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Since meshfree particle methods have advantages on simulating the problems involving extremely
large deformations, fractures etc., they become attractive options to be used in the hierarchical
multiscale modeling to approximate a large number of atoms. We propose a nanoscale meshfree
particle method with the implementation of the quasicontinuum technique in this paper. The intrinsic
properties of the material associated with each particle will be sought from the atomic level via the
Cauchy-Born rule. The studies of a nano beam and a nano plate with a central crack show that such a
hierarchical modeling can be beneficial from the advantages of meshfree particle methods.
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1. Introduction

Numerical simulation has become a powerful tool and has made a significant
contribution to the fields of nano science and technology. The efficient numerical
methods will stimulate the nanotechnology development, such as the nanoscale material
and device design. The popularly used molecular dynamics was expected to be one of the
candidates. However, researchers have found that the molecular dynamics simulation has
limitations on both length and time scales. Recently, multiscale methods have been of
interest in the field of computational nano mechanics and materials science because they
can perform the simulation for large nano systems.

There are two types of multiscale methods: concurrent multiscale methods and
hierarchical multiscale methods. The concurrent multiscale methods treat different length
scales simultaneously by using different numerical methods. The recently developed
concurrent multiscale techniques mainly focused on the coupling methods between the
continuum and molecular models. Abraham and his coworkers [Abraham et al. 1998;
Broughton et al. 1999] developed a methodology called MAAD (Macro-Atomistic-Ab
initio-Dynamics), which couples a tight-binding quantum mechanical calculation,
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molecular dynamics, and a finite element method. Rudd and Broughton [Rudd and
Broughton 1998; Rudd 2001] proposed a coarse-grained method. They superimposed the
atomistic Hamiltonian on a continuum Hamiltonian so a coarse scale domain was used to
represent the fine scale domain. Wagner and Liu [Wagner and Liu 2003] have proposed a
bridging scale method in which the molecular displacements were decomposed into a
molecular scale and a continuum scale. Belytschko and Xiao [Belytschko and Xiao 2003;
Xiao and Belytschko 2004] developed a bridging domain coupling method by
overlapping the continuum model and the molecular model via the bridging domain.
Their method can efficiently eliminate the nonphysical wave reflection that usually
occurs at the interface of different length scales.

Hierarchical multiscale methods use the continuum approximation to model a large
group of molecules. The continuum approximation is based on the properties of the
atomic model, such as an MD model. One can use a homogenization procedure, like the
Cauchy-Born rule [Tadmor et al. 1996; 2000], in the continuum model. Therefore, the
intrinsic properties of the material at the atomic level can be obtained and embedded in
the continuum model. The classical Cauchy-Born rule states that the deformation is
locally homogeneous, and this model is also called the quasicontinuum model. Based on
an extended version of the local quasicontinuum model [Smith et al. 2001], Smith and his
coworkers reported that the simulations of silicon nanoindentation were capable of
handling complex crystal structures. Diestler et al. [Diestler et al. 2002; Wu et al. 2003]
developed an alternative “static” finite-element coarse-graining description which is an
extension to nonzero temperatures of the quasicontinuum procedure. The major
drawbacks of hierarchical multiscale methods relate to the difficulties in modeling
defects in molecular lattices, dislocations, crack initiation and growth, as well as
limitations arising from the homogeneous deformation model used. There are several
algorithms to solve these issues. Rodney and Phillips [Rodney and Phillips 1999] built
quasicontinuum simulations of dislocations lying in intersecting slip planes, and
calculated the threshold stress required to break the dislocation junction. Mortensen and
his coworkers [Mortensen et al. 2002] used a mixed local/nonlocal quasicontinuum with
some modifications to study a cross-slip of screw dislocations and job mobility in copper.
With the wide usage of the Cauchy-Born rule, Arroyo and Belytschko [Arroyo and
Belytschko 2002; 2003] found that the classical Cauchy-Born rule has some difficulties
for many important situations, such as in single-layer curved crystalline sheets. They
developed a methodology called the exponential Cauchy-Born rule to solve this issue.

Finite element methods are often used for modeling continua in multiscale methods
based on the quasicontinuum approach. However, meshfree particle methods are more
attractive for usage in a variety of situations, including problems with moving
boundaries, discontinuities, and extremely large deformations. In general, the meshfree
particle methods include field approximation based methods [Belytschko et al. 1994] or
kernel approximation based methods [Randles and Libersky 1996]. Belytschko et al.
[Belytschko et al. 2000; Belytschko and Xiao 2002; Xiao and Belytschko 2005] found
that the kernel based meshfree particle methods had two instability properties: an
instability due to rank deficiency and a tensile instability. Nodal integration [Beissel and
Belytschko 1996] may result in one of the instabilities due to rank deficiency for some
problems. Stress point integration scheme [Dyka et al. 1997] can stabilize this instability.
The tensile instability is also called the distortion of material instability [Xiao and
Belytscko 2005]. When using meshfree particle methods with the stress point integration
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scheme, the Lagrangian kernel, which is a function of the material coordinates, exactly
reproduces the material instability of the constitutive equation, while the Eulerian kernel,
which is a function of the spatial coordinates, extremely distorts the material instability.
Therefore, the meshfree particle method, with a Lagrangian kernel and the stress point
integration scheme, will provide a stable and efficient method [Rabczuk et al. 2004]. In
this paper, we will implement the quasicontinuum technique into the meshfree particle
method with a Lagrangian kernel. Such a nanoscale meshfree particle method will be

used to simulate nano systems containing a large number of atoms.

The outline of this paper is as follows: A meshfree particle method with a
Lagrangian kernel is introduced in Section 2. In Section 3 the implementation of the
quasicontinuum technique into the meshfree particle method is described. Several
examples are studied in Section 4. The numerical results will be compared with the
results of atomistic simulations. The conclusions and discussions follow.

2. Meshfree Particle Methods

2.1. Governing equations

One of the physical principles governing the continuum is the conservation of
momentum. It can be written as the following equation under a so-called total Lagrangian
description in the reference configuration Q,,

ani b N (1

—+ = pol

axj pO (| pO I
where p, is the initial density, P is the first Piola-Kirchhoff stress tensor, X are the
material (Lagrangian) coordinates, b is the body force per unit mass, u is the
displacement and the superposed dots denote material time derivatives. Eq. (1) can be
written as the spatial form of the momentum equations under the Eulerian description in
the current configuration Q ,

i 1 phy = pi @)

- = ol
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where p is the current density, ¢ is the Cauchy stress tensor, and x are the spatial
(Eulerian) coordinates. By conservation of mass,

PI = py 3)
where J is the Jacobian determinant of deformation gradient F , and it is defined by

9%
J =det(F), == 4
(F) 17X, )

It can be seen that the two above forms of momentum equations in Eq. (1) and Eq.
(2) are identical and differ in form only because they are expressed in different
descriptions [Belytschko et al. 2001]. In this paper, we use the Lagrangian description.
The Galerkin weak form of the momentum conservation equation is

IQU & ot Q2 = J.Qo A polydQ, _Iﬂu O Py dQ, + J.l"u At dry (5)
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where &U; is the test function, and {; is the prescribed boundary traction. The discrete
equations of motion can be derived from weak form, Eq. (5), for dynamic problems.

2.2. Particle method approximations and kernel functions

In particle methods, displacements can be approximated by

“h(Xat)zzwl (X)u, (t) (6)

where w, (X) are called Lagrangian kernel functions [Belytschko and Xiao 2002]

because they are functions of the material (Lagrangian) coordinates. If the spatial
(Eulerian) coordinates are used, the approximation of displacements can be written in
terms of the Eulerian kernel functions as follows:

u"(x(tht)= |ZW' (x(t))u, (£ (7)

In this paper, we use the Lagrangian kernel functions because meshfree particle
methods with a Lagrangian kernel function are more stable than the ones with an Eulerian
kernel function [Belytschko and Xiao 2002]. The Lagrangian kernel functions can be
obtained from the weight function W(r) as

W(X-X,)
w(X)=wWX-X,|)==——""" 8
I( ) W( I) ZW(X_XI) ()
which is the moving least square approximation that reproduces constant functions. In
this paper, we use a quartic spline weight function,
- 65 +8s® —3s* for s<1
W(s)= 1-6s" +8s —3s
0 for s>1

)

where s=r/h, r= ||X— X, ||, and h is a measure of the size of the support, which is
determined by a dilation parameter D,, . We define h=D_,AX for uniformly spaced
particles in one dimension. The kernel functions are of compact support, i.e., W, (X) >0
only in the neighborhood of X.

We can see that, from Eq. (8), the kernel functions, w, (X), obviously reproduce the

constant functions, i.e. ZW, (X)=1, but not the linear functions. In other words, one can
[

find thatzaw' (x)
LY
developed a correction that enables the derivatives of the constant or linear functions to
be reproduced exactly. The corrected derivatives of displacements are denoted by
L (X,t) and are approximated by

Xj #6;. Krongauz and Belytschko [Belytschko et al. 1998]

L (X.t)=>"Gy (X)u;, (t) (10)
[
where G; (X) are the corrected derivatives of the Lagrangian kernel functions. Note here
ou”

. Xt .
that L;; (X,t) is different from '( %(i with u? defined by Eq. (6). The corrected

derivatives are defined as linear combinations of the exact derivatives of the kernel
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functions so the linear functions (coordinates for instance) can be reproduced by the
meshfree particle approximation,

ow, (X
ZGn )X = Za,k I le = (1D
The above can be written in a matrlx fonn,
Aa' =1 (12)

where I is the identity matrix for a three-dimensional approximation,

W x Xp Wy X w2 X,

A=l WY WYY w Y (13)

Wi xZp WiyZp W zZ

yxx Axy Aaxz

zx  8zy 8z

By solving Eq. (12) for the coefficient matrix a, one can obtain the corrected

derivatives of kernel functions, G, (X). Therefore, the approximation for the derivatives
of displacements in Eq. (10) can be written as follows:

t):lz{;mx)vv.,k(x)}uj.(t) 15)

Then, the gradient of deformation is expressed as

2.3. Discrete equations

Substituting Eq. (6), the approximation of displacements, and a similar expansion for
é'u(X) into the weak form of Eq. (5), the following discrete equations of motion are

obtained:

m iy = R -FR", m =pov|° (17)
where V,” is the volume associated with the particle | , F;>* and F are the external
and internal nodal forces respectively, given by

ot _ £

Fet = Lzo powibd2 +jré N, fdr, (18)
i ow, (X)
= o, alx P, dQ, (19)

Stationary principles can be applied for conservative, static problems. The
equilibrium solutions can be found by searching a set of displacements from which the
minimum potential can be obtained, i.e.

0= W/(u)= W™ (u)- W (u)

-[ Py, - j 8U; pob Q2 — j g dr, (20)
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Note here that Eq. (20) is identical to Eq. (5) if the accelerations are set to equal zero in
Eq. (5) for static problems. We can obtain the residual as

_OW _ow™  gw®
! _W_ ou;, au;,
where internal and external nodal forces are defined as Eq. (18) and Eq. (19).
The increments of the internal and external forces can be related to the increments of

nodal displacements by stiffness matrices via the Newton method:
AF™ =K™Au or AF™ =3 K|} Au, (22)
J

=F" —F 1)

AF® =K*Au or AFPt =3 K Au, (23)
J

Where K™ and K® are the tangent stiffness matrices given by
it aFIint B aZWint ot aFlext aZWe(t

Kj=—=—"—, =——-= 24
N auJ aU|BUJ ) aUJ BU|aUJ ( )

Therefore, Newton equations can be obtained by linearization of Eq. (21) as
(K™ - K Jau = —r 25)

2.4. Nodal integration

o particle

=

Fig. 1. Volume associated with particle | for nodal integration scheme

The integrals of Eq. (18) and Eq. (19) can be evaluated by numerical quadrature.
Beissel and Belytschko [Beissel and Belytschko 1996] have proposed nodal integration
scheme for the element-free Galerkin method [Belytschko et al. 1994], where any integral
is evaluated by summing the function at particles, i.e.,

[, F(X)e =3 F(x, W (26)

where V,o is the volume associated with particle | . Figure 1 shows that the volume can

be calculated through the triangulation and Voronoi diagram. The internal nodal forces
Eq. (19) can then be computed by

it =2V —BV\S)((X,) P;i (X, ) @7
I j
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This approach was found to be unstable by Beissel and Belytschko [Beissel and
Belytschko 1996] in some cases, and it was verified by Belytschko and Xiao [Belytschko
and Xiao 2002; Xiao and Belytschko 2005]. A stress point integration scheme was
proposed [Dyka et al. 1997] to stabilize the nodal integration by adding some slave
particles [Belytschko and Xiao 2002; Xiao and Belytschko 2004b]. However, we still use
the nodal integration in this paper because it is simple and easy to implement. The stress
point integration scheme will be added in further research investigation.

3. Implementation of the quasicontinuum method

3.1. Molecular mechanics potential and discrete equations

The general form for the molecular mechanics potential function can be expressed as
the sum of the energies due to any force fields, such as the pair-wise interaction of the
atoms, three-body potentials or others. It can be written as

w (Xl ):Z\Nl(xl )+ ZWZ(XI X3 )+ ZW3(X| »X3,Xk )+ (28)
I 1,d>1 1,9>1,K>J

Here, we assume that the total potential contains only the external energy and a pair-

wise interatomic potential. The external energy is due only to a constant external force,

£, such as electromagnetic forces. The pair-wise interatomic potential can be denoted

by w3 =wy (X,,X;), so the total potential is

M ext ext
WM =W Wy ==+ D wy (x,x;) (29)
I 1,d>1
where m; is the mass of atom |, x, is the current position of atom | and

x, =X, +d; (X, is the original position of atom | and d, is its displacement). Note

that we use superscript/subscript “M ” to denote the variable for a molecular system. A
pair-wise interatomic potential can occur from bond stretching. Either the Lagrangian or
the Hamiltonian mechanics can be used to derive the equations of motion at a molecular
level.

In an isolated system of atoms or molecules, the total energy, the sum of the kinetic
and potential energies of the molecules, is constant in time and identified as the

Hamiltonian H™ | which is given by

H (.01 ()= Z 2 pl" Bl +W" (x, (1) = constant (30)
| |

where m; is the mass of atom | ; p:v' is the conjugate momentum and defined by
p' =mx, =md, (1)
The well known Hamiltonian canonical equations of motion are
v _ oH _ owM _oH _p
o)’ m

x; =d, (32)

ProT T

Eq. (32) can be combined to yield
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M ext
i WO W e .
aX| ad| ad|
int

where ;™ =0dW,;/ad, . Eq. (33) is a typical form for equations of motion solved in

molecular dynamics. When one compares Eq. (33) with Eq. (17), it can be observed that
the equations of motion are similar at the molecular level and the continuum level. For
molecular mechanics, the equilibrium state of the molecular system can be obtained by
setting the first derivatives of the potential, with respect to atomic displacements, to equal
zero. The derived Newton equations are similar to Eq. (25). However, conjugate gradient
methods are mostly used so that one can avoid calculating the second derivatives of the
potential function.

3.2. Quasicontinuum method

F

® atom

Q particle

Fig. 2. Cauchy-Born rule for meshfree particle methods

In the quasicontinuum method, the intrinsic properties of material are sought at the
atomic level and embedded in the continuum model according to a so-called Cauchy-
Born rule [Tadmor et al. 1996; 2000]. The Cauchy-Born rule states that the deformation
is locally homogeneous. In this paper, we assume that all the molecular structures in a
single volume have the same deformation as the particle which the volume is associated

with. As shown in Figure 2, an undeformed lattice vector A in V,0 is mapped into a in

V, by the deformation gradient F via a=FA . The molecular structures in V|0 are

identically deformed according to the assumption of the Cauchy-Born rule. In the
continuum model, with meshfree particle methods, the potential energy depends on the
elongations and angle changes of the atomic bonds that underlie the volumes of particles.
The total potential of the continuum model is defined by
we = j W dQ (34)
Q
where W, is the potential energy per unit volume of the continuum. Note that we use

superscript/subscript “C ” for variables in the continuum model to distinguish from the
ones in the molecular model. The first Piola-Kirchhoff stress can be obtained from the
potential density of the continuum by
W (F)
P=—t""/ 35
°F (35)



The above serves as the constitutive equation for a continuum based on atomistic
potentials. Therefore, the quasicontinuum approach is that the constitutive equation is
constructed via the Cauchy-Born rule. If long distance interatomic interactions, such as
nonbonded interaction, are considered, the van der Waals energy must be included in the
molecular mechanics potential. Further research is needed to derive the continuum strain
energy from the atomic-level potential and to modify the Cauchy-Bom rule. Since the
effects of long distance interatomic interactions on nanoscale mechanical behaviors of
crystalline solids are not as significant as those of short distance interatomic interactions,
we only consider short distance interatomic interactions in this paper.

With respect to the deformation gradients, the first tangential stiffness matrix can be
obtained from the second derivatives of the potential density. It is

C- 0’ w (F)
oF?
With the implementation of quasicontinuum method, the calculation of internal nodal
forces, Eq. (19) can be written as
Fiint — aW| (X) aWC (F) dQO (37)

However, the classical Cauchy-Born rule has some difficulties for many important
situations, such as in single-layer curved crystalline sheets. Arroyo and Belytschko
[Arroyo and Belytschko 2002; 2003] developed an extension of the Cauchy-Born rule -
the exponential Cauchy-Born rule. The objective of this extension is to account for the
fact that the deformation gradient maps the tangent space of the undeformed surface to
the tangent space of the deformed surface.

It should be noted here that the classical Cauchy-Born rule are valid for isolated
systems as microcanonical ensembles. For other ensembles, modifications of the
quasicontinuum method (Cauchy-Born rule) are needed. For example, the recently
developed finite temperature quasicontinuum method [Diestler et al. 2004] must be used
for canonical ensembles with thermostats.

(36)

3.3. Continuum mode for a molecule chain

) molecular structure
A 1 B continuum model
[ ]
~ C ~ _
-~ L, -
* aiom O particle

Fig. 3. A continuum mode! for a molecular chain with the meshfree particle method

A line of atoms as well as its continuum model in the reference (initial) configuration
is considered here as shown in Figure 3. The equilibrium bond length between

neighboring atoms is I, and the length of the region AB associated with the particle | is
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L,. We assume that only the nearest two atoms are attractive and repulsive with each

other. Therefore, the molecular potential can be written as follows without considerations
of external forces:

N N-1

W=D iy (% = %)= 2w (1) (38)
i=2 i=1

where N is the total number of atoms; I; = X, — X is the current bond length. If we use

F, to denote the deformation gradient at particle | , all the deformed bonds in region AB

will have the same length, r = F, 1, according to the assumption of the Cauchy-Born rule.

One can write the potential density of the volume associated with particle | based on the
atomic level potential as

_WC(F|)_ o _WM(r)_WM(FIrO)
)= =Yl (39)
Lo Lo To o
Then, the first Piola-Kirchhoff stress can be calculated as
P(X, )= owe (F, ) _ 1wy (Firo)
oF, Iy JF,
As an instance, we use the Lennard-Jones (LJ) 6-12 potential to approach the
interaction between the nearest atoms. The LJ 6-12 potential function is written as

=2 (2]]

where & and o are constants chosen to fit material properties and r is the distance

between two atoms. &£ is the depth of the potential energy well. o is the value of r
2176

WC(FI

(40)

where the potential becomes zero and o = I, . The potential energy density at particle

| can be written as follows from Eq. (39):
12 6
Wy (T, 4e|| o _ o _
we(F )= M =— [_J R —[_J Fe (42)
lo o [\ To fo

Therefore, the first Piola-Kirchhoff stress at particle | can be obtained as

6 12
P(X|)=%=4_g 60" 120~ (43)
F, 1, r06 FI7 rO12 Flls

3.4. Continuum model for a molecular structure with triangular lattices

Here, we consider a 2D molecular structure with triangular lattices as shown in
Figure 4. This molecular structure was used by Gao [Gao 1996] to study the local limiting
speed in dynamic fractures. A pair potential function of U (l) is used here to describe the

nearest-neighbor interatomic interaction. | denotes the bond length and | =1, when the

bond is not stretched i.e. when the bond is at the equilibrium state. Figure 4 also shows
that a rectangle cell is set as a unit cell to calculate the continuum properties of the
molecular structure.
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Fig. 4 Amolecular structure with triangular lattices

We assume that the volume associated with a particle contains a large number of such
unit cells. If a unit cell is under the deformation with the deformation gradient F, then
there are three types of deformed bonds as shown in Figure 5. Therefore, the strain energy
per undeformed unit area (strain energy density) in such a unit cell is

2
we =—=—[U()+U(1,)+U ()] (44)
V3l
where |, |,, |5 can be described by deformation gradient F based on the geometric

relations, one can find that

1 [=2 2
L =lyFi+F;

1 NE) 1 3
|2=|0\/(§F11_7F12)2+(EF21—7F22)2 (45)
1_ 3 1 3
I3 :|0\/(EF11 +7F12)2 +(EF21 "‘7':22)2

Fig. 5 Deformation of a unit cell

The first Piola-Kirchhoff stress P is the first derivative of strain energy density with
respect to the deformation gradient, and one can have
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po_2 [au(|1)+au(|2)+au(|3)}
V3l, L oF oF OF
_2 au(ll)zLJrau(lz)al_zJrau(|3)a|_3
| o oF  dl, 9F  dl; oF
and the components of the stress are

p =2 _aU(")iﬁU('Z)i[lF”—£F12j+au('3)i[%l=”+£F12H

(46)

\/§|0; al, | a, 21,(2 2 aly; 2, 2
2 [ )1, B Baul)(1. B

R, :\/—_ _M_ SFi-——Fo |+~ ) SFi+—Fno
3,| o, 20,(2 2 2, aly |2 2

2

Py = 2 _aU(Il)i-FaU(lZ)L(lF \/ngzj'FLaU—(l})(lF V3 ]:l

- -2 + 22 F
Bl | o Ay 2|2 2, aly |2 2%

2 | 9u(,)43(1 3 V3 au(ly)(1 3
Py =—=—|- S| 5= Fn |t 5— SFut+—Fyp
V3, o, 2,12 2 21, al; |2 2
Correspondingly, the first tangential stiffness matrix can be written as
0%w,
c=IWe P @)
JFJF  oF
4. Examples
4.1. Wave propagation in a molecular chain
15E12 15612~
1E12p 1E12 .f"\-_
3 £
§ §
§ e13f Ese 13k
2 g s
o o e
o ) ™ \—-———-—-—-
SE-13 L L L | 5E-13 L L 1 —
2E07 AE07 GE-07 8E-07 2E-07 4E-07 BE-O7T BE-0O7
X{m) X(m)
(a) molecular dynamics (b) meshfree particle method

Fig. 6. Wave propagation in a molecule chain

Wave propagation along a one-dimensional molecule chain is studied by using
molecular dynamics and the meshfree particle method with quasicontinuum
implementation separately. The molecule chain contains 2,001 atoms. 101 particles are
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used in the meshfree particle simulation. The L-J (6-12) potential function is used to
approach the interaction between the nearest atoms. The constants are chosen as:
o=3.4e""m and £=1.65¢"'J . The mass of each atom is set to be 3.8x10™'"kg . In the
meshfree particle method, the first Piola-Kirchhoff stress can be obtained from Eq. (43).
Figure 6 shows the comparison of the calculated wave configurations at t=0.02ns, from
the molecular dynamics simulation and the meshfree particle method, when an initial
cosine shaped wave is given. We can see that they are in accord.

4.2. Bending of a nanobeam

In this example, we consider the bending of a nano cantilever beam. The beam
contains 5,140 atoms as shown in Figure 7 where L =270nm and H =15.6nm. One end of
the beam is fixed. A quadratic potential function is used to approximate the interaction
between nearest atoms,

U(I)=%k(l—l0)2 48)

where k=10000N/m and |, =1nm.

NN

Fig. 7. Anano cantilever beam

We use the meshfree particle method to simulate the bending of this nanobeam,
which is under the load of a prescribed displacement as shown in Figure 7. There are 250
particles used in the simulation. In the meshfree particle method, the first Piola-Kirchhoff
stress and tangential stiffness matrix can be calculated when substituting Eq. (48) into Eq.
(46) and Eq. (47). During the simulation, the prescribed displacement will be increased by
Ad =3.6nm per calculation step. After 50 steps, the nanobeam will be bent as the final
configuration shown in Figure 8(a).

We also show the molecular mechanics calculation result for comparison. One can
see that the outcome in Figure 8 (b) supports the meshfree particle method result. When
different numbers of particles are used in the meshfree particle method simulations,
Figure 9 shows the evolution of the calculated nanobeam potential compared with the
molecular mechanics result. We can see that the meshfree particle method with 250
particles gives a consistent response with the molecular mechanics calculation. If 1,000 or
more particles are used in the simulations, the evolution of the nanobeam potential is
almost identical to the one from the molecular mechanics calculation.
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1 1
— 100
X(nm)

1 1 1 1 1
180 100
X{nm)

(a) meshfree particle method (b) molecular mechanics
Fig 8 Deformed configurations of the nanobeam

12000 =

MM 5140 atoms

— - PM 250 particles /
PM 1000 particles /
PM 2250 particles /
PM 4000 particles 4

|
40 50

10

20 N
Number of iteration

Fig 9 Comparison of evolutions of the nanobeam potential

We study the convergence by using the |, error in displacement for the nanoscale
meshfree particle method. The error in displacement is defined as
HuMM _u™ H

2

MM
o]

(49)

Error =
2

where u™ and u™ are the atomic displacements from the molecular mechanics
calculation and the meshfree particle method, respectively. Note, here, that one can

calculate the atomic displacements from the particle displacements in the meshfree
particle method based on the meshfree particle approximation.
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0.05

0.04

Convergence rate is 1.28
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002

L, Nerm

0.01

15

5 10
Velume Associate with Particle(nm®)

Fig 10 Convergence of the nanoscal e meshfree particle method

4.3. Vibration of a nanobeam

The vibration of a nano cantilever beam is studied in this example. The nanobeam is
similar to what we study in the previous examples, but with L =200nm and H =34.6nm.
There are 8,221 atoms in this nanobeam. One end of the beam is fixed. We use the LJ (6-
12) potential function to approximate the interaction between nearest atoms. The
constants are chosen as follows: ¢ =1.833nm and £ =8.25¢™J . The mass of each atom is
5.0e'7kg . In this example, the nanobeam is bent first with the loading of a prescribed

displacement at the upper right corner. This step can be achieved similarly with the
technique we used in the previous example. Then, if the nanobeam is released, it will
vibrate up and down. Different numbers of particles are used in the simulations. The
calculated oscillatory amplitude and frequency of the middle point on the right boundary
are compared with the molecular dynamics simulation results as shown in Table 1, as
well as computer time, when two vibration circles are finished. We can see that molecular
dynamics simulations are obviously computationally intensive and the continuum
mechanics (meshfree particle methods here) can save a great amount of computing time.
Furthermore, the meshfree particle methods can give very accurate values of the
oscillatory amplitudes compared with molecular dynamics, but not the frequencies
although they are still compared well. We think that this result is due to the vibration of
atoms around their equilibrium positions. Such molecular-level phenomena results in one
of the macroscopic properties, temperature. How to couple the temperature effects within
the continuum mechanics is one of the issues that the hierarchical multiscale methods
need to solve.

Table 1. Amplitudes and frequencies of nanobeam vibration.

Amplitude Frequency  CPU time

(nm) (1/ns) (s)
Molecular dynamics (8,221 atoms) 3.90 2.067 425.25
Meshfree particle method (2,000 Particles) 391 2.159 52.46
Meshfree particle method ( 320 Particles) 3.93 2.272 11.53

Meshfree particle method ( 80 Particles) 3.94 2.324 2.31
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4.4. A platewith a central crack

Meshfree particle methods have advantages to treat fracture problems. In this
example, we use the meshfree particle method to study the stress concentration of a
nanoplate containing an initial central crack. The crack is initialized by taking a number
of bonds out. The meshfree particle model with 400 particles is shown in Figure 11. The
dimensions are: L=270nm and M =280nm, and the crack length is 135nm. This
nanoplate contains 86,915 atoms with the triangular molecular structure. The LJ (6-12)
potential function is used in this example as the previous one. We use a visibility
criterion [Belytschko et al. 1994] in the meshfree particle model to construct the kernel
functions for the particles near the crack or around the crack tip, as illustrated in Figure
12. When we plan to search the neighbor particles for particle | , we take particle K into
account, but not particle J, since one cannot see particle J from particle | , due to the
block of the crack. It should be noted here that the visibility criterion can result in
discontinuities in kernel functions of particles near crack tips. Other techniques, the
diffraction method and the transparency method [Organ et al. 1996], can provide
continuous and smooth approximations near nonconvex boundaries. For simplification,
we use the visibility criterion in this paper.

Crack

Particle | * *

Fig 11. A nanoplate with a central crack modeled by the meshfree particle method

Crack

NG

Fig. 12. Visibility criterion in the meshfree particle method

We plan to observe the stress concentration around the crack tip. The constitutive
relationship can be achieved through the Cauchy-Born rule as before. For the purpose of
comparison, we also perform molecular mechanics calculations to obtain the contour of



17

stress distribution. At the atomic level, the Cauchy stress [Zhou 2003] can be calculated
as the following formula:

1 N N 1 N N
6c=—0© r, ®f; or Oy =— refl (50)
20 IZ J%I ]l ] B 20 Z JZJ;:I I
where ¢ is the Cauchy stress, m is the mass of atom i, ¥ is the time derivative of

atomic position rj, ry =r; —r; is the spatial vector between atoms i and j, and ®

denotes the tensor product of two vectors. The parameter N is the total number of atoms
in the domain € . The interatomic force fj; applied on atom i by atom j is:
=22 (51)
o
where @j; is the interatomic potential between atoms i and j . The sign is adopted here

for force, which is positive for repulsion and negative for attraction.
Figure 13 shows the comparison of the stress (o, ) contour from the molecular

mechanics calculation and the meshfree particle simulation. In the molecular mechanics
calculation, the whole domain is divided into a number of subdomains, for each of which
the Cauchy stress can be computed via Eq. (50). We can see that the result of meshfree
particle method is in accord with that of the molecular mechanics calculation.

(a) molecular mechanics (b) meshfree particle method

o (10°N/m’)
1.495
14
1.305
121
1.115
1.02
0925
083
0.735
0.64
0.545
0.45
0355
0.26
0.165
0.07

o (10°N/m’)
1.495
14
1.305
121
1.115
1.02
0925
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0.735
0.64
0.545
0.45
0355
0.26
0.165
0.07

Fig 13. Comparison of stress concentration

5. Conclusions

In this paper, we implemented a quasicontinuum technique (Cauchy-Born rule) into
the meshfree particle methods. Therefore, numerical simulations in nanotechnology can
be beneficial from the advantages of the meshfree particle methods. This progress makes
it possible to treat extremely large deformation problems and the problems involving
discontinuities, such as fractures, at nanoscale. The developed nanoscale meshfree
particle method is one of the hierarchical multiscale methods and has been shown to save
a great amount of computer time. The static examples show that this method can give
accurate results when compared with the molecular mechanics calculation outcomes.



18  Shaoping Xiao & Weixuan Yang

However, we observed that the dynamic solutions from this nanoscale meshfree particle
method are not as reliable as the static solutions when they are compared with the
molecular dynamics results. We think that this is due to the temperature issue since no
temperature effects are considered in our nanoscale meshfree particle method. This issue
will be discussed in our further publications.
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