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Since meshfree particle methods have advantages on simulating the problems involving extremely 
large deformations, fractures etc., they become attractive options to be used in the hierarchical 
multiscale modeling to approximate a large number of atoms. We propose a nanoscale meshfree 
particle method with the implementation of the quasicontinuum technique in this paper. The intrinsic 
properties of the material associated with each particle will be sought from the atomic level via the 
Cauchy-Born rule. The studies of a nano beam and a nano plate with a central crack show that such a 
hierarchical modeling can be beneficial from the advantages of meshfree particle methods.  
Keywords: meshfree particle method; nanoscale; quasicontinuum; crack. 

1. Introduction 

Numerical simulation has become a powerful tool and has made a significant 
contribution to the fields of nano science and technology. The efficient numerical 
methods will stimulate the nanotechnology development, such as the nanoscale material 
and device design. The popularly used molecular dynamics was expected to be one of the 
candidates.  However, researchers have found that the molecular dynamics simulation has 
limitations on both length and time scales. Recently, multiscale methods have been of 
interest in the field of computational nano mechanics and materials science because they 
can perform the simulation for large nano systems.  

There are two types of multiscale methods: concurrent multiscale methods and 
hierarchical multiscale methods. The concurrent multiscale methods treat different length 
scales simultaneously by using different numerical methods. The recently developed 
concurrent multiscale techniques mainly focused on the coupling methods between the 
continuum and molecular models. Abraham and his coworkers [Abraham et al. 1998; 
Broughton et al. 1999] developed a methodology called MAAD (Macro-Atomistic-Ab 
initio-Dynamics), which couples a tight-binding quantum mechanical calculation, 
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molecular dynamics, and a finite element method. Rudd and Broughton [Rudd and 
Broughton 1998; Rudd 2001] proposed a coarse-grained method. They superimposed the 
atomistic Hamiltonian on a continuum Hamiltonian so a coarse scale domain was used to 
represent the fine scale domain. Wagner and Liu [Wagner and Liu 2003] have proposed a 
bridging scale method in which the molecular displacements were decomposed into a 
molecular scale and a continuum scale. Belytschko and Xiao [Belytschko and Xiao 2003; 
Xiao and Belytschko 2004] developed a bridging domain coupling method by 
overlapping the continuum model and the molecular model via the bridging domain. 
Their method can efficiently eliminate the nonphysical wave reflection that usually 
occurs at the interface of different length scales.  

Hierarchical multiscale methods use the continuum approximation to model a large 
group of molecules. The continuum approximation is based on the properties of the 
atomic model, such as an MD model. One can use a homogenization procedure, like the 
Cauchy-Born rule [Tadmor et al. 1996; 2000], in the continuum model. Therefore, the 
intrinsic properties of the material at the atomic level can be obtained and embedded in 
the continuum model. The classical Cauchy-Born rule states that the deformation is 
locally homogeneous, and this model is also called the quasicontinuum model. Based on 
an extended version of the local quasicontinuum model [Smith et al. 2001], Smith and his 
coworkers reported that the simulations of silicon nanoindentation were capable of 
handling complex crystal structures. Diestler et al. [Diestler et al. 2002; Wu et al. 2003] 
developed an alternative “static” finite-element coarse-graining description which is an 
extension to nonzero temperatures of the quasicontinuum procedure. The major 
drawbacks of hierarchical multiscale methods relate to the difficulties in modeling 
defects in molecular lattices, dislocations, crack initiation and growth, as well as 
limitations arising from the homogeneous deformation model used. There are several 
algorithms to solve these issues. Rodney and Phillips [Rodney and Phillips 1999] built 
quasicontinuum simulations of dislocations lying in intersecting slip planes, and 
calculated the threshold stress required to break the dislocation junction. Mortensen and 
his coworkers [Mortensen et al. 2002] used a mixed local/nonlocal quasicontinuum with 
some modifications to study a cross-slip of screw dislocations and job mobility in copper. 
With the wide usage of the Cauchy-Born rule, Arroyo and Belytschko [Arroyo and 
Belytschko 2002; 2003] found that the classical Cauchy-Born rule has some difficulties 
for many important situations, such as in single-layer curved crystalline sheets. They 
developed a methodology called the exponential Cauchy-Born rule to solve this issue.  

Finite element methods are often used for modeling continua in multiscale methods 
based on the quasicontinuum approach. However, meshfree particle methods are more 
attractive for usage in a variety of situations, including problems with moving 
boundaries, discontinuities, and extremely large deformations. In general, the meshfree 
particle methods include field approximation based methods [Belytschko et al. 1994] or 
kernel approximation based methods [Randles and Libersky 1996]. Belytschko et al. 
[Belytschko et al. 2000; Belytschko and Xiao 2002; Xiao and Belytschko 2005] found 
that the kernel based meshfree particle methods had two instability properties: an 
instability due to rank deficiency and a tensile instability. Nodal integration [Beissel and 
Belytschko 1996] may result in one of the instabilities due to rank deficiency for some 
problems. Stress point integration scheme [Dyka et al. 1997] can stabilize this instability. 
The tensile instability is also called the distortion of material instability [Xiao and 
Belytscko 2005]. When using meshfree particle methods with the stress point integration 
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scheme, the Lagrangian kernel, which is a function of the material coordinates, exactly 
reproduces the material instability of the constitutive equation, while the Eulerian kernel, 
which is a function of the spatial coordinates, extremely distorts the material instability. 
Therefore, the meshfree particle method, with a Lagrangian kernel and the stress point 
integration scheme, will provide a stable and efficient method [Rabczuk et al. 2004]. In 
this paper, we will implement the quasicontinuum technique into the meshfree particle 
method with a Lagrangian kernel. Such a nanoscale meshfree particle method will be 
used to simulate nano systems containing a large number of atoms. 

The outline of this paper is as follows: A meshfree particle method with a 
Lagrangian kernel is introduced in Section 2. In Section 3 the implementation of the 
quasicontinuum technique into the meshfree particle method is described. Several 
examples are studied in Section 4. The numerical results will be compared with the 
results of atomistic simulations. The conclusions and discussions follow. 

2. Meshfree Particle Methods 

2.1.  Governing equations 

One of the physical principles governing the continuum is the conservation of 
momentum. It can be written as the following equation under a so-called total Lagrangian 
description in the reference configuration 0Ω , 

ii
j

ji ub
X
P

&&00 ρρ =+
∂
∂

             (1) 

where 0ρ  is the initial density, P  is the first Piola-Kirchhoff stress tensor, X  are the  
material (Lagrangian) coordinates, b  is the body force per unit mass, u  is the 
displacement and the superposed dots denote material time derivatives. Eq. (1) can be 
written as the spatial form of the momentum equations under the Eulerian description in 
the current configuration Ω , 

  ii
j

ji ub
x

&&ρρ
σ

=+
∂
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     (2) 

where ρ  is the current density, σ  is the Cauchy stress tensor, and x  are the spatial 
(Eulerian) coordinates. By conservation of mass, 
  0ρρ =J       (3) 
where J  is the Jacobian determinant of deformation gradient F , and it is defined by 

  ( )Fdet=J , 
j

i
ij X

xF
∂
∂=     (4) 

 It can be seen that the two above forms of momentum equations in Eq. (1) and Eq. 
(2) are identical and differ in form only because they are expressed in different 
descriptions [Belytschko et al. 2001]. In this paper, we use the Lagrangian description. 
The Galerkin weak form of the momentum conservation equation is 

∫∫∫∫ ΓΩΩΩ
Γ+Ω−Ω=Ω

0000
000000 dtudPFdbuduu iijiijiiii δδρδρδ &&  (5) 
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where iuδ  is the test function, and it  is the prescribed boundary traction. The discrete 
equations of motion can be derived from weak form, Eq. (5), for dynamic problems. 

2.2.  Particle method approximations and kernel functions 

In particle methods, displacements can be approximated by 
( ) ( ) ( )twt I

I
I

h uXXu ∑=,      (6) 

where ( )XIw  are called Lagrangian kernel functions [Belytschko and Xiao 2002] 
because they are functions of the material (Lagrangian) coordinates. If the spatial 
(Eulerian) coordinates are used, the approximation of displacements can be written in 
terms of the Eulerian kernel functions as follows: 

( )( ) ( )( ) ( )ttwtt I
I

I
h uxxu ∑=,     (7) 

In this paper, we use the Lagrangian kernel functions because meshfree particle 
methods with a Lagrangian kernel function are more stable than the ones with an Eulerian 
kernel function [Belytschko and Xiao 2002]. The Lagrangian kernel functions can be 
obtained from the weight function ( )rW  as 

  ( ) ( ) ( )
( )∑ −

−=−=
I

I
II W

Www
XX

XXXXX    (8) 

which is the moving least square approximation that reproduces constant functions. In 
this paper, we use a quartic spline weight function, 

  ( )
⎪⎩

⎪
⎨
⎧

>
≤−+−=

1
1

0
3861 432

sfor
sforssssW   (9) 

where hrs = , Ir XX −= , and h  is a measure of the size of the support, which is 
determined by a dilation parameter mxD . We define XDh mxΔ=  for uniformly spaced 
particles in one dimension. The kernel functions are of compact support, i.e., ( ) 0>XIw  
only in the neighborhood of X .  

We can see that, from Eq. (8), the kernel functions, ( )XIw , obviously reproduce the 
constant functions, i.e. ( ) 1=∑ X

I
Iw , but not the linear functions. In other words, one can 

find that ( )
ij

I
Ij

i

I X
X

w δ≠
∂

∂∑ X . Krongauz and Belytschko [Belytschko et al. 1998] 

developed a correction that enables the derivatives of the constant or linear functions to 
be reproduced exactly. The corrected derivatives of displacements are denoted by 

( )tL ji ,X  and are approximated by  

  ( ) ( ) ( )∑=
I

jIiIji tuGtL XX,      (10) 

where ( )XiIG  are the corrected derivatives of the Lagrangian kernel functions. Note here 

that ( )tL ji ,X  is different from ( )
i

h
j

X
tu

∂
∂ ,X  with h

ju  defined by Eq. (6). The corrected 

derivatives are defined as linear combinations of the exact derivatives of the kernel 
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functions so the linear functions (coordinates for instance) can be reproduced by the 
meshfree particle approximation, 

  ( ) ( )
ij

I
Ij

k

I
ik

I
IjiI X

X
waXG δ=
∂

∂= ∑∑ XX    (11) 

The above can be written in a matrix form, 
  IAa =T       (12) 
where I  is the identity matrix for a three-dimensional approximation, 
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By solving Eq. (12) for the coefficient matrix a , one can obtain the corrected 
derivatives of kernel functions, ( )XiIG . Therefore, the approximation for the derivatives 
of displacements in Eq. (10) can be written as follows: 

  ( ) ( ) ( ) ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
=

I
jI

k
kIikji tuwatL XXX ,,    (15) 

Then, the gradient of deformation is expressed as 

  ijijij
j

i
ij L

X
u

F δδ +=+
∂
∂

=     (16) 

2.3.  Discrete equations 

Substituting Eq. (6), the approximation of displacements, and a similar expansion for 
( )Xuδ  into the weak form of Eq. (5), the following discrete equations of motion are 

obtained: 
int

iI
ext

iIiII FFum −=&& ,   0
0 II Vm ρ=   (17) 

where 0
IV  is the volume associated with the particle I , ext

iIF  and int
iIF  are the external 

and internal nodal forces respectively, given by 
 ∫∫ ΓΩ

Γ+Ω= t dtNdbwF iIiI
ext

iI
00

0
0

0ρ    (18) 

 ∫Ω Ω
∂

∂
=

0
0

)(
dP

X
w

F ji
j

Iint
iI

X
      (19) 

 Stationary principles can be applied for conservative, static problems. The 
equilibrium solutions can be found by searching a set of displacements from which the 
minimum potential can be obtained, i.e. 

 
( ) ( ) ( )

∫∫∫ ΓΩΩ
Γ−Ω−Ω=

−==
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  (20) 



Shaoping Xiao & Weixuan Yang 
 
6 

Note here that Eq. (20) is identical to Eq. (5) if the accelerations are set to equal zero in 
Eq. (5) for static problems. We can obtain the residual as 

ext
iIiI

iI

ext

iIiI
iI FF

u
W

u
W

u
Wr −=

∂
∂−

∂
∂=

∂
∂== int

int
0    (21) 

where internal and external nodal forces are defined as Eq. (18) and Eq. (19). 
 The increments of the internal and external forces can be related to the increments of 
nodal displacements by stiffness matrices via the Newton method: 
  uKF Δ=Δ intint  or ∑ Δ=Δ

J
JIJI uKF intint    (22) 

  uKF Δ=Δ extext  or ∑ Δ=Δ
J

J
ext
IJ

ext
I uKF    (23) 

Where intK  and extK  are the tangent stiffness matrices given by 

  
JIJ

I
IJ

W
uuu

F
K

∂∂
∂=

∂
∂

=
int2int

int , 
JI

ext

J

ext
Iext

IJ
W

uuu
F

K
∂∂

∂=
∂
∂

=
2

   (24) 

Therefore, Newton equations can be obtained by linearization of Eq. (21) as 
 ( ) ruKK −=Δ− extint       (25) 

2.4.  Nodal integration 

 
Fig. 1. Volume associated with particle I  for nodal integration scheme 

 
The integrals of Eq. (18) and Eq. (19) can be evaluated by numerical quadrature. 

Beissel and Belytschko [Beissel and Belytschko 1996] have proposed nodal integration 
scheme for the element-free Galerkin method [Belytschko et al. 1994], where any integral 
is evaluated by summing the function at particles, i.e., 
  ( ) ( )∑∫ =Ω

Ω
I

II VFdF 0

0
XX     (26) 

where 0
IV  is the volume associated with particle I . Figure 1 shows that the volume can 

be calculated through the triangulation and Voronoi diagram. The internal nodal forces 
Eq. (19) can then be computed by 

  ( )∑ ∂
∂

=
I

Iji
j

I
I

int
iI P

X
w

VF X
XI )(0     (27) 
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This approach was found to be unstable by Beissel and Belytschko [Beissel and 
Belytschko 1996] in some cases, and it was verified by Belytschko and Xiao [Belytschko 
and Xiao 2002; Xiao and Belytschko 2005]. A stress point integration scheme was 
proposed [Dyka et al. 1997] to stabilize the nodal integration by adding some slave 
particles [Belytschko and Xiao 2002; Xiao and Belytschko 2004b]. However, we still use 
the nodal integration in this paper because it is simple and easy to implement. The stress 
point integration scheme will be added in further research investigation. 

3. Implementation of the quasicontinuum method  

3.1.  Molecular mechanics potential and discrete equations 

The general form for the molecular mechanics potential function can be expressed as 
the sum of the energies due to any force fields, such as the pair-wise interaction of the 
atoms, three-body potentials or others. It can be written as 

 ( ) ( ) ( ) ( ) L+++= ∑∑∑
>>> JKIJI

KJI
IJI

JI
I

II
M WWWW

,,
3

,
21 ,,, xxxxxxx  (28) 

Here, we assume that the total potential contains only the external energy and a pair-
wise interatomic potential. The external energy is due only to a constant external force, 

ext
If , such as electromagnetic forces. The pair-wise interatomic potential can be denoted 

by ),( JIMIJ ww xx= , so the total potential is 

 ( )∑∑
>

+−=+−=
IJI

JIM
I

I
ext
IIJ

ext
M

M wWWW
,

, xxdf    (29) 

where Im  is the mass of atom I , Ix  is the current position of atom I  and 

III dXx +=  ( IX  is the original position of atom I  and Id  is its displacement). Note 
that we use superscript/subscript “ M ” to denote the variable for a molecular system. A 
pair-wise interatomic potential can occur from bond stretching. Either the Lagrangian or 
the Hamiltonian mechanics can be used to derive the equations of motion at a molecular 
level.  

In an isolated system of atoms or molecules, the total energy, the sum of the kinetic 
and potential energies of the molecules, is constant in time and identified as the 
Hamiltonian MH , which is given by 

 ( ) ( ) constanttW
m

ttH I
M

I

M
I

M
I

I

M
II

M =+⋅= ∑ )(
2

1)(),( xpppx   (30) 

where Im  is the mass of atom I ; M
Ip  is the conjugate momentum and defined by 

 IIII
M
I mm dxp && ==       (31) 

The well known Hamiltonian canonical equations of motion are   

 
I

M

I

M
I

WH
xx

p
∂

∂−=
∂
∂−=& , 

I

M
I

M
I

II m
H p

p
dx =

∂
∂== &&    (32) 

Eq. (32) can be combined to yield 
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int
I

ext
I

I

IJ

I

ext
M

I

M

II
WWWm ff
ddx

d −=
∂

∂
−

∂
∂

=
∂

∂−=&&    (33) 

where IIJI W df ∂∂= /int . Eq. (33) is a typical form for equations of motion solved in 
molecular dynamics. When one compares Eq. (33) with Eq. (17), it can be observed that 
the equations of motion are similar at the molecular level and the continuum level. For 
molecular mechanics, the equilibrium state of the molecular system can be obtained by 
setting the first derivatives of the potential, with respect to atomic displacements, to equal 
zero. The derived Newton equations are similar to Eq. (25). However, conjugate gradient 
methods are mostly used so that one can avoid calculating the second derivatives of the 
potential function. 

3.2.  Quasicontinuum method 

 
Fig. 2. Cauchy-Born rule for meshfree particle methods 

 
In the quasicontinuum method, the intrinsic properties of material are sought at the 

atomic level and embedded in the continuum model according to a so-called Cauchy-
Born rule [Tadmor et al. 1996; 2000]. The Cauchy-Born rule states that the deformation 
is locally homogeneous. In this paper, we assume that all the molecular structures in a 
single volume have the same deformation as the particle which the volume is associated 
with. As shown in Figure 2, an undeformed lattice vector A  in 0

IV  is mapped into a  in 

IV  by the deformation gradient F  via FAa = . The molecular structures in 0
IV  are 

identically deformed according to the assumption of the Cauchy-Born rule. In the 
continuum model, with meshfree particle methods, the potential energy depends on the 
elongations and angle changes of the atomic bonds that underlie the volumes of particles. 
The total potential of the continuum model is defined by 

∫
Ω

Ω=
0

dwW C
C        (34) 

where Cw  is the potential energy per unit volume of the continuum. Note that we use 
superscript/subscript “ C ” for variables in the continuum model to distinguish from the 
ones in the molecular model. The first Piola-Kirchhoff stress can be obtained from the 
potential density of the continuum by 

  ( )
F

FP
∂

∂= Cw        (35) 
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The above serves as the constitutive equation for a continuum based on atomistic 

potentials. Therefore, the quasicontinuum approach is that the constitutive equation is 
constructed via the Cauchy-Born rule.  If long distance interatomic interactions, such as 
nonbonded interaction, are considered, the van der Waals energy must be included in the 
molecular mechanics potential.  Further research is needed to derive the continuum strain 
energy from the atomic-level potential and to modify the Cauchy-Born rule. Since the 
effects of long distance interatomic interactions on nanoscale mechanical behaviors of 
crystalline solids are not as significant as those of short distance interatomic interactions, 
we only consider short distance interatomic interactions in this paper. 

With respect to the deformation gradients, the first tangential stiffness matrix can be 
obtained from the second derivatives of the potential density. It is 

 ( )
2

2

F
FC

∂
∂= Cw            (36) 

With the implementation of quasicontinuum method, the calculation of internal nodal 
forces, Eq. (19) can be written as 

( )
∫Ω Ω

∂
∂

∂
∂

=
0

0
)(

d
F

w
X

w
F

ji

C

j

Iint
iI

FX
       (37) 

However, the classical Cauchy-Born rule has some difficulties for many important 
situations, such as in single-layer curved crystalline sheets. Arroyo and Belytschko 
[Arroyo and Belytschko 2002; 2003] developed an extension of the Cauchy-Born rule - 
the exponential Cauchy-Born rule. The objective of this extension is to account for the 
fact that the deformation gradient maps the tangent space of the undeformed surface to 
the tangent space of the deformed surface.  

It should be noted here that the classical Cauchy-Born rule are valid for isolated 
systems as microcanonical ensembles. For other ensembles, modifications of the 
quasicontinuum method (Cauchy-Born rule) are needed. For example, the recently 
developed finite temperature quasicontinuum method [Diestler et al. 2004] must be used 
for canonical ensembles with thermostats.  

3.3.  Continuum model for a molecule chain 

 
Fig. 3. A continuum model for a molecular chain with the meshfree particle method 

 
A line of atoms as well as its continuum model in the reference (initial) configuration 

is considered here as shown in Figure 3. The equilibrium bond length between 
neighboring atoms is 0r , and the length of the region AB associated with the particle I  is 
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0L . We assume that only the nearest two atoms are attractive and repulsive with each 
other. Therefore, the molecular potential can be written as follows without considerations 
of external forces: 

( ) ( )∑∑
−

==
− =−=

1

12
1

N

i
iM

N

i
iiM rwxxwW      (38) 

where N  is the total number of atoms; iii xxr −= +1  is the current bond length. If we use 

IF  to denote the deformation gradient at particle I , all the deformed bonds in region AB 
will have the same length, 0rFr I= , according to the assumption of the Cauchy-Born rule. 
One can write the potential density of the volume associated with particle I  based on the 
atomic level potential as 

( ) ( ) ( ) ( ) ( )
0

0

00

0

0

0 r
rFw

r
rw

L

rw
r
L

L
FW

Fw IMM
M

I
C

IC ====   (39) 

Then, the first Piola-Kirchhoff stress can be calculated as 

  ( ) ( ) ( )
I

IM

I

IC
I F

rFw
rF

Fw
XP

∂
∂

=
∂

∂
= 0

0

1     (40) 

As an instance, we use the Lennard-Jones (LJ) 6-12 potential to approach the 
interaction between the nearest atoms. The LJ 6-12 potential function is written as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

612

4
rr

wM
σσε      (41) 

where ε  and σ  are constants chosen to fit material properties and r  is the distance 
between two atoms. ε  is the depth of the potential energy well. σ  is the value of r  
where the potential becomes zero and 0

6/12 r−=σ . The potential energy density at particle 
I  can be written as follows from Eq. (39): 

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== −− 6

6

0

12
12

000

0 4
II

IM
IC F

r
F

rrr
rFwFw σσε    (42) 

Therefore, the first Piola-Kirchhoff stress at particle I  can be obtained as 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

∂
∂= 1312

0

12

76
0

6

0

1264

III

C
I FrFrrF

wXP σσε     (43) 

3.4.  Continuum model for a molecular structure with triangular lattices  

Here, we consider a 2D molecular structure with triangular lattices as shown in 
Figure 4. This molecular structure was used by Gao [Gao 1996] to study the local limiting 
speed in dynamic fractures. A pair potential function of )(lU  is used here to describe the 
nearest-neighbor interatomic interaction. l  denotes the bond length and 0ll =  when the 
bond is not stretched i.e. when the bond is at the equilibrium state. Figure 4 also shows 
that a rectangle cell is set as a unit cell to calculate the continuum properties of the 
molecular structure. 
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Fig. 4 A molecular structure with triangular lattices 

 
We assume that the volume associated with a particle contains a large number of such 

unit cells. If a unit cell is under the deformation with the deformation gradient F , then 
there are three types of deformed bonds as shown in Figure 5. Therefore, the strain energy 
per undeformed unit area (strain energy density) in such a unit cell is 

( ) ( ) ( )[ ]321
03

2 lUlUlU
l

wC ++=     (44) 

where 1l , 2l , 3l  can be described by deformation gradient F  based on the geometric 
relations, one can find that 

 
2

21
2

1101 FFll +=  

2
2221

2
121102 )

2
3

2
1()

2
3

2
1( FFFFll −+−=    (45) 

2
2221

2
121103 )

2
3

2
1()

2
3

2
1( FFFFll +++=      

 

 
Fig. 5  Deformation of a unit cell 

 
The first Piola-Kirchhoff stress P  is the first derivative of strain energy density with 

respect to the deformation gradient, and one can have 
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and the components of the stress are 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

+
∂

∂
= 1211

33

3
1211

22

2

1

11

1

1

0
11 2

3
2
1

2
1

2
3

2
1

2
1

3
2 FF

ll
lU

FF
ll

lU
l

F
l
lU

l
P

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

−= 1211
3

3

3
1211

22

2

0
12 2

3
2
1

2
3

2
3

2
1

2
3

3
2 FF

l
lU

l
FF

ll
lU

l
P  

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

+
∂

∂
= 2221

3

3

3
2221

22

2

1

21

1

1

0
21 2

3
2
1

2
1

2
3

2
1

2
1

3
2 FF

l
lU

l
FF

ll
lU

l
F

l
lU

l
P

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

−= 2221
3

3

3
2221

22

2

0
22 2

3
2
1

2
3

2
3

2
1

2
3

3
2 FF

l
lU

l
FF

ll
lU

l
P   

Correspondingly, the first tangential stiffness matrix can be written as 

 
F
P

FF
C

∂
∂=

∂∂
∂

= Cw2
       (47) 

4. Examples 

4.1.  Wave propagation in a molecular chain  

  
 

(a) molecular dynamics    (b) meshfree particle method 
 

        Fig. 6.  Wave propagation in a molecule chain 
 

Wave propagation along a one-dimensional molecule chain is studied by using 
molecular dynamics and the meshfree particle method with quasicontinuum 
implementation separately. The molecule chain contains 2,001 atoms. 101 particles are 
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used in the meshfree particle simulation. The L-J (6-12) potential function is used to 
approach the interaction between the nearest atoms. The constants are chosen as: 

me 104.3 −=σ  and Je 2165.1 −=ε . The mass of each atom is set to be kg10108.3 −× . In the 
meshfree particle method, the first Piola-Kirchhoff stress can be obtained from Eq. (43). 
Figure 6 shows the comparison of the calculated wave configurations at nst 02.0= , from 
the molecular dynamics simulation and the meshfree particle method, when an initial 
cosine shaped wave is given.  We can see that they are in accord.  

4.2.  Bending of a nanobeam  

In this example, we consider the bending of a nano cantilever beam. The beam 
contains 5,140 atoms as shown in Figure 7 where nmL 270=  and nmH 6.15= . One end of 
the beam is fixed. A quadratic potential function is used to approximate the interaction 
between nearest atoms, 

( ) ( )2
02

1 llklU −=      (48) 

where mNk /10000=  and nml 10 = .  
 

 
 

        Fig. 7.  A nano cantilever beam  
 

We use the meshfree particle method to simulate the bending of this nanobeam, 
which is under the load of a prescribed displacement as shown in Figure 7. There are 250 
particles used in the simulation. In the meshfree particle method, the first Piola-Kirchhoff 
stress and tangential stiffness matrix can be calculated when substituting Eq. (48) into Eq. 
(46) and Eq. (47). During the simulation, the prescribed displacement will be increased by 

nmd 6.3=Δ  per calculation step. After 50 steps, the nanobeam will be bent as the final 
configuration shown in Figure 8(a).  

We also show the molecular mechanics calculation result for comparison. One can 
see that the outcome in Figure 8 (b) supports the meshfree particle method result. When 
different numbers of particles are used in the meshfree particle method simulations, 
Figure 9 shows the evolution of the calculated nanobeam potential compared with the 
molecular mechanics result. We can see that the meshfree particle method with 250 
particles gives a consistent response with the molecular mechanics calculation. If 1,000 or 
more particles are used in the simulations, the evolution of the nanobeam potential is 
almost identical to the one from the molecular mechanics calculation. 
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(a) meshfree particle method   (b) molecular mechanics 
Fig 8 Deformed configurations of the nanobeam 

 

 
Fig 9 Comparison of evolutions of the nanobeam potential 

 
We study the convergence by using the 2l  error in displacement for the nanoscale 

meshfree particle method. The error in displacement is defined as 

  

2

2
MM

PMMM

Error
u

uu −
=      (49) 

where MMu  and PMu  are the atomic displacements from the molecular mechanics 
calculation and the meshfree particle method, respectively. Note, here, that one can 
calculate the atomic displacements from the particle displacements in the meshfree 
particle method based on the meshfree particle approximation.  



  
 

15 

 
Fig 10 Convergence of the nanoscale meshfree particle method 

 

4.3.  Vibration of a nanobeam 

The vibration of a nano cantilever beam is studied in this example. The nanobeam is 
similar to what we study in the previous examples, but with nmL 200=  and nmH 6.34= . 
There are 8,221 atoms in this nanobeam. One end of the beam is fixed. We use the LJ (6-
12) potential function to approximate the interaction between nearest atoms. The 
constants are chosen as follows: nm833.1=σ  and Je 925.8 −=ε . The mass of each atom is 

kge 170.5 − . In this example, the nanobeam is bent first with the loading of a prescribed 
displacement at the upper right corner. This step can be achieved similarly with the 
technique we used in the previous example. Then, if the nanobeam is released, it will 
vibrate up and down. Different numbers of particles are used in the simulations. The 
calculated oscillatory amplitude and frequency of the middle point on the right boundary 
are compared with the molecular dynamics simulation results as shown in Table 1, as 
well as computer time, when two vibration circles are finished. We can see that molecular 
dynamics simulations are obviously computationally intensive and the continuum 
mechanics (meshfree particle methods here) can save a great amount of computing time. 
Furthermore, the meshfree particle methods can give very accurate values of the 
oscillatory amplitudes compared with molecular dynamics, but not the frequencies 
although they are still compared well. We think that this result is due to the vibration of 
atoms around their equilibrium positions. Such molecular-level phenomena results in one 
of the macroscopic properties, temperature. How to couple the temperature effects within 
the continuum mechanics is one of the issues that the hierarchical multiscale methods 
need to solve.   

Table 1.  Amplitudes and frequencies of nanobeam vibration. 

 Amplitude  
(nm) 

Frequency 
(1/ns)  

CPU time  
(s) 

Molecular dynamics (8,221 atoms) 3.90 2.067 425.25 
Meshfree particle method (2,000 Particles) 3.91 2.159 52.46 
Meshfree particle method ( 320 Particles) 3.93 2.272 11.53 
Meshfree particle method (  80 Particles) 3.94 2.324 2.31 
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4.4.  A plate with a central crack 

Meshfree particle methods have advantages to treat fracture problems. In this 
example, we use the meshfree particle method to study the stress concentration of a 
nanoplate containing an initial central crack. The crack is initialized by taking a number 
of bonds out. The meshfree particle model with 400 particles is shown in Figure 11. The 
dimensions are: nmL 270=  and nmM 280= , and the crack length is nm135 . This 
nanoplate contains 86,915 atoms with the triangular molecular structure. The LJ (6-12) 
potential function is used in this example as the previous one. We use a visibility 
criterion [Belytschko et al. 1994] in the meshfree particle model to construct the kernel 
functions for the particles near the crack or around the crack tip, as illustrated in Figure 
12. When we plan to search the neighbor particles for particle I , we take particle K  into 
account,  but not particle J ,  since one cannot see particle J  from particle I , due to the 
block of the crack.  It should be noted here that the visibility criterion can result in 
discontinuities in kernel functions of particles near crack tips. Other techniques, the 
diffraction method and the transparency method [Organ et al. 1996], can provide 
continuous and smooth approximations near nonconvex boundaries. For simplification, 
we use the visibility criterion in this paper.   

  
  

Fig 11. A nanoplate with a central crack modeled by the meshfree particle method 
 

 
 

Fig. 12. Visibility criterion in the meshfree particle method 
 

We plan to observe the stress concentration around the crack tip. The constitutive 
relationship can be achieved through the Cauchy-Born rule as before. For the purpose of 
comparison, we also perform molecular mechanics calculations to obtain the contour of 
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stress distribution. At the atomic level, the Cauchy stress [Zhou 2003] can be calculated 
as the following formula: 

 ∑∑
≠

⊗
Ω

=
N

i

N

ijj
ijij

,2
1 frσ  or ∑∑

≠Ω
=

N

i

N

ijj
ijij fr

,2
1 βα

αβσ   (50) 

where σ  is the Cauchy stress, im  is the mass of atom i , ir&  is the time derivative of  
atomic position ir , jiij rrr −=  is the spatial vector between atoms i  and j , and ⊗  
denotes the tensor product of two vectors.  The parameter N  is the total number of atoms 
in the domain Ω . The interatomic force ijf  applied on atom i  by atom j  is: 

ijij

ijij
ij rr∂

∂
−=

r
f

Φ          (51) 

where ijΦ  is the interatomic potential between atoms i  and j . The sign is adopted here 
for force, which is positive for repulsion and negative for attraction.  

Figure 13 shows the comparison of the stress ( yyσ ) contour from the molecular 
mechanics calculation and the meshfree particle simulation. In the molecular mechanics 
calculation, the whole domain is divided into a number of subdomains, for each of which 
the Cauchy stress can be computed via Eq. (50). We can see that the result of meshfree 
particle method is in accord with that of the molecular mechanics calculation.  

     
   (a) molecular mechanics                   (b) meshfree particle method  

 
Fig 13. Comparison of stress concentration 

 

5. Conclusions 

In this paper, we implemented a quasicontinuum technique (Cauchy-Born rule) into 
the meshfree particle methods. Therefore, numerical simulations in nanotechnology can 
be beneficial from the advantages of the meshfree particle methods. This progress makes 
it possible to treat extremely large deformation problems and the problems involving 
discontinuities, such as fractures, at nanoscale. The developed nanoscale meshfree 
particle method is one of the hierarchical multiscale methods and has been shown to save 
a great amount of computer time. The static examples show that this method can give 
accurate results when compared with the molecular mechanics calculation outcomes. 
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However, we observed that the dynamic solutions from this nanoscale meshfree particle 
method are not as reliable as the static solutions when they are compared with the 
molecular dynamics results. We think that this is due to the temperature issue since no 
temperature effects are considered in our nanoscale meshfree particle method. This issue 
will be discussed in our further publications.  
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