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Abstract

A bridging domain method for coupling continuum models with molecular models is described. In this method, the

continuum and molecular domains are overlapped in a bridging subdomain, where the Hamiltonian is taken to be a

linear combination of the continuum and molecular Hamiltonians. We enforce the compatibility in the bridging domain

by Lagrange multipliers or by the augmented Lagrangian method. An explicit algorithm for dynamic solutions is

developed. Results show that this multiscale method can avoid spurious wave reflections at the molecular/continuum

interface without any additional filtering procedures, even for problems with significant nonlinearities. The method is

also shown to naturally handle the coupling of the continuum energy equation with the molecular subdomain. A

multiple-time-step algorithm is also developed within this framework.
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1. Introduction

Concurrent methods for coupling molecular dynamics models with continuum or quasicontinuum [1]

models are useful for studying local phenomena such as fracture. They permit the use of far fewer equations

than in strict molecular dynamics models, since the resolution in the subdomain modeled by continuum

mechanics can be far coarser than in the molecular dynamics model. In these coupled models, the con-

tinuum subdomain serves primarily as a boundary model that provides the low frequency impedance and a

sink for the energy associated with outgoing waves of the molecular dynamics model. Such models are often
called multiscale because the spectra (and the resolution) of the continuum model have much smaller cutoff

frequencies than the molecular dynamics model.
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A difficulty that arises in such concurrent multiscale couplings is that the high frequency parts of
waves are often spuriously reflected at the molecular/continuum interface; this phenomenon was

already noted by Doll and Adelman [2,3]. It was also noted in finite element models with different element

sizes by Holmes and Belytschko [4]. These spurious reflections can be explained by noting that for a

wave with a frequency greater than the cutoff frequency of the continuum model, the interface appears

as an almost rigid boundary. So instead of smoothly propagating into the continuum model, the

high frequency part of the wave is reflected. This results in spurious growth of energy in the molecular

domain.

Recently, several concurrent multiscale techniques have been developed; we will briefly review some of
these works. Abraham et al. [5,6], in a pioneering work, developed a methodology that couples a tight-

binding quantum mechanics approximation with molecular dynamics and in turn with a finite element

continuum model. The molecular dynamics model was coupled with the continuum model in a ‘‘hand-

shake’’ domain in which the two Hamiltonians were averaged. To reduce spurious reflections into

the molecular dynamics domain, damping was used in the handshake region, although the damping

was not based on any rigorous theory. In most cases, it appears that the finite element continuum

model had to be nearly of the scale of interatomic distances at the atomistic/continuum interface to perform

well.
In a significant advance, Rudd and Broughton [7] formulated a coarse-grained method. In this method,

the fine scale response was modeled in the coarse scale domain by superimposing the atomistic Hamilto-

nian. For purposes of tractability, the Hamiltonian employed a linearization of the potential energy. The

fine scale effects were then computed by taking advantage of Bloch symmetry to reduce the size of the

dynamic matrix. Their results exhibit excellent phonon spectra and minimal reflection of elastic waves

between subdomains, although the results were given only for one-dimensional models.

Wagner and Liu [8] have developed a multiscale method in which the molecular displacements are

decomposed into fine and coarse scales throughout the domain. However, in the coarse scale domain the
fine scale features are not modeled explicitly. At the interface between the two domains, they use a form of

the Langevin equation to eliminate spurious reflections. They reported excellent results for one-dimensional

problems.

Cai et al. [9] introduced a condensation approach to minimize boundary wave reflection. However, it

requires the calculation of response functions, which take the form of matrices of size equal to the number

of degrees of freedom along the boundary of the MD domain. These matrices are computed by MD

simulations on domains somewhat larger than the one of interest.

E and Huang [10] have developed nonreflecting interfaces by constructing time integration formulas that
eliminate spurious reflections. The method is based on eliminating the high frequency components moving

from fine mesh to coarse mesh. As with most of the previous work, the reported examples were limited to

one-dimensional linear systems.

Karpov et al. [11] have developed coupling methods based on lattice dynamics. As in [7,8], the molecular

displacements are modeled as the sum of a coarse scale (represented by finite element interpolants) and a

fine scale. In the continuum domain, only a finite element model is used. The spurious reflections at the edge

of the molecular model are eliminated by introducing forces equivalent to the lattice impedance; this entails

the evaluation of inverse Laplace transforms in time, and for multidimensional problems, a Fourier
transform in space. The method is very effective for linear continua, but the extension to nonlinear response

may be difficult.

Belytschko and Xiao [12] have developed a coupling method for molecular mechanics (we refer to

molecular models at zero temperature as molecular mechanics) and continuum mechanics models based on

a bridging domain method. In this method, the two domains are overlaid at the interface as in the method

described here. A scaling of the fine and coarse scale potential is used in conjunction with Lagrange

multipliers on the overlapping subdomain.
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A review of these methods can be found in [13]. It should be noted that in multiscale analysis, it is
beneficial if in the time integration of the system, the time step in the continuum subdomain be much larger

than in the atomistic subdomain. Mixed time integration procedures, where different time steps are used in

different subdomains, have already been extensively developed in the finite element community [14–17].

However, in the finite element community, these integrators were developed without considering the miti-

gation of spurious reflections between subdomains. The challenge is to combine the stability properties of

these integrators with techniques that minimize spurious reflections that may arise due to the disparity in

time steps.

A coupling method called the bridging domain method is developed in this paper. It is an extension of
the method in [12] to dynamics. The method was previously used to couple finite elements to meshless

methods in [18]. It has been studied by Ben Dhia [19]. In this method, the molecular model and continuum

model overlap at their junctions in a bridging domain. This method can avoid spurious wave reflection

without any additional filtering or damping. In effect, the method projects the fine scale solution onto the

coarse scale solution in the bridging domain at each time step. Thus it filters the high frequency components

at the interface. Since the positions of atoms and nodes are not necessarily identical in the bridging domain,

a uniform mesh can be used in continuum subdomain and the continuum mesh need not correspond with

atomic positions. In addition, multiple time steps can be implemented into this method for different length
scales. Furthermore, since the method is not based on linearization, it was surmised that it would apply to

nonlinear problems. Based on the test problems we have studied so far, this appears to be the case.

The method also provides a natural way to couple heat conduction and other diffusion phenomena

between molecular and continuum models. Temperature and other diffusion variables can only be defined

in a molecular model over a subdomain containing an adequate number of atoms, so edge-to-edge coupl-

ings are impossible. In the proposed method, the temperature in the domain adjacent to the overlapping

molecular domain is used to drive the energy transfer between the molecular and continuum models. A

switch is included so that the second law of thermodynamics is not violated.
The outline of this paper is as follows: In Section 2, we describe the governing equations. The Hamil-

tonian dynamics of both the molecular and the continuum models are presented. In Section 3, the bridging

domain coupling method is developed. The coupling method is set up first and the discrete equations are

derived for both the Lagrange multiplier method and the augmented Lagrangian method. An explicit

algorithm for dynamics solutions and multiple-time-step algorithms are described. Then we briefly describe

the treatment of heat conduction with the bridging domain coupling method. In Section 5, applications of

multiscale methods in 1D and 2D are studied. Section 6 gives the conclusions.
2. Governing equations

The model for the bridging domain coupling method is shown in Fig. 1. The complete domain in the

initial configuration is denoted by X0. The domain is subdivided into two subdomains: the molecular

subdomain denoted by XM
0 , and the continuum subdomain, denoted by XC

0 . The overlap of these two

domains is denoted by Xint
0 in the initial configuration; Xint

0 is called the bridging domain and it corresponds

to the overlap of the two subdomains; Ca
0 denotes the edges of the continuum subdomains and Ca

1 denotes
the edges of the molecular subdomain.
2.1. Molecular/atomistic model

In an isolated system of atoms or molecules, the total energy, the sum of the kinetic and potential

energies of the molecules, is constant in time and identified as the Hamiltonian HM, which is given by



Fig. 1. Bridging domain model for a nanotube; finite elements are indicated by lines that connect continuum nodes.
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HMðxIðtÞ; pMI ðtÞÞ ¼
X
I

1

2mI
pMI � pMI þ W MðxIðtÞÞ ¼ constant; ð1Þ

where mI is the mass of atom I , xI is the position of atom I and xI ¼ XI þ dI (XI is the original position of
atom I and dI is the displacement of atom I); pMI is the momentum and defined by

pMI ¼ mI _xI ¼ mI
_dI : ð2Þ

W MðxÞ is the potential function which is the sum of the energies due to any force fields, such as pair-wise

interaction of the atoms, three-body potentials or others. It can be written as

W MðxIÞ ¼
X
I

W1ðxIÞ þ
X
I ;J>I

W2ðxI ; xJÞ þ
X

I ;J>I ;K>J

W3ðxI ; xJ ; xKÞ þ � � � ð3Þ

Here, we assume that the external potential is due only to a constant external force, fextI , such as electrostatic
forces, and a pair-wise interatomic potential denoted by wIJ ¼ wMðxI ; xJÞ, so the total potential is

W M ¼ �W ext
M þ W int

M ¼ �
X
I

fextI dI þ
X
I ;J>I

wMðxI ; xJ Þ: ð4Þ

The well-known Hamiltonian canonical equations of motion are

_pMI ¼ � oH
oxI

¼ � oW M

oxI
; _xI ¼ _dI ¼

oH
opMI

¼ pMI
mI

: ð5Þ

Eq. (5) can be combined to yield

mI
€dI ¼ � oW M

oxI
¼ oW ext

M

odI
� oW int

M

odI
¼ fextI � f intI ; ð6Þ

where f intI ¼ oW int
M =odI .

2.2. Continuum model

We will adopt a Lagrangian viewpoint for the continuum. This presupposes that any atoms in the

domain that is to be treated by continuum methods remain in that domain. Thus our methods are not

directly applicable to gases or even solid behavior characterized by diffusion of atoms. Our method is aimed
at crystalline or amorphous solids, and it is assumed that the deformations are sufficiently small so that

voids or dislocations do not develop in the continuum subdomain. However, the method could be extended

to treat the latter.
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The continuum is governed by the conservation ofmass, linear and angularmomentumand energy; closure
is provided by the constitutive equations. The mass conservation equation for a Lagrangian description is an

algebraic equation (see [20]) from which the density can be computed, so we will ignore it here.

The linear momentum equations are

oPji
oXj

þ q0bi ¼ q0€ui; ð7Þ

where q0 is the initial density, P is the first Piola–Kirchhoff stress tensor, b is the body force per unit mass
and u is the displacement, superposed dots denote material time derivatives. The first Piola–Kirchhoff stress

can be obtained from the potential of the continuum by

P ¼ owCðFÞ
oF

; ð8Þ

where F is the deformation gradient and wC is the potential energy per unit volume of the continuum. The

potential energy depends on the elongations and angle changes of the atomic bonds that underlie the

continuum model. The above serves as the constitutive equation for a continuum based on atomistic
potentials. The total potential of the continuum model is defined by

W int
C ¼

Z
XC
0

wCðFÞdXC
0 : ð9Þ

The constitutive equation is constructed via the Cauchy–Born rule by the quasicontinuum approach.

For curved monolayer crystalline membranes such as nanotubes, an extension of the Cauchy–Born rule

called the exponential Cauchy–Born rule is used, see [22].

We assume Fourier’s law for heat conduction, so the energy equation is

q�c _T ¼ rijvi;j þ jr2T þ S; ð10Þ
where T is the temperature, S is the internal heat source, �c is the specific heat, and j is the conductivity. We
assume that all deformations are reversible, so no conversion of the first term on the right hand side to heat

takes place. At the scale of 10–100 nm, the effects of heat waves may become important, see for example,

[23]. However, we will neglect these effects here.

The system must also conform to the second law of thermodynamics. Within the context of the processes

we are considering here, the second law is observed if the material law meets the Clausius–Planck inequality

and if heat flows in the direction of the negative thermal gradient. The latter condition is automatically met

in the continuum when j > 0. In the overlapping subdomain, the second law requires that we permit heat to

flow from the molecular model to the continuum only when the temperature in the linked cell of the
molecular model is greater than the temperature at the corresponding point in the continuum model.

In the continuum domain, the Hamiltonian is given by

HC ¼ KC þ W C ¼
Z

XC
0

1

2
qvTvdXC

0 þ W C; ð11Þ

W C ¼ �W ext
C þ W int

C ¼ �
X
I

fext CI uI þ
Z

XC
0

wCðFÞdXC
0 : ð12Þ

Note that we use the same symbol for the nodal forces for the continuum model once it is discretized by a
finite element method. The velocity in the continuum vðX; tÞ is approximated by

vðX; tÞ ¼
X
I

NIðXÞvIðtÞ or viðX; tÞ ¼
X
I

NIðXÞviIðtÞ; ð13Þ
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where NIðXÞ are the shape functions. The following discrete equations are then obtained:

MI€uiI ¼ f extC
iI � f int C

iI ; MI ¼ q0V
0
I ; ð14Þ

where MI is the lumped mass of node I ; f ext C
iI and f int C

iI are the external and internal nodal forces respec-

tively, given by

f extC
iI ¼ oW ext

C

oXiI
; ð15Þ

f int C
iI ¼

Z
XC
0

oNIðXÞ
oXj

owCðFÞ
oFij

dXC
0 ¼

Z
XC
0

oNIðXÞ
oXj

Pji dXC
0 ¼

Z
XC

oNIðxÞ
oxj

rji dXC; ð16Þ

where X is the current domain, see [20] for details.
3. Bridging domain coupling method

3.1. Coupling method

In the bridging domain method, the total energy is taken to be a linear combination of the molecular and
continuum energies. A scaling parameter a is introduced in the bridging subdomain, i.e. the overlapping

subdomain. The parameter a is defined as a ¼ lðXÞ
l0

where lðXÞ is the orthogonal projection of X onto Ca
0 and

l0 is the length of this orthogonal projection to Ca
1 as shown in Fig. 2. Therefore, the parameter a is

a ¼
1 in XC

0 � Xint
0 ;

½0; 1	 in Xint
0 ;

0 in XM
0 � Xint

0 :

8><
>: ð17Þ

The overlapping domain must be quite regular for the above definition of the scaling to be well defined.

The Hamiltonian for the complete domain is taken to be a linear combination of the molecular and

continuum Hamiltonians

H ¼ ð1� aÞHM þ aHC ¼
X
I

ð1� aðXIÞÞ
pMI � pMI
2mI

þ ð1� aÞW M þ
X
I

aðXIÞ
pCI � pCI
2MI

þ aW C; ð18Þ
Fig. 2. Bridging domain between continuum and molecular model.
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where W M is defined in (4) and W C in (9). The two models are constrained on the overlapping subdomain

Xint
0 by

gI ¼ fgiIg ¼ fuiðXIÞ � diIg ¼
X
J

NJ ðXIÞuiJ

(
� diI

)
¼ 0; ð19Þ

i.e. the atomic displacements are required to conform to the continuum displacements at the positions of

the atoms. The constraints are applied to all components of the displacements.

We first show how the constraint is applied by the Lagrange multiplier method; we then add the

modifications needed for the augmented Lagrangian method. In the Lagrange multiplier method, the total

Hamiltonian is written as

HL ¼ H þ kTg ¼ H þ
X
I

kT
I gI ; ð20Þ

where kI ¼ fkiIg is a vector of Lagrange multipliers whose components correspond to the components of

the displacement of atom I . Note that the Lagrange multipliers are assigned to the discrete positions of

atoms.
The augmented Lagrangian method can be developed by adding a penalty to (20). The total Hamilto-

nian is then

HAL ¼ H þ kTgþ 1

2
bgTg ¼ H þ

X
I

kT
I gI þ

1

2

X
I

bgTI gI ; ð21Þ

where b is penalty parameter.

3.2. Discrete equations

The equations of motion for the Lagrange multiplier method are

aðXIÞ _pCI ¼ � oHL

ouI
; aðXIÞ _uI ¼

oHL

opCI
in XC

0 ; ð22Þ

ð1� aðXIÞÞ _pMI ¼ � oHL

odI
; ð1� aðXIÞÞ _dI ¼

oHL

opMI
in XM

0 : ð23Þ

These can be combined to yield

MI€uI ¼ fextCI � f int CI � fLCI in XC
0 ;

�mI
€dI ¼ fextI � f intI � fLI in XM

0 ;
ð24Þ

where

MI ¼ aðXIÞMI ; �mI ¼ ð1� aðXIÞÞmI :

The external nodal forces including the scaling factor are defined to be

fextCI ¼
Z

XC
0

aðXÞNIq0bdXC
0 þ

Z
Ct
0

aðXÞNI�tdCt
0;

fextI ¼ ð1� aðXIÞÞ�f I :
ð25Þ

Similarly, the internal forces are

f int CI ¼
Z

XC
0

aðXÞ oNIðXÞ
oXj

Pji dXC
0 ; ð26Þ
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f intI ¼ ð1� aðXIÞÞ
X
I ;J>I

owMðxI ; xJ Þ
odI

: ð27Þ

The forces fLCI and fLI are due to the constraints enforced by the Lagrange multipliers and they are:

fLCI ¼
X
J

kT
J

ogJ
ouI

¼
X
J

kT
JG

C
JI ;

fLI ¼
X
J

kT
J

ogJ
odI

¼
X
J

kT
JG

M
JI ;

ð28Þ

where NIJ ¼ NIðXJ Þ and

GC
JI ¼

ogJ
ouI

	 

¼ ½NJII	; GM

JI ¼
ogJ
odI

	 

¼ ½�dIJ I	: ð29Þ

For the augmented Lagrangian method, the discrete equations are

MI€uI ¼ fext CI � f int CI � fALC
I in XC

0 ;

�mI
€dI ¼ fextI � f intI � fAL

I in XM
0 ;

ð30Þ

where fALC
I and fAL

I are given by

fALC
I ¼

X
J

kT
J

ogJ
ouI

þ
X
J

pgTJ
ogJ
ouI

¼
X
J

kT
J ½NIJ I	 þ

X
J

p
X
I

NIJuI

"
� dJ

#T
½NIJ I	; ð31Þ

fAL
I ¼

X
J

kT
J

ogJ
odI

þ
X
J

pgTJ
ogJ
odI

¼
X
J

kT
J ½�dIJ I	 þ

X
J

p
X
I

NIJuI

"
� dJ

#T
½�dIJ I	: ð32Þ
3.3. Explicit algorithm

The Verlet algorithm is used here; it is identical to the central difference method except that the Verlet

form avoids half-time-step velocities. This algorithm updates the displacements and velocities at each time

step by

uðt þ DtÞ ¼ uðtÞ þ _uðtÞDt þ 1
2
€uðtÞDt2; ð33Þ

_uðt þ DtÞ ¼ _uðtÞ þ 1
2
½€uðtÞ þ €uðt þ DtÞ	Dt: ð34Þ

To solve the coupled dynamical system with the Lagrange multiplier method, an explicit algorithm was

developed based on the velocity Verlet algorithm. Assume that the accelerations, displacements and
velocities are known at the time step n. We first obtain the trial displacements at the next time step nþ 1

with the constraints neglected:

u�Iðnþ1Þ ¼ uIðnÞ þ _uIðnÞDt þ 1
2
€uIðnÞDt2 in XC

0 ;

d�Iðnþ1Þ ¼ dIðnÞ þ _dIðnÞDt þ 1
2
€dIðnÞDt2 in XM

0

ð35Þ

(the subscripts in the parenthesis are the time step number). In the above, the accelerations are obtained

from (24) without considering the forces due to the constraints, so
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€uIðnþ1Þ ¼
1

MI
fext CIðnþ1Þ

h
� f int CIðnþ1Þ

i
in XC

0 ;

€dIðnþ1Þ ¼
1

�mI
fextIðnþ1Þ

h
� f intIðnþ1Þ

i
in XM

0 :

ð36Þ

We then obtain the trial velocities:

_u�Iðnþ1Þ ¼ _uIðnÞ þ 1
2
½€uIðnÞ þ €uIðnþ1Þ	Dt in XC

0 ;

_d�Iðnþ1Þ ¼ _dIðnÞ þ 1
2
½€dIðnÞ þ €dIðnþ1Þ	Dt in XM

0 :
ð37Þ

The velocities at time step nþ 1 can be alternatively expressed as

_uIðnþ1Þ ¼ _uIðnÞ þ
1

2
€uIðnÞ

h
�M

�1

I fLIðnÞ þ €uIðnþ1Þ �M
�1

I fLCIðnþ1Þ

i
Dt

¼ _uIðnÞ þ
1

2
½€uIðnÞ þ €uIðnþ1Þ	Dt �M

�1

I Dt
X
J

GC
JIkJ ¼ _u�Iðnþ1Þ �M

�1

I Dt
X
J

GC
JIkJ ; ð38Þ

_dIðnþ1Þ ¼ _dIðnÞ þ
1

2
€dIðnÞ

h
� �m�1

I fLIðnÞ þ €dIðnþ1Þ � �m�1
I fLIðnþ1Þ

i
Dt

¼ _dIðnÞ þ
1

2
½€dIðnÞ þ €dIðnþ1Þ	Dt � �m�1

I Dt
X
J

GM
JI kJ ¼ _d�Iðnþ1Þ � �m�1

I Dt
X
J

GM
JI kJ ; ð39Þ

where kI ¼ 1
2
½kIðnÞ þ kIðnþ1Þ	 denote the unknown Lagrange multipliers (a Lagrange multiplier is assigned to

each atom). The above velocities satisfy the constraints (19) in time derivative form

_gIðnþ1Þ ¼ _uðXIÞðnþ1Þ � _dIðnþ1Þ ¼
X
J

NIJ _uJðnþ1Þ � _dIðnþ1Þ: ð40Þ

Substituting (38) and (39) into (40), the unknown Lagrange multipliers can be obtained by solving the

following equations:X
L

AILkL ¼ g�I ; ð41Þ

where

AIL ¼ DtM
�1

I

X
J

NJIG
C
LJ � Dt�m�1

I GM
LI ; ð42Þ

g�I ¼
X
J

NJI _u
�
J � _d�I : ð43Þ

To reduce the computational cost, the matrix A consisting of submatrices AIL is diagonalized as a

diagonal n
 n matrix where n ¼ nSDnk; nSD is the number of space dimensions and nk the number of

Lagrange multipliers. The diagonal matrix is given by

AII ¼
X
L

DtM
�1

I

X
J

NJIG
C
LJ

"
� Dt�m�1

I GM
LI

#
: ð44Þ

Therefore, the unknown Lagrange multipliers can be obtained by

kI ¼ A�1
II g

�
I : ð45Þ



Table 1

Explicit algorithm of dynamics solution

1. Initialize the domains, displacements, velocities and accelerations

2. Calculate the displacements by Eq. (35)

3. Calculate the trial velocities by Eq. (37)

4. Solve Eq. (45) for the unknown Lagrange multipliers

5. Update the velocities at next time step by Eqs. (38) and (39)

6. Repeat steps 2–5 until end of simulation

1654 S.P. Xiao, T. Belytschko / Comput. Methods Appl. Mech. Engrg. 193 (2004) 1645–1669
Note that there is no summation on I . After the Lagrange multipliers are obtained, we obtain the corrected

velocities at time step nþ 1 by substituting Lagrange multipliers into (38) and (39).

For the augmented Lagrangian method, the accelerations for the trial velocities in (37) are rewritten as

€uIðnþ1Þ ¼
1

MI
fextCIðnþ1Þ

h
� f int CIðnþ1Þ � fPCIðnþ1Þ

i
in XC

0 ;

€dIðnþ1Þ ¼
1

�mI
fextIðnþ1Þ

h
� f intIðnþ1Þ � fPIðnþ1Þ

i
in XM

0 ;

ð46Þ

where fPCI and fPI are the extra forces from the penalty term and are parts of fALC
I and fAL

I . fPCI and fPI are

defined as

fPCI ¼
X
J

p
X
I

NIJuI

"
� dJ

#T
½NIJ I	;

fPI ¼
X
J

p
X
I

NIJuI

"
� dJ

#T
½�dIJ I	:

ð47Þ

Otherwise the procedure is the same. A flowchart of the explicit algorithm of dynamics solution for the

bridging domain coupling method is shown in Table 1.

Because the scaling parameter a varies between 0 and 1 in the overlapping subdomain, there may be

zero-mass nodes along the edge of the continuum domain, Ca
0, as well as along the edge of the molecular

domain, Ca
1. To solve (45) for the Lagrange multipliers inside the overlapping domain, the scaling

parameter a along Ca
0 is replaced by a small value, i.e. 0.001, and along Ca

1, by a ¼ 0:999.

3.4. Multiple-time-step algorithm

One of the issues in multiscale concurrent coupling is in tailoring the time step to the subdomains of the

model. If a single time step is used in both the continuum and molecular models, the stable time step

depends via the Courant condition on the atomic spacing. Therefore, computations will be wasted in the

continuum model. When the finite element mesh is graded down to the atomistic level in the overlapping
domain, it is difficult to tailor the time step. We usually use a uniform mesh for the continuum domain, so a

larger time step can be used in the continuum model while a fine time step is used in the molecular model.

The following describes the multiple-time-step algorithm. This algorithm is based on [24,25]. As shown in

Fig. 3, DT denotes the coarse time step; Dt denotes the fine time step and DT ¼ NDt. The multi-time-step

Verlet algorithm then becomes

uIðnþ1Þ ¼ uIðnÞ þ _uIðnÞDT þ 1
2
€uIðnÞDT 2 in XC

0 ;

dI nþjþ1
Nð Þ ¼ dI nþ j

Nð Þ þ _dI nþ j
Nð ÞDt þ

1
2
€dI nþ j

Nð ÞDt
2 in XM

0 ;
ð48Þ



Fig. 3. Arrangement of time steps in multi-time-step algorithm method.

Table 2

Explicit algorithm of dynamics solution

1. Initialize the domains, displacements, velocities and accelerations

2. Calculate the displacements of nodes by Eq. (48) at coarse time step

3. Calculate the displacements of atoms by Eq. (48) at fine time step

4. Calculate the trial velocities by Eq. (50)

5. Solve Eq. (45) for the unknown Lagrange multipliers

6. Update the velocities at next fine time step by Eqs. (51) and (52)

7. Repeat steps 3–6 until the next coarse time step

8. Repeat steps 2–7 until the end of the simulation
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and

_uIðnþ1Þ ¼ _uIðnÞ þ
1

2
€uIðnÞ

h
þ €uIðnþ1Þ

i
DT in XC

0 ;

_dI nþjþ1
Nð Þ ¼ _dI nþ j

Nð Þ þ
1

2
€dI nþ j

Nð Þ
h

þ €dI nþjþ1
Nð Þ
i
Dt in XM

0 ;

ð49Þ

where 06 j < N .
In the explicit algorithm described in the previous section, the velocities of nodes and atoms in the

overlapping domain are corrected by the constraints. In the multi-time-step method, the constraints are
applied at every fine time step. The trial velocities corresponding to (37) are computed by

_u�
I nþjþ1

Nð Þ ¼ _uI nþ j
Nð Þ þ

1

2
€uIðnÞ

h
þ €uIðnþ1Þ

i
Dt in XC

0 ;

_d�
I nþjþ1

Nð Þ ¼
_dI nþ j

Nð Þ þ
1

2
€dI nþ j

Nð Þ
h

þ €dI nþjþ1
Nð Þ
i
Dt in XM

0 ;

ð50Þ

where uIðnþ j
NÞ
is the nodal displacement which is already corrected from the last fine time step. Note that the

accelerations are unchanged during the coarse time step DT while the velocities of nodes are updated every
fine time step Dt. The corrected velocities for next fine time step are:

_uI nþjþ1
Nð Þ ¼ _u�

I nþjþ1
Nð Þ �M

�1

I Dt
X
J

GC
JIkJ in XC

0 ; ð51Þ

_dI nþjþ1
Nð Þ ¼ _d�

I nþjþ1
Nð Þ � �m�1

I Dt
X
J

GM
JI kI in XM

0 : ð52Þ

Table 2 shows the flow chart of the multiple-time-step algorithm.
4. Coupling to heat conduction

When temperature effects are important in a problem, it is necessary to couple the energy equation (10)

in the continuum to the molecular dynamics model. The energy equation is not needed in the molecular



Fig. 4. Heat conduction in 1D with bridging domain coupling method.
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subdomain; heat flow and the second law of thermodynamics are inherent in the discrete equations. The

bridging domain method lends itself naturally to such coupling of thermal flow because the overlapping

domain provides an entity for affecting the energy transfer.

The basic idea of the coupling is shown in Fig. 4. The molecular domain is subdivided into cells as

shown. The temperature in each cell is defined by

T ¼ 2Ke

knN
; ð53Þ

where n is the number of the space dimension; N is the number of atoms in the cell; k is the Boltzmann

constant and Ke is the kinetic energy of the cell.

Since the projection always removes energy from the fine scale, it provides the source of energy for the
continuum energy equation. The energy lost in each time step is given by

ET ¼
XN int

M

I

_dTI Dt
X
J

GM
JI kJ

 !
�
XN int

C

I

_uTI Dt
X
J

GC
JIkJ

 !
; ð54Þ

where N int
M and N int

C are the numbers of molecules and nodes, respectively.

However, as shown in the figure, to observe the second law of thermodynamics, a switch must be in-

cluded so that energy is transferred to the continuum domain only when the temperature of the adjacent

molecular domain is greater than that of the left hand end of continuum T C. If T C > TM, the energy lost by
the projection is transferred back to the molecular domain.
5. Examples

5.1. Application of bridging domain coupling method in 1D

In the 1D examples, we used the Lennard-Jones (LJ) 6-12 interatomic potential [26]. This potential is
expressed as

W MðrijÞ ¼ 4e
r
rij

� �12
"

� r
rij

� �6
#
; ð55Þ

where e and r are parameters. Here we use e ¼ 0:2J and r ¼ 0:11 nm so that the equilibrium bond length is

r0 ¼ 0:139 nm. The interatomic force for bond rij is the negative of the first derivative of the potential with
respect to rij:

f ðrijÞ ¼ � oW MðrijÞ
orij

¼ 48e
r12

r13ij
� 24e

r6

r7ij
: ð56Þ
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In the continuum model, similar to the quasicontinuum method [21], the first Piola–Kirchhoff stress P is
obtained by differentiating the potential energy density with respect to the continuum deformation gradient

F , giving:

P ¼ oW CðF Þ
oF

¼ 24e
r0

ðrr0Þ6

F 7

"
� 2ðrr0Þ12

F 13

#
; ð57Þ

where F ¼ r=r0.
The entire domain is 60.0 nm in length and there are 211 atoms in the molecular domain. The continuum

domain contains 40 elements of equal length. The time step is 0.002 ps. In the bridging domain coupling

method, an overlapping subdomain links the molecular and continuum domains, as shown in Fig. 5.

Various sizes of the overlaps were studied.

Our test problems are similar to [8]. We apply initial displacements on the atoms at the left-end portion
of the molecular domain. The initial displacements contain a combination of high frequency and low

frequency modes as shown in Fig. 6. We will study how the high frequency and low frequency waves

propagate through the molecular domain and pass into the continuum domain.

We first study the behavior of the model for different lengths of the overlapping subdomain. Fig. 7 shows

the displacements in the entire domain at time t ¼ 2:4 ps for two different lengths of the overlapping do-

main, 9 and 3 nm, which correspond to 9 and 3 elements respectively. We can see that spurious wave

reflections are almost completely eliminated for the 9 nm overlapping subdomain. For the 3 nm overlap-

ping subdomain, a portion of the high frequency wave is reflected by the interface between the molecular
and continuum domains although it has been weakened.

To illustrate this more clearly, we also plot the evolution of energy with time in Fig. 8. Fig. 8(a) shows

the time history of the molecular energy, which is the sum of kinetic and potential energies, in the molecular

domain, while Fig. 8(b) gives the time history of the continuum energy. The energy of the low frequency
Fig. 5. Overlapping domain decomposition method in 1D.

Fig. 6. Initial displacements applied on the atoms.



Fig. 7. Displacements with different lengths of overlapping subdomain at t ¼ 2:4 ps: (a) 9 nm overlapping subdomain; (b) 3 nm

overlapping subdomain.

Fig. 8. Time history of energy: (a) molecular model; (b) continuum model.
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wave is 5% of the total energy and it can be seen from Fig. 8(b) that all of this energy passes into the

continuum domain regardless of the size of the overlapping subdomain. On the other hand, we found our

bridging domain coupling can dramatically reduce the spurious wave reflections. Even for a small (3 nm)

overlapping subdomain as in Fig. 8(a), only 10% of total energy is reflected back into the molecular do-

main. As the size of overlapping subdomain increases, the spurious wave reflection decreases. For the 6 nm

length overlapping subdomain, only 3% of total energy remains in the molecular subdomain. If the
overlapping subdomain is big enough, such as 9 nm in this problem, the spurious wave reflection is almost

completely eliminated and almost no energy remains in the molecular subdomain.

For comparison, consider an edge-to-edge coupling method, where the continuum domain and molec-

ular domain are attached to each other at a single node, as shown in Fig. 9. On the interface of molecular/

continuum domain, the motion of the atom I is constrained to the motion of the node I , i.e.

g ¼ dI � uI ¼ 0: ð58Þ
The initial displacements are applied on the atoms as before. From Fig. 10, we can see that the high

frequency part of the wave is largely reflected by the molecular/continuum interface.



Fig. 9. Edge-to-edge coupling model in one dimension.

Fig. 10. Spurious wave reflection with edge-to-edge coupling at t ¼ 2:4 ps.
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5.2. Wave propagation with bilinear force-deflection law

Next we consider a potential with a nonlinear law for wave propagation in a rod. The potential function

is shown in Fig. 11 and its force-deflection relation is a bilinear function. k is the first stiffness and the

second stiffness kp ¼ 0:25k. An increasing load is applied on one end of the rod and kept constant beyond

the threshold force f0. If the applied load is increased slowly, we are able to observe that two step waves

that propagate with two different wave speeds.
Both the bridging domain method and edge-to-edge coupling method are used to simulate the wave

propagating from molecular domain to continuum domain. Fig. 12 shows the configurations when the

stress waves pass through the continuum domain. Due to the numerical method, there are some oscillations

behind the wave fronts compared to the theoretical analysis. We can see that bridging domain does not

distort the wave and there is no evidence of spurious reflections. However, edge-to-edge coupling method

obviously distorts the wave due to the spurious reflections.
Fig. 11. Bilinear force-deflection law.



Fig. 12. Wave propagation with bilinear force-deflection law: (a) bridging domain method; (b) edge-to-edge coupling method.
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5.3. Application of bridging domain coupling method with multiple time steps

Because we can use much larger elements in the continuum domain, the multi-time step method is well

suited to the bridging domain method. In this problem, the coarse time step is 10 times the fine time step,

i.e. DT ¼ 10Dt, where Dt ¼ 0:002 ps as before. Fig. 13 shows the displacements for the entire domain after a

wave has passed into the continuum when multi-time step integration is used. We can see that the spurious

wave reflection is eliminated and the time history of the molecular energy is almost identical to that from
single time step simulation shown in Fig. 14.

Since the stable large time step depends only on the size of the elements in the continuum model, if we

increase the size of the elements, we can use a larger time step in the continuum model. Here, we use 21

nodes in the continuum domain and the coarse time step is 20 times the fine time step i.e. DT ¼ 20Dt. Fig.
15 shows the displacements at t ¼ 2:4 ps and the time history of the molecular energy for multiple-time-step

integration compared with that obtained with a uniform time step (Fig. 16). It can be seen that the dis-

placements are almost identical to the results when DT ¼ 10Dt (Fig. 13) and little energy remains in the

molecular subdomain.

5.4. Application of bridging domain coupling method in 2D

We consider wave propagation in a graphene sheet, which is 12.0378 nm in width and 60.0 nm in

length. There are 14,140 atoms in the molecular model as well as 226 nodes in the continuum model,
Fig. 13. Displacements at t ¼ 2:4 ps for DT ¼ 10Dt.



Fig. 14. Time history of molecular energy for DT ¼ 10Dt.

Fig. 15. Displacements at t ¼ 2:4 ps for DT ¼ 20Dt.

Fig. 16. Time history of molecular energy for DT ¼ 20Dt.
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Fig. 17. Bridging domain coupling method application in 2D.

Fig. 18. Initial plane wave in graphene sheet.
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as shown in Fig. 17. Fig. 18 shows the initial plane wave, which is a combination of high frequency and low

frequency waves; a sliding boundary condition is applied on the top and bottom of the sheet. The potential

function is a modified Morse potential [27]:

wMðxI ; xJ Þ ¼ Estretch þ Eangle;

Estretch ¼ Def½1� e�bðr�r0Þ	2 � 1g;
Eangle ¼ 1

2
khðh � h0Þ2½1þ ksextileðh � h0Þ4	;

ð59Þ

where Estretch is the bond energy due to bond stretch, while Eangle is the bond energy due to bond angle
bending. r is the length of the bond, and h is the current angle of the adjacent bond, a standard deformation

measure in molecular mechanics. The parameters are

r0 ¼ 1:39
 10�10 m; De ¼ 6:03105 
 10�19 Nm; b ¼ 2:625
 1010 m�1;

h0 ¼ 2:094 rad; kh ¼ 0:9
 10�18 Nm=rad2; ksextile ¼ 0:754 rad�4:

We first study the behavior of the model with a small overlapping subdomain 3 nm in length. We find

that spurious wave reflection can be reduced as in 1D and only 10% of total energy is left in molecular

model. As we described before, a parameter a is introduced in the overlapping subdomain and is defined by

the linear form i.e. a ¼ lðXÞ=l0, see Fig. 2. We have found that the spurious wave reflection will be reduced

more effectively if a nonlinear relation is used for the parameter: a ¼ ½lðXÞ=l0	c. For c ¼ 0:25 the energy in

the molecular model is reduced to 6.5%. Fig. 19 shows the energy history of the molecular model.
For a larger overlapping subdomain, which is 9 nm of length, we obtain less spurious wave reflection.

Only 2% of the total energy is left as shown in Fig. 20(a). As in the results we obtained in 1D applications,

Fig. 20(b) shows that regardless of the size of the overlapping subdomain, the energies which pass into the

continuum model are identical. Fig. 21 shows the displacements at time t ¼ 2:4 ps.

5.5. Cylindrical wave propagation

We use the same potential function as in Section 5.4. The coupled model for this problem is shown as
Fig. 22; it consists of 25,656 atoms in molecular model and 3192 nodes in continuum model. The initial



Fig. 19. The energy history of molecular model with 3 nm length of overlapping subdomain.

Fig. 20. The comparison of energy histories for overlapping domains of two sizes: (a) molecular model; (b) continuum model.

Fig. 21. Contour plot of displacements at t ¼ 2:4 ps.
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velocities are applied on the atoms around the inner circle. It is a combination of high frequency waves and
a low frequency wave. When the cylindrical wave passes by the bridging domain, only 2% of the energy is

left in the molecular domain as shown in Fig. 23. The contour plots of the velocities are shown in Fig. 24.

5.6. Heat transfer in 1D

We study heat transfer in 1D rod with the bridging domain coupling model. The specific heat �c and heat

conductivity j are defined by



Fig. 22. Bridging domain coupling model.

Fig. 23. History of energy in molecular domain.

Fig. 24. Cylinder wave propagation: (a) t ¼ 0:4 ps; (b) t ¼ 1:2 ps.
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�c ¼ du
dT

; j ¼ h
dT=dX

; ð60Þ
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where u is the internal energy and h is the heat flux. We first obtained �c and j for the molecular model by

considering a one-dimensional model of 3900 atoms. Two heat baths [28] are added on the ends of the

system and the temperatures of the baths are 300 and 700 K, respectively. The values of specific heat and

heat conductivity were obtained as follows. We applied a heat source with a constant energy rate at the left

end and a prescribed temperature at the right end; both conditions were applied to one-dimensional cells of

100 atoms. The model was then run until equilibrium was achieved. The slope of the temperature field and

the temperature at the left hand cell was then used to obtain the specific heat and conductivity by a Fourier

model of heat conduction, which gives

�c ¼ du
dT

¼ 10:0 JKg�1; j ¼ h
dT=dX

¼ 37:4 J s�1m�1K�1: ð61Þ

Note that the effects of heat waves were neglected in this estimate of the thermal properties.

The rod is subdivided into 39 cells consisting of 100 atoms. The temperature is defined by

T ¼ 2a
knN

XN
I¼1

pIpI
2mI

" #
þ ð1� aÞ

2knN

X
I

MIv
2
I

" #
; ð62Þ

where n is the number of the space dimensions, N is the number of atoms in the cell and k is the Boltzmann

constant. Note that the temperature in the continuum subdomain includes the kinetic energy of the con-

tinuum. This is quite important when the size of the continuum element is only moderately larger than the
lattice spacing (e.g. 3l to 10l), since a substantial part of the temperature may be reflected in its kinetic

energy.

The coupled method is described in Section 4. The parameters of Eq. (61) are used in the heat equation

(energy equation) in the continuum model:

q�c
oT
ot

¼ j
o2T
ox2

: ð63Þ

Fig. 25 shows the temperature distribution for the coupled model compared with the results from

molecular dynamics and the exact solution of (63). Some anomalies are apparent in the temperature in the

cells adjacent to the ends: the left-hand temperature drops next to the end, whereas at the right-hand end,

the temperature is significantly above a linear field. These may be due to Kapitza effects. The energy flows

into the system for coupled calculation and the molecular dynamics calculation are compared in Fig. 26.

They show almost perfect agreement. As a next test of the method, the end conditions were reversed, so that
the heat flows from the continuum subdomain to the molecular subdomain. The temperature fields are

shown in Fig. 27. Again, the agreement is quite good.
Fig. 25. Temperature distribution along the system.



Fig. 26. Energies flow in the system.

Fig. 27. Temperature distribution with revised energy flowing.
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5.7. Dynamic crack propagation in a graphene sheet

We consider the growth of an initial crack in a graphene sheet. A modified Morse potential [27] is used

for the carbon bond. Using the analytical approach given in [29], Young’s modulus for the graphene sheet is

0.9 TPa and Poisson’s ratio is 0.29. The density of graphene sheet, q, is 7.9387e)7 kg/m2. Therefore, the

shear wave speed is Cs ¼ 12; 223 m/s; the dilatational wave speed is Cd ¼ 22474:9 m/s, and the Rayleigh

wave speed is CR ¼ 11316:7 m/s.

We consider a graphene sheet of 48,240 atoms with a central crack that is 4 nm long, as shown in Fig. 28.
The left-hand edge is a plane of symmetry. On the upper side of the model, the velocity is prescribed to be

86.8 m/s, and the lower edge is fixed. The initial temperature was taken to be 0 K. The complete model with

finite elements is of size 24 nm · 48 nm; 0.002 ns is required for the waves from the crack tip to reach the

outer boundary and reflect back. Therefore, the model is only adequate for that time frame. This time

interval could be increased substantially by adding a silent boundary around the edge of the finite element

model, but this has not been done yet.

The crack is shown at t ¼ 0:016 ns in Fig. 29. At t ¼ 0:0151 ns, the crack starts to propagate at 3200.0

m/s. We observed that the speed of crack tip increases as the crack propagates. Towards the end of the
simulation, the speed of crack reaches a steady value of 8025.0 m/s, which is about 71% of the Raleigh wave

speed. This is somewhat higher than experimental observations and finite element simulations of continua,

see [30]. Fig. 30 shows the crack speed after the crack starts growing as a function of time.



Fig. 28. (a) Molecular model and (b) complete coupled model of graphene sheet.

Fig. 29. Crack propagation in a graphene sheet at t ¼ 0:016 ns.

Fig. 30. Speed of crack increasing with time until a steady value.
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We also considered different prescribed velocities, and we found that the crack started to propagate
earlier when a larger prescribed velocity was applied. However, the final speeds of crack propagation were

around 8025.0 m/s regardless of what prescribed velocity was applied.
6. Conclusions

A multiscale coupling method has been developed based on a bridging subdomain. In the bridging

subdomain coupling method, an overlapping subdomain consisting of the molecular and continuum
models is used. A Lagrange multiplier method or augmented Lagrangian method is applied for enforcing

the kinematic constraints in the overlapping subdomain. A scalar parameter is used to scale the Hamil-

tonian in the overlapping subdomain; the total Hamiltonian is a linear combination of the molecular and

continuum Hamiltonians. An explicit algorithm for dynamics is developed.

We find that our bridging domain coupling method can dramatically reduce spurious wave reflections at

the interface. If the overlapping subdomain is large enough, the high frequency wave reflection is almost

completely eliminated. However, good results are also obtained for moderate overlaps if a nonlinear scalar

parameter is used in the overlapping subdomain. We have also developed a multi-time step variant of the
methods and obtained good results with it.

The bridging domain method also provides a natural way for coupling the molecular model to the energy

equation in the continuum. Removal of the energy at a single layer of atoms would undoubtedly result in

severe anomalies. Even with the bridging domain, some Kapitza effects are apparent, but they are not

severe.
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