows the comparison of the stress (σyy) 
contour between the molecular mechanics calculation and 
the meshfree particle simulation. It can be seen that the 
contours are in accord except the difference of stress 
concentration area at the crack tip. We think that such 
difference is due to coarse particle approximation at the 
crack tip, which can be improved by inserting more 
particles around that specific area. 

5 Conclusions 

The meshfree particle method with a Lagrangian kernel 
and the stress point integration scheme is introduced in this 
paper since this method has been proved to be a stable and 
efficient meshfree particle method. We impose finite 
element approximating and mapping techniques to 
perform insertion of stress points and volume calculation 
for master particles and stress points. As a result, the 
triangulation and the Voronoi diagram can be avoided 
since they create complications for engineers, especially in 
three-dimensional simulations. Furthermore, we 
implement the Cauchy-Born rule into the meshfree particle 
method for nanoscale modelling and simulation. 
Therefore, the meshfree particle method can be used to 
approach a large group of atoms. Such a hierarchical 
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multiscale method can provide good results when 
compared with molecular mechanics simulations. As well, 
the meshfree particle method can also be coupled with 
molecular dynamics in concurrent multiscale modelling. 

Figure 11 Comparison of stress concentration (a) molecular 
mechanics and (b) meshfree particle method 
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