
1

© 2005 Pearson Education, Inc. All rights reserved.

1010
Object-Oriented

Programming:
Polymorphism

2

© 2005 Pearson Education, Inc. All rights reserved.

A Motivating Example

• Employee as an abstract superclass.
• Lots of different types of employees (well, 4).
• Executing the same code on all different types of

employees and letting the run-time system figure
out which type of employee is being referenced.

3

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.2 | Employee hierarchy UML class diagram.

4

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•PayrollSyste
mTest
•.java

•(1 of 5)

 1 // Fig. 10.9: PayrollSystemTest.java

 2 // Employee hierarchy test program.

 3
 4 public class PayrollSystemTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // create subclass objects

 9 SalariedEmployee salariedEmployee =

10 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
11 HourlyEmployee hourlyEmployee =
12 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
13 CommissionEmployee commissionEmployee =
14 new CommissionEmployee(
15 "Sue", "Jones", "333-33-3333", 10000, .06);
16 BasePlusCommissionEmployee basePlusCommissionEmployee =
17 new BasePlusCommissionEmployee(
18 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
19
20 System.out.println("Employees processed individually:\n");
21

5

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•PayrollSyste
mTest
•.java

•(2 of 5)

22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33 Employee employees[] = new Employee[4];
34
35 // initialize array with Employees
36 employees[0] = salariedEmployee;
37 employees[1] = hourlyEmployee;
38 employees[2] = commissionEmployee;
39 employees[3] = basePlusCommissionEmployee;
40
41 System.out.println("Employees processed polymorphically:\n");
42
43 // generically process each element in array employees
44 for (currentEmployee = 0; currentEmployee < 4; currentEmployee++)
45 {
46 System.out.println(employees[currentEmployee].toString); // cool!
47

Assigning subclass objects to
supercalss variables

Polymorphic call of toString

6

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•PayrollSyste
mTest
•.java

•(3 of 5)

48 // determine whether element is a BasePlusCommissionEmployee
49 if (currentEmployee instanceof BasePlusCommissionEmployee)
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 (BasePlusCommissionEmployee) currentEmployee;
55
56 double oldBaseSalary = employee.getBaseSalary();
57 employee.setBaseSalary(1.10 * oldBaseSalary);
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n", currentEmployee.earnings());
65 } // end for
66
67 // get type name of each object in employees array
68 for (int j = 0; j < employees.length; j++)
69 System.out.printf("Employee %d is a %s\n", j,
70 employees[j].getClass().getName());
71 } // end main
72 } // end class PayrollSystemTest

If the currentEmployee variable points to a
BasePlusCommissionEmployee object

Downcast currentEmployee to a
BasePlusCommissionEmployee
reference

Give BasePlusCommissionEmployees
a 10% base salary bonus

Polymorphically call
earnings method

Call getClass and getName methods to display
each Employee subclass object’s class name

7

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•PayrollSyste
mTest
•.java

•(4 of 5)

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
earned: $500.00

8

© 2005 Pearson Education, Inc. All rights reserved.

Outline

•PayrollSyste
mTest
•.java

•(5 of 5)

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Same results as when the employees
were processed individually

Base salary is increased by 10%

Each employee’s type is displayed

9

© 2005 Pearson Education, Inc. All rights reserved.

10.1 Introduction

• Polymorphism
– Enables “programming in the general”
– The same invocation can produce “many forms” of results

• Interfaces
– Implemented by classes to assign common functionality to

possibly unrelated classes

10

© 2005 Pearson Education, Inc. All rights reserved.

10.2 Polymorphism Examples

• Polymorphism
– When a program invokes a method through a superclass

variable, the correct subclass version of the method is
called, based on the type of the reference stored in the
superclass variable

– The same method name and signature can cause different
actions to occur, depending on the type of object on which
the method is invoked

– Facilitates adding new classes to a system with minimal
modifications to the system’s code

11

© 2005 Pearson Education, Inc. All rights reserved.

10.3 Demonstrating Polymorphic
Behavior – Toy Example

• A superclass reference can be aimed at a subclass
object

– This is possible because a subclass object is a superclass
object as well

– When invoking a method from that reference, the type of
the actual referenced object, not the type of the reference,
determines which method is called

• A subclass reference can be aimed at a superclass
object only if the object is downcasted

12

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PolymorphismTest

.java

(1 of 2)

 1 // Fig. 10.1: PolymorphismTest.java

 2 // Assigning superclass and subclass references to superclass and

 3 // subclass variables.

 4
 5 public class PolymorphismTest

 6 {

 7 public static void main(String args[])

 8 {

 9 // assign superclass reference to superclass variable

10 CommissionEmployee3 commissionEmployee = new CommissionEmployee3(
11 "Sue", "Jones", "222-22-2222", 10000, .06);
12
13 // assign subclass reference to subclass variable
14 BasePlusCommissionEmployee4 basePlusCommissionEmployee =
15 new BasePlusCommissionEmployee4(
16 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee3's toString with superclass reference ",
21 "to superclass object", commissionEmployee.toString());
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",
25 "Call BasePlusCommissionEmployee4's toString with subclass",
26 "reference to subclass object",
27 basePlusCommissionEmployee.toString());
28

Typical reference assignments

13

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PolymorphismTest

.java

(2 of 2)

29 // invoke toString on subclass object using superclass variable
30 CommissionEmployee3 commissionEmployee2 =
31 basePlusCommissionEmployee;
32 System.out.printf("%s %s:\n\n%s\n",
33 "Call BasePlusCommissionEmployee4's toString with superclass",
34 "reference to subclass object", commissionEmployee2.toString());
35 } // end main
36 } // end class PolymorphismTest

Call CommissionEmployee3's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee4's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Call BasePlusCommissionEmployee4's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Assign a reference to a
basePlusCommissionEmployee object
to a CommissionEmployee3 variable

Polymorphically call
basePlusCommissionEmployee’s
toString method

14

© 2005 Pearson Education, Inc. All rights reserved.

10.4 Abstract Classes and Methods

• Abstract classes
– Classes that are too general to create real objects
– Used only as abstract superclasses for concrete subclasses

and to declare reference variables
– Many inheritance hierarchies have abstract superclasses

occupying the top few levels
– Keyword abstract

• Use to declare a class abstract
• Also use to declare a method abstract

– Abstract classes normally contain one or more abstract
methods

– All concrete subclasses must override all inherited
abstract methods

15

© 2005 Pearson Education, Inc. All rights reserved.

10.5.1 Creating Abstract Superclass
Employee

•abstract superclass Employee
– earnings is declared abstract

• No implementation can be given for earnings in the
Employee abstract class

– An array of Employee variables will store references to
subclass objects

• earnings method calls from these variables will call the
appropriate version of the earnings method

• Next… the whole Employee example…

16

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.2 | Employee hierarchy
UML class diagram.

17

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(1 of 3)

 1 // Fig. 10.4: Employee.java

 2 // Employee abstract superclass.

 3
 4 public abstract class Employee

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private String socialSecurityNumber;

 9
10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17

Declare abstract class Employee

Attributes common to all employees

18

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(2 of 3)

18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first;
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last;
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41

19

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(3 of 3)

42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 public String toString()
56 {
57 return String.format("%s %s\nsocial security number: %s",
58 getFirstName(), getLastName(), getSocialSecurityNumber());
59 } // end method toString
60
61 // abstract method overridden by subclasses
62 public abstract double earnings(); // no implementation here
63 } // end abstract class Employee

abstract method earnings

has no implementation

20

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

SalariedEmployee

.java

(1 of 2)

 1 // Fig. 10.5: SalariedEmployee.java

 2 // SalariedEmployee class extends Employee.

 3
 4 public class SalariedEmployee extends Employee

 5 {

 6 private double weeklySalary;

 7
 8 // four-argument constructor

 9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21

Class SalariedEmployee
extends class Employee

Call superclass constructor

Validate and set weekly salary value

Call setWeeklySalary method

21

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

SalariedEmployee

.java

(2 of 2)

22 // return salary
23 public double getWeeklySalary()
24 {
25 return weeklySalary;
26 } // end method getWeeklySalary
27
28 // calculate earnings; override abstract method earnings in Employee
29 public double earnings()
30 {
31 return getWeeklySalary();
32 } // end method earnings
33
34 // return String representation of SalariedEmployee object
35 public String toString()
36 {
37 return String.format("salaried employee: %s\n%s: $%,.2f",
38 super.toString(), "weekly salary", getWeeklySalary());
39 } // end method toString
40 } // end class SalariedEmployee

Override earnings method so
SalariedEmployee can be concrete

Override toString method

Call superclass’s version of toString

22

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

HourlyEmployee

.java

(1 of 2)

 1 // Fig. 10.6: HourlyEmployee.java

 2 // HourlyEmployee class extends Employee.

 3
 4 public class HourlyEmployee extends Employee

 5 {

 6 private double wage; // wage per hour

 7 private double hours; // hours worked for week

 8
 9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12 {
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17
18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 wage = (hourlyWage < 0.0) ? 0.0 : hourlyWage;
22 } // end method setWage
23
24 // return wage
25 public double getWage()
26 {
27 return wage;
28 } // end method getWage
29

Class HourlyEmployee
extends class Employee

Call superclass constructor

Validate and set hourly wage value

23

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

HourlyEmployee

.java

(2 of 2)

30 // set hours worked
31 public void setHours(double hoursWorked)
32 {
33 hours = ((hoursWorked >= 0.0) && (hoursWorked <= 168.0)) ?
34 hoursWorked : 0.0;
35 } // end method setHours
36
37 // return hours worked
38 public double getHours()
39 {
40 return hours;
41 } // end method getHours
42
43 // calculate earnings; override abstract method earnings in Employee
44 public double earnings()
45 {
46 if (getHours() <= 40) // no overtime
47 return getWage() * getHours();
48 else
49 return 40 * getWage() + (gethours() - 40) * getWage() * 1.5;
50 } // end method earnings
51
52 // return String representation of HourlyEmployee object
53 public String toString()
54 {
55 return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
56 super.toString(), "hourly wage", getWage(),
57 "hours worked", getHours());
58 } // end method toString
59 } // end class HourlyEmployee

Validate and set hours worked value

Override earnings method so
HourlyEmployee can be concrete

Override toString method

Call superclass’s toString method

24

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

CommissionEmployee
.java

(1 of 3)

 1 // Fig. 10.7: CommissionEmployee.java

 2 // CommissionEmployee class extends Employee.

 3
 4 public class CommissionEmployee extends Employee

 5 {

 6 private double grossSales; // gross weekly sales

 7 private double commissionRate; // commission percentage

 8
 9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)
12 {
13 super(first, last, ssn);
14 setGrossSales(sales);
15 setCommissionRate(rate);
16 } // end five-argument CommissionEmployee constructor
17
18 // set commission rate
19 public void setCommissionRate(double rate)
20 {
21 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
22 } // end method setCommissionRate
23

Class CommissionEmployee
extends class Employee

Call superclass constructor

Validate and set commission rate value

25

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

CommissionEmployee
.java

(2 of 3)

24 // return commission rate
25 public double getCommissionRate()
26 {
27 return commissionRate;
28 } // end method getCommissionRate
29
30 // set gross sales amount
31 public void setGrossSales(double sales)
32 {
33 grossSales = (sales < 0.0) ? 0.0 : sales;
34 } // end method setGrossSales
35
36 // return gross sales amount
37 public double getGrossSales()
38 {
39 return grossSales;
40 } // end method getGrossSales
41

Validate and set the gross sales value

26

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

CommissionEmployee
.java

(3 of 3)

42 // calculate earnings; override abstract method earnings in Employee
43 public double earnings()
44 {
45 return getCommissionRate() * getGrossSales();
46 } // end method earnings
47
48 // return String representation of CommissionEmployee object
49 public String toString()
50 {
51 return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",
52 "commission employee", super.toString(),
53 "gross sales", getGrossSales(),
54 "commission rate", getCommissionRate());
55 } // end method toString
56 } // end class CommissionEmployee

Override earnings method so
CommissionEmployee can be concrete

Override toString method

Call superclass’s toString method

27

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(1 of 2)

 1 // Fig. 10.8: BasePlusCommissionEmployee.java

 2 // BasePlusCommissionEmployee class extends CommissionEmployee.

 3
 4 public class BasePlusCommissionEmployee extends CommissionEmployee

 5 {

 6 private double baseSalary; // base salary per week

 7
 8 // six-argument constructor

 9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12 super(first, last, ssn, sales, rate);
13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePlusCommissionEmployee constructor
15
16 // set base salary
17 public void setBaseSalary(double salary)
18 {
19 baseSalary = (salary < 0.0) ? 0.0 : salary; // non-negative
20 } // end method setBaseSalary
21

Class BasePlusCommissionEmployee
extends class CommissionEmployee

Call superclass constructor

Validate and set base salary value

28

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

BasePlusCommission
Employee.java

(2 of 2)

22 // return base salary
23 public double getBaseSalary()
24 {
25 return baseSalary;
26 } // end method getBaseSalary
27
28 // calculate earnings; override method earnings in CommissionEmployee
29 public double earnings()
30 {
31 return getBaseSalary() + super.earnings();
32 } // end method earnings
33
34 // return String representation of BasePlusCommissionEmployee object
35 public String toString()
36 {
37 return String.format("%s %s; %s: $%,.2f",
38 "base-salaried", super.toString(),
39 "base salary", getBaseSalary());
40 } // end method toString
41 } // end class BasePlusCommissionEmployee

Override earnings method

Call superclass’s earnings method

Override toString method

Call superclass’s toString method

29

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayrollSystemTest

.java

(1 of 5)

 1 // Fig. 10.9: PayrollSystemTest.java

 2 // Employee hierarchy test program.

 3
 4 public class PayrollSystemTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // create subclass objects

 9 SalariedEmployee salariedEmployee =

10 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
11 HourlyEmployee hourlyEmployee =
12 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
13 CommissionEmployee commissionEmployee =
14 new CommissionEmployee(
15 "Sue", "Jones", "333-33-3333", 10000, .06);
16 BasePlusCommissionEmployee basePlusCommissionEmployee =
17 new BasePlusCommissionEmployee(
18 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
19
20 System.out.println("Employees processed individually:\n");
21

30

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayrollSystemTest

.java

(2 of 5)

22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33 Employee employees[] = new Employee[4];
34
35 // initialize array with Employees
36 employees[0] = salariedEmployee;
37 employees[1] = hourlyEmployee;
38 employees[2] = commissionEmployee;
39 employees[3] = basePlusCommissionEmployee;
40
41 System.out.println("Employees processed polymorphically:\n");
42
43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(currentEmployee); // invokes toString
47

Assigning subclass objects to
supercalss variables

Implicitly and polymorphically call toString

31

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayrollSystemTest

.java

(3 of 5)

48 // determine whether element is a BasePlusCommissionEmployee
49 if (currentEmployee instanceof BasePlusCommissionEmployee)
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 (BasePlusCommissionEmployee) currentEmployee;
55
56 double oldBaseSalary = employee.getBaseSalary();
57 employee.setBaseSalary(1.10 * oldBaseSalary);
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n", currentEmployee.earnings());
65 } // end for
66
67 // get type name of each object in employees array
68 for (int j = 0; j < employees.length; j++)
69 System.out.printf("Employee %d is a %s\n", j,
70 employees[j].getClass().getName());
71 } // end main
72 } // end class PayrollSystemTest

If the currentEmployee variable points to a
BasePlusCommissionEmployee object

Downcast currentEmployee to a
BasePlusCommissionEmployee
reference

Give BasePlusCommissionEmployees
a 10% base salary bonus

Polymorphically call
earnings method

Call getClass and getName methods to display
each Employee subclass object’s class name

32

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayrollSystemTest

.java

(4 of 5)

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
earned: $500.00

33

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayrollSystemTest

.java

(5 of 5)

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Same results as when the employees
were processed individually

Base salary is increased by 10%

Each employee’s type is displayed

34

© 2005 Pearson Education, Inc. All rights reserved.

10.5.6 Demonstrating Polymorphic
Processing, Operator instanceof and
Downcasting (Cont.)

• Downcasting
– Convert a reference to a superclass to a reference to a

subclass
– Allowed only if the object has an is-a relationship with the

subclass

•getClass method
– Inherited from Object
– Returns an object of type Class

•getName method of class Class
– Returns the class’s name

35

© 2005 Pearson Education, Inc. All rights reserved.

10.5.7 Summary of the Allowed
Assignments Between Superclass and
Subclass Variables

• Superclass and subclass assignment rules
– Assigning a superclass reference to a superclass variable is

straightforward
– Assigning a subclass reference to a subclass variable is

straightforward
– Assigning a subclass reference to a superclass variable is

safe because of the is-a relationship
• Referring to subclass-only members through superclass

variables is a compilation error
– Assigning a superclass reference to a subclass variable is a

compilation error
• Downcasting can get around this error

36

© 2005 Pearson Education, Inc. All rights reserved.

10.6 final Methods and Classes

•final methods
– Cannot be overridden in a subclass
– private and static methods are implicitly final
– final methods are resolved at compile time, this is known

as static binding
• Compilers can optimize by inlining the code

•final classes
– Cannot be extended by a subclass
– All methods in a final class are implicitly final

37

© 2005 Pearson Education, Inc. All rights reserved.

In the Java API, the vast majority of classes are
not declared final. This enables inheritance
and polymorphism—the fundamental
capabilities of object-oriented programming.
However, in some cases, it is important to
declare classes final—typically for security
reasons.

Software Engineering Observation 10.6

38

© 2005 Pearson Education, Inc. All rights reserved.

10.7 Case Study: Creating and Using
Interfaces

• Interfaces
– Keyword interface
– Contains only constants and abstract methods

• All fields are implicitly public, static and final
• All methods are implicitly public abstract methods

– Classes can implement interfaces
• The class must declare each method in the interface using the

same signature or the class must be declared abstract

– Typically used when disparate classes need to share
common methods and constants

– Normally declared in their own files with the same names
as the interfaces and with the .java file-name extension

39

© 2005 Pearson Education, Inc. All rights reserved.

10.7.1 Developing a Payable Hierarchy

•Payable interface
– Contains method getPaymentAmount
– Is implemented by the Invoice and Employee classes

• UML representation of interfaces
– Interfaces are distinguished from classes by placing the

word “interface” in guillemets (« and ») above the
interface name

– The relationship between a class and an interface is known
as realization

• A class “realizes” the method of an interface

40

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.10 | Payable interface hierarchy UML class diagram.

41

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Payable.java

 1 // Fig. 10.11: Payable.java

 2 // Payable interface declaration.

 3

 4 public interface Payable

 5 {

 6 double getPaymentAmount(); // calculate payment; no implementation

 7 } // end interface Payable

Declare interface Payable

Declare getPaymentAmount method which is
implicitly public and abstract

42

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Invoice.java

(1 of 3)

 1 // Fig. 10.12: Invoice.java

 2 // Invoice class implements Payable.

 3
 4 public class Invoice implements Payable

 5 {

 6 private String partNumber;

 7 private String partDescription;

 8 private int quantity;

 9 private double pricePerItem;

10
11 // four-argument constructor
12 public Invoice(String part, String description, int count,
13 double price)
14 {
15 partNumber = part;
16 partDescription = description;
17 setQuantity(count); // validate and store quantity
18 setPricePerItem(price); // validate and store price per item
19 } // end four-argument Invoice constructor
20
21 // set part number
22 public void setPartNumber(String part)
23 {
24 partNumber = part;
25 } // end method setPartNumber
26

Class Invoice implements
interface Payable

43

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Invoice.java

(2 of 3)

27 // get part number
28 public String getPartNumber()
29 {
30 return partNumber;
31 } // end method getPartNumber
32
33 // set description
34 public void setPartDescription(String description)
35 {
36 partDescription = description;
37 } // end method setPartDescription
38
39 // get description
40 public String getPartDescription()
41 {
42 return partDescription;
43 } // end method getPartDescription
44
45 // set quantity
46 public void setQuantity(int count)
47 {
48 quantity = (count < 0) ? 0 : count; // quantity cannot be negative
49 } // end method setQuantity
50
51 // get quantity
52 public int getQuantity()
53 {
54 return quantity;
55 } // end method getQuantity
56

44

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Invoice.java

(3 of 3)

57 // set price per item
58 public void setPricePerItem(double price)
59 {
60 pricePerItem = (price < 0.0) ? 0.0 : price; // validate price
61 } // end method setPricePerItem
62
63 // get price per item
64 public double getPricePerItem()
65 {
66 return pricePerItem;
67 } // end method getPricePerItem
68
69 // return String representation of Invoice object
70 public String toString()
71 {
72 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
73 "invoice", "part number", getPartNumber(), getPartDescription(),
74 "quantity", getQuantity(), "price per item", getPricePerItem());
75 } // end method toString
76
77 // method required to carry out contract with interface Payable
78 public double getPaymentAmount()
79 {
80 return getQuantity() * getPricePerItem(); // calculate total cost
81 } // end method getPaymentAmount
82 } // end class Invoice

Declare getPaymentAmount to fulfill
contract with interface Payable

45

© 2005 Pearson Education, Inc. All rights reserved.

10.7.3 Creating Class Invoice

• A class can implement as many interfaces as it
needs

– Use a comma-separated list of interface names after
keyword implements

• Example: public class ClassName extends
SuperclassName implements FirstInterface,
SecondInterface, …

46

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(1 of 3)

 1 // Fig. 10.13: Employee.java

 2 // Employee abstract superclass implements Payable.

 3
 4 public abstract class Employee implements Payable

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private String socialSecurityNumber;

 9
10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17

Class Employee implements
interface Payable

47

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(2 of 3)

18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first;
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last;
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41

48

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Employee.java

(3 of 3)

42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 public String toString()
56 {
57 return String.format("%s %s\nsocial security number: %s",
58 getFirstName(), getLastName(), getSocialSecurityNumber());
59 } // end method toString
60
61 // Note: We do not implement Payable method getPaymentAmount here so
62 // this class must be declared abstract to avoid a compilation error.
63 } // end abstract class Employee

getPaymentAmount method is

not implemented here

49

© 2005 Pearson Education, Inc. All rights reserved.

10.7.5 Modifying Class
SalariedEmployee for Use in the
Payable Hierarchy

• Objects of any subclasses of the class that
implements the interface can also be thought of as
objects of the interface

– A reference to a subclass object can be assigned to an
interface variable if the superclass implements that
interface

50

© 2005 Pearson Education, Inc. All rights reserved.

Inheritance and interfaces are similar in their
implementation of the “is-a” relationship. An
object of a class that implements an interface
may be thought of as an object of that interface
type. An object of any subclasses of a class that
implements an interface also can be thought of
as an object of the interface type.

Software Engineering Observation 10.7

51

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

SalariedEmployee

.java

(1 of 2)

 1 // Fig. 10.14: SalariedEmployee.java

 2 // SalariedEmployee class extends Employee, which implements Payable.

 3
 4 public class SalariedEmployee extends Employee

 5 {

 6 private double weeklySalary;

 7
 8 // four-argument constructor

 9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 weeklySalary = salary < 0.0 ? 0.0 : salary;
20 } // end method setWeeklySalary
21

Class SalariedEmployee extends class Employee
(which implements interface Payable)

52

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

SalariedEmployee

.java

(2 of 2)

22 // return salary
23 public double getWeeklySalary()
24 {
25 return weeklySalary;
26 } // end method getWeeklySalary
27
28 // calculate earnings; implement interface Payable method that was
29 // abstract in superclass Employee
30 public double getPaymentAmount()
31 {
32 return getWeeklySalary();
33 } // end method getPaymentAmount
34
35 // return String representation of SalariedEmployee object
36 public String toString()
37 {
38 return String.format("salaried employee: %s\n%s: $%,.2f",
39 super.toString(), "weekly salary", getWeeklySalary());
40 } // end method toString
41 } // end class SalariedEmployee

Declare getPaymentAmount method
instead of earnings method

53

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayableInterface

Test.java

(1 of 2)

 1 // Fig. 10.15: PayableInterfaceTest.java

 2 // Tests interface Payable.

 3
 4 public class PayableInterfaceTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // create four-element Payable array

 9 Payable payableObjects[] = new Payable[4];

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:\n");
21

Declare array of Payable variables

Assigning references to
Invoice objects to
Payable variables

Assigning references to
SalariedEmployee
objects to Payable variables

54

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

PayableInterface

Test.java

(2 of 2)

22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {
25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n%s: $%,.2f\n\n",
27 currentPayable.toString(),
28 "payment due", currentPayable.getPaymentAmount());
29 } // end for
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:

part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:

part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Call toString and getPaymentAmount
methods polymorphically

55

© 2005 Pearson Education, Inc. All rights reserved.

10.7.7 Declaring Constants with
Interfaces

• Interfaces can be used to declare constants used
in many class declarations

– These constants are implicitly public, static and
final

– Using a static import declaration allows clients to use
these constants with just their names

56

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.11

As of J2SE 5.0, it is considered a better
programming practice to create sets of
constants as enumerations with keyword
enum. See Section 6.10 for an introduction to
enum and Section 8.9 for additional enum
details.

57

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.16 | Common interfaces of the Java API.
(Part 1 of 2)

Interface Description
Comparable As you learned in Chapter 2, Java contains several comparison operators (e.g.,

<, <=, >, >=, ==, !=) that allow you to compare primitive values. However,
these operators cannot be used to compare the contents of objects. Interface
Comparable is used to allow objects of a class that implements the interface
to be compared to one another. The interface contains one method,
compareTo, that compares the object that calls the method to the object
passed as an argument to the method. Classes must implement compareTo
such that it returns a value indicating whether the object on which it is invoked
is less than (negative integer return value), equal to (0 return value) or greater
than (positive integer return value) the object passed as an argument, using any
criteria specified by the programmer. For example, if class Employee
implements Comparable, its compareTo method could compare
Employee objects by their earnings amounts. Interface Comparable is
commonly used for ordering objects in a collection such as an array. We use
Comparable in Chapter 18, Generics, and Chapter 19, Collections.

Serializable A tagging interface used only to identify classes whose objects can be written
to (i.e., serialized) or read from (i.e., deserialized) some type of storage (e.g.,
file on disk, database field) or transmitted across a network. We use
Serializable in Chapter 14, Files and Streams, and Chapter 24,
Networking.

58

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.16 | Common interfaces of the Java API.
(Part 2 of 2)

Interface Description

Runnable Implemented by any class for which objects of that class should be able to execute
in parallel using a technique called multithreading (discussed in Chapter 23,
Multithreading). The interface contains one method, run, which describes the
behavior of an object when executed.

GUI event-listener
interfaces

You work with Graphical User Interfaces (GUIs) every day. For example, in your
Web browser, you might type in a text field the address of a Web site to visit, or
you might click a button to return to the previous site you visited. When you type a
Web site address or click a button in the Web browser, the browser must respond to
your interaction and perform the desired task for you. Your interaction is known as
an event, and the code that the browser uses to respond to an event is known as an
event handler. In Chapter 11, GUI Components: Part 1, and Chapter 22, GUI
Components: Part 2, you will learn how to build Java GUIs and how to build event
handlers to respond to user interactions. The event handlers are declared in classes
that implement an appropriate event-listener interface. Each event listener interface
specifies one or more methods that must be implemented to respond to user
interactions.

SwingConstants Contains a set of constants used in GUI programming to position GUI elements on
the screen. We explore GUI programming in Chapters 11 and 22.

59

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.17 | MyShape hierarchy.

60

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.18 | MyShape hierarchy with MyBoundedShape.

61

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.19 | Attributes and operations of classes BalanceInquiry,
Withdrawal and Deposit.

62

© 2005 Pearson Education, Inc. All rights reserved.

10.9 (Optional) Software Engineering
Case Study: Incorporating Inheritance
into the ATM System

• UML model for inheritance
– The generalization relationship

• The superclass is a generalization of the subclasses
• The subclasses are specializations of the superclass

•Transaction superclass
– Contains the methods and fields BalanceInquiry,
Withdrawal and Deposit have in common

• execute method
• accountNumber field

63

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10. 20 | Class diagram modeling generalization of superclass
Transaction and subclasses BalanceInquiry, Withdrawal and
Deposit. Note that abstract class names (e.g., Transaction) and

method names (e.g., execute in class Transaction) appear in
italics.

64

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.21 | Class diagram of the ATM system (incorporating
inheritance). Note that abstract class names (e.g., Transaction)

appear in italics.

65

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.12

A complete class diagram shows all the
associations among classes and all the attributes
and operations for each class. When the number
of class attributes, methods and associations is
substantial (as in Fig. 10.21 and Fig. 10.22), a good
practice that promotes readability is to divide this
information between two class diagrams—one
focusing on associations and the other on
attributes and methods.

66

© 2005 Pearson Education, Inc. All rights reserved.

10.9 (Optional) Software Engineering
Case Study: Incorporating Inheritance
into the ATM System (Cont.)

• Incorporating inheritance into the ATM system
design

– If class A is a generalization of class B, then class B extends
class A

– If class A is an abstract class and class B is a subclass of
class A, then class B must implement the abstract methods
of class A if class B is to be a concrete class

67

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 10.22 | Class diagram with attributes and operations (incorporating
inheritance). Note that abstract class names (e.g., Transaction) and method

names (e.g., execute in class Transaction) appear in italic

68

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.java

 1 // Class Withdrawal represents an ATM withdrawal transaction

 2 public class Withdrawal extends Transaction

 3 {

 4 } // end class Withdrawal

Subclass Withdrawal extends

superclass Transaction

69

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Withdrawal.java

 1 // Withdrawal.java

 2 // Generated using the class diagrams in Fig. 10.21 and Fig. 10.22

 3 public class Withdrawal extends Transaction

 4 {

 5 // attributes

 6 private double amount; // amount to withdraw

 7 private Keypad keypad; // reference to keypad

 8 private CashDispenser cashDispenser; // reference to cash dispenser

 9
10 // no-argument constructor
11 public Withdrawal()
12 {
13 } // end no-argument Withdrawal constructor
14
15 // method overriding execute
16 public void execute()
17 {
18 } // end method execute
19 } // end class Withdrawal

Subclass Withdrawal extends
superclass Transaction

70

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 10.13

Several UML modeling tools convert UML-based
designs into Java code and can speed the
implementation process considerably. For more
information on these tools, refer to the Internet
and Web Resources listed at the end of
Section 2.9.

71

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Transaction.java

(1 of 2)

 1 // Abstract class Transaction represents an ATM transaction

 2 public abstract class Transaction

 3 {

 4 // attributes

 5 private int accountNumber; // indicates account involved

 6 private Screen screen; // ATM’s screen

 7 private BankDatabase bankDatabase; // account info database

 8
 9 // no-argument constructor invoked by subclasses using super()

10 public Transaction()
11 {
12 } // end no-argument Transaction constructor
13
14 // return account number
15 public int getAccountNumber()
16 {
17 } // end method getAccountNumber
18

Declare abstract superclass Transaction

72

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Transaction.java

(2 of 2)

19 // return reference to screen

20 public Screen getScreen()

21 {

22 } // end method getScreen

23

24 // return reference to bank database

25 public BankDatabase getBankDatabase()

26 {

27 } // end method getBankDatabase

28

29 // abstract method overridden by subclasses

30 public abstract void execute();

31 } // end class Transaction
 Declare abstract method execute

	10
	A Motivating Example
	Fig. 10.2 | Employee hierarchy UML class diagram.
	Outline
	Outline
	Outline
	Outline
	Outline
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior – Toy Example
	Outline
	Outline
	10.4 Abstract Classes and Methods
	10.5.1 Creating Abstract Superclass Employee
	Fig. 10.2 | Employee hierarchy UML class diagram.
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	10.5.6 Demonstrating Polymorphic Processing, Operator instanceof and Downcasting (Cont.)
	10.5.7 Summary of the Allowed Assignments Between Superclass and Subclass Variables
	10.6 final Methods and Classes
	Software Engineering Observation 10.6
	10.7 Case Study: Creating and Using Interfaces
	10.7.1 Developing a Payable Hierarchy
	Fig. 10.10 | Payable interface hierarchy UML class diagram.
	Outline
	Outline
	Outline
	Outline
	10.7.3 Creating Class Invoice
	Outline
	Outline
	Outline
	10.7.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	Software Engineering Observation 10.7
	Outline
	Outline
	Outline
	Outline
	10.7.7 Declaring Constants with Interfaces
	Software Engineering Observation 10.11
	Fig. 10.16 | Common interfaces of the Java API.�(Part 1 of 2)
	Fig. 10.16 | Common interfaces of the Java API. � (Part 2 of 2)
	Fig. 10.17 | MyShape hierarchy.
	Fig. 10.18 | MyShape hierarchy with MyBoundedShape.
	Fig. 10.19 | Attributes and operations of classes BalanceInquiry, Withdrawal and Deposit.
	10.9 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System
	Fig. 10. 20 | Class diagram modeling generalization of superclass Transaction and subclasses BalanceInquiry, Withdrawal and De
	Fig. 10.21 | Class diagram of the ATM system (incorporating inheritance). Note that abstract class names (e.g., Transaction) a
	Software Engineering Observation 10.12
	10.9 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System (Cont.)
	Fig. 10.22 | Class diagram with attributes and operations (incorporating inheritance). Note that abstract class names (e.g., T
	Outline
	Outline
	Software Engineering Observation 10.13
	Outline
	Outline

