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SUMMARY

A formulation for design of continuous, hinge-free compliant mechanisms is developed and examined
within a continuum structural topology optimization framework. The formulation makes use of two
distinctly different sets of springs, the first of which are artificial springs of relatively large stiffness
attached to the input and output ports of the mechanism model, and the second of which are
springs attached only to the output port with smaller stiffnesses that represent the resistance of the
workpiece as it is manipulated by the mechanism. The proposed formulation involves solving two
nested optimization problems. In the inner problem the arrangement of a constrained amount of
structural material is optimized to maximize the mechanism’s mutual potential energy in response to
a force loading at the input port while working against the stiff artificial springs on the input and
output ports. As the relative stiffness of the artificial springs increases, the material continuity of the
mechanism also increases to the point where de facto ‘hinge’ regions are eliminated. In the outer
problem, the artificial springs are removed and one solves for an appropriate amount of structural
material that yields the desired finite deformation compliance characteristics of the mechanism when
working against the real workpiece resistance. Different aspects of the proposed formulation are
demonstrated on a number of examples and discussed. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Compliant vs rigid-body mechanisms

In rigid-body mechanisms, the components of a system work together as essentially inflexible
members to convert forces/torques applied at an input port into desired kinematic motion at a
designated output port of the system. While rigid-body mechanisms (such as pulleys, hinges,
gears, shafts, cranks, etc.) can be optimal in innumerable macroscopic mechanical systems,
they are less suited for micro-scale mechanical systems due to the fundamental difficulty
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of fabricating reliable hinged- or pinned-joints on such small scales. Accordingly, compliant
mechanisms that transmit applied forces/torques from input ports to output ports by elastic
deformation of the comprising material are receiving considerable attention for microscale
mechanical systems. In compliant mechanisms, the system is generally continuous, monolithic
and, to some extent, flexible.

Although methods for fabricating micro- and nano-scale compliant mechanisms (and MEMS)
have undergone considerable development over the past decade, corresponding methodologies
for design of compliant mechanisms remain an open area. One of the first approaches used for
designing compliant mechanisms was based on converting analogous rigid-body mechanisms
into compliant mechanisms [1]. While many workable compliant mechanisms have been de-
signed using this approach [2], it can require a good deal of human intuition and involvement
to achieve suitable mechanisms with specified performance characteristics.

A second approach for designing compliant mechanisms that accounts for both the stiffness
and flexibility requirements of the mechanism involves usage of structural topology optimiza-
tion. Ananthasuresh et al. [3] were among the first to apply continuum topology optimization
to design of compliant mechanisms, using a multi-objective formulation based on weighted
sums of the mechanism flexibility and stiffness. Frecker et al. [4] explored continuum topol-
ogy design of compliant mechanisms using a product of stiffness and flexibility objectives
but noted some difficulty in controlling the tradeoffs between flexibility and stiffness. Larsen
et al. [5] employed an objective function that used both the mechanical advantage (MA) and
geometrical advantage (GA) of the mechanism to achieve compliant mechanism designs with
specified force/displacement characteristics.

While the works cited were intended to design single-material mechanisms with modelling
based on linear elasticity theory, continuum topology optimization methods for compliant mech-
anisms have more recently been extended to include geometrical non-linearity [6–9], stress
constraints and strength [10, 11], multiple materials [12] and multi-physics [13–15]. Despite
these significant advances, a number of more fundamental issues still remain to be resolved
in order to achieve designs that will function as intended, and so some of these issues are
addressed in this manuscript.

1.2. The challenge of De Facto hinges in design of compliant mechanisms

One of the main difficulties in applying continuum topology optimization formulations to design
of compliant mechanisms is their strong tendency to introduce de facto hinges into the design
models, making them function essentially as rigid-body mechanisms [12]. Such de facto hinge
zones are typically artifacts of the finite element method used in the analysis and the problem
formulation used to obtain the design. A specific illustration of the problem is provided in two
fairly typical continuum topology design solutions for a force-inverter compliant mechanism
(Figure 1). Both designs shown feature numerous de facto hinge regions which are points
in the finite element model about which, when the mechanism is loaded, the surrounding
materials (structural members) undergo essentially rigid-body rotations. The de facto hinge
regions generally lie along the force path from the mechanism input port to the output port
and are zones of high material compliance. Since it is presently very difficult to fabricate
reliable hinges for micro-scale mechanical systems, designs that feature de facto hinges are of
questionable utility. Accordingly, a variety of strategies have been investigated for dealing with
problematic de facto hinge regions in continuum topology design of compliant mechanisms.
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Figure 1. (a) Undeformed configuration of material layout for a force-inverter compliant mechanism
obtained by minimizing a quotient objective function; (b) deformed configuration under loading; (c)
undeformed configuration of force-inverter mechanism obtained by minimizing weighted sum objective

function; and (d) deformed configuration under loading.

One notable approach to solving the de facto hinge problem is to use second-stage design
operations that attempt to redesign the de facto hinge regions as continuous material bridges
that function as lumped compliance regions [8]. In such approaches, the lumped compliance
regions are modelled as compliant, necked links of material that connect the essentially rigid
members of the mechanism. An attempt is then made to design the compliant links to have
suitable shape characteristics (length and thickness) such that the maximum strain is below the
yield strain of the material and such that the mechanism will still function as desired.

A number of different techniques for eliminating de facto hinges in compliant mechanism
models have been investigated by Poulsen who in Reference [16] formulated the continuum
topology design problem within a finite element framework and used wavelet basis functions to
interpolate material layout design variables. Although the wavelet basis functions were chosen
in a way that attempted to preclude formation of de facto hinge regions, the approach was
not entirely effective, making necessary second-stage operations to re-design the hinge zones.
In a subsequent work Poulsen [17] had more success at elimination of hinges in compliant
mechanisms, and mesh-dependent designs in general, by imposing monotonicity based minimum
length scale constraints on the designs.

More physically based approaches were investigated by Yin and Ananthasuresh [18] who
studied two alternative strategies for obtaining material layout designs free of de facto hinges
within a traditional FEM framework. In the first, an upper bound constraint was imposed on
the distortional strain energy in the de facto hinge regions, and in the second an upper bound
constraint was imposed on local relative material rotations. The first of the two attempted ap-
proaches was unsuccessful at precluding lumped compliance regions, while the second approach
showed some success in yielding distributed compliance mechanisms.
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A final approach to topological design of compliant mechanisms that circumvents difficulties
associated with formation of de facto hinge regions in continuum topology methods involves
ground structure methods. These solve for the optimal arrangements of discrete frame members
that can carry extensional, shear, and bending loads [9, 19–21]. The joints connecting individual
frame members transmit moments and thus do not behave as de facto hinges. Nevertheless,
a significant challenge with these approaches is that they do not necessarily model all of the
interactions between frame members that cross within the plane of the structure.

1.3. Scope of article

In the body of this paper, a novel formulation for design of monolithic, hinge-free compliant
mechanisms is investigated within a linear and non-linear elastic continuum topology optimiza-
tion framework. The formulation makes use of two distinctly different sets of springs, the first
of which are artificial springs of relatively large stiffness attached to the input and output ports
of the mechanism model, and the second of which are springs attached only to the output port
with smaller stiffnesses that represent the resistance of the workpiece as it is manipulated by the
mechanism. The proposed formulation involves solving two nested optimization problems. In
the inner problem the arrangement of a constrained amount of structural material is optimized
to maximize the mechanism’s linear elastic mutual potential energy [22] in response to a force
loading at the input port while working only against the stiff artificial springs on the input and
output ports. As the relative stiffness of the artificial springs increases, the material continuity
of the mechanism also increases to the point where de facto ‘hinge’ regions are eliminated. In
the outer problem, the artificial springs are removed and one solves for an appropriate amount
of structural material that yields the desired finite deformation compliance characteristics of
the mechanism when working against the real workpiece resistance. A number of examples
are presented with varying artificial spring stiffnesses, varying structural materials, and varying
material usage constraints to investigate the validity and utility of the proposed formulation,
followed by discussion and concluding remarks.

Preceding efforts [3, 14, 20, 23] have introduced springs on the output ports of compliant
mechanism models to capture the resistances associated with workpieces, while some have
introduced constraints on the input port displacements. These springs and displacement con-
straints facilitate, to some degree, an ability to control the mechanical advantage (MA) and the
geometrical advantage (GA) of the mechanism being designed. While springs and displacement
constraints have indeed been utilized in previous design studies, a systematic study of their
impact on both formation of de facto hinge regions and control of stiffness/flexibility tradeoffs
has not been systematically explored. The proposition of this work is that judicious usage of
springs in the design of compliant mechanisms can facilitate realization of monolithic compliant
mechanism designs and by subsequently manipulating the sparsity of the mechanism designs
the compliance characteristics can be tuned to desired levels.

2. ELEMENTS OF PROBLEM FORMULATION

2.1. Design variables, mixing rules, analysis model

Within a spatial domain �b the layout of structural material with which a compliant mechanism
is to be fabricated is here called the ‘design’ of the mechanism. To achieve a detailed and yet

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1579–1605



SPARSE MONOLITHIC COMPLIANT MECHANISMS 1583

finite-dimensional description of material layout in the mechanism within �b, a ‘design vector’
b consisting of N design variables is used

b = {�1, �2, . . . , �N } (1)

where each of the design variables assumes a value on the interval [0, 1] and denotes a
volumetric density of structural material. In the particular framework used here, each design
variable in Equation (1) corresponds to volumetric density of structural material at a node
in the mathematical model used to compute the structural performance of the mechanism.
Accordingly, at a given spatial point X ∈ �b the volumetric density of structural material can
be obtained simply by interpolation of the nodal densities as follows:

�(X) =
N∑

A=1
NA(X)�A (2)

where the NA represent a set of linearly independent nodal basis functions that feature at least
C0 continuity. Because this formulation assures C0 continuity of the design variable field no
precautions need be taken to preclude ‘checkerboarding’ designs, although the method will
generally need to be used with perimeter constraints [24] to ensure convergence of designs
with mesh refinement of the analysis model [25].

Typically layout optimization of material in compliant mechanisms is performed with a finite
(or constrained) amount of material specified as a fraction �M of the mechanism’s envelope
volume. For a given design b, the fractional volume of structural material as compared to the
mechanism’s envelope volume is computed as follows:

�M =

∫
�b

�(X) d�
∫

�b

d�
(3)

where the numerator provides the material volume of the mechanism, and the denominator the
envelope volume of the mechanism model.

Since at each point X ∈ �b there is generally a mixture of a solid structural material and
a void-like material with respective volume fractions �(X) and 1 − �(X) a methodology is
generally needed to determine the effective stiffness properties of the solid–void mixture or
composite. A number of different possibilities exist, and a fairly detailed review was presented in
Reference [26]. Here, a simple iso-deformation powerlaw mixing rule is employed in which it is
assumed that both the solid and void-like material at a point X undergo identical deformations.
Accordingly, at each point X ∈ �b, both the solid and void-like materials share the same
deformation gradient:

F(X) = Fsolid(X) = Fvoid(X) ≡ �x
�X

(4)

The particular isotropic hyperelastic strain energy function U used here is that of Ciarlet
[27] wherein the volumetric (UV) and deviatoric (UD) strain energy functions are assumed
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to be decoupled and of the forms:

U(F ) = UV(J ) + UD(�) (5a)

UV(J ) = 1
2K

[
1
2 (J 2 − 1) − ln(J )

]
(5b)

UD = 1
2�[tr(�̄) − 3] (5c)

In the preceding expression, J is the determinant of F ; K is a constant bulk modulus; �
is a constant shear modulus; � = FF T is the left Cauchy–Green deformation tensor; and
�̄ = J−(2/3)� is its scaled counterpart having a determinant of unity. For this model, therefore,
the Kirchhoff stress � in a material is thus related to deformation quantities as follows:

� = K

2
(J 2 − 1)1 + �Idev : �̄ (6)

where 1 is the rank-2 identity tensor, and Idev = I − 1
3 (1 ⊗ 1) is the rank-4 deviatoric tensor

with I the rank-4 identity operator.
Although the solid and void-like materials share the same state of deformation in accordance

with Equation (4), the stress states in each are generally consistent with their own constitutive
behaviors and material properties. Assuming that both the solid and void-like materials can be
represented by the isotropic hyperelastic constitutive model above it follows that a point X the
stresses in the respective materials would be

�solid = Ksolid

2
(J 2 − 1)1 + �solidIdev : �̄

�void = Kvoid

2
(J 2 − 1)1 + �voidIdev : �̄

(7)

In accordance with the powerlaw mixing rule the average stress in the solid–void mixture at
point X is simply the weighted sum as follows:

�(X) = �P (X)�solid + [1 − �P (X)]�void (8)

To achieve the effect of a void-like material in this work, the bulk and shear moduli of the
void material are taken to be 10−6 times those in the solid structural material. In the mixing
rule of Equation (8), the powerlaw exponent P is generally chosen larger than unity, but less
than or equal to four. A value of unity yields the classical Voigt rule of mixtures, whereas a
value of P = 4 leads to a penalized mixture in which stiffnesses approaching that of the solid
material are achieved only for values of � very close to unity.

The strong form of the non-linear elliptic boundary value problem to be solved for the
structural displacement field in the compliant mechanism model is as follows:

Find u: (�b × [0, T ]) �→ R3 such that:

�ij,j + �0�j = 0 on �b∀t ∈ [0, T ] (9a)
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subject to the boundary conditions:

uj (t) = gj (t) on �gj for j = 1, 2, 3, ∀t ∈ [0, T ] (9b)

ni�ij = hj (t) on �hj for j = 1, 2, 3, ∀t ∈ [0, T ] (9c)

Above, � denotes the Kirchhoff stress tensor field which is related to the Cauchy stress tensor
� via the relation � = J�, where J = det(F) and F is the deformation gradient operator. As is
customary, it is assumed that the Lagrangian surface � = �gj ∪ �hj bounding the Lagrangian
structural domain �b admits the decomposition �gj

∩ �hj
= {∅} for j = 1, 2, 3. For a given

mesh discretization of �b whose complete set of nodes is denoted �, the subsequent design
formulation is facilitated by introducing a subset of nodes �h at which non-vanishing external
forces are applied, and a subset of nodes �g at which non-vanishing prescribed displacements are
applied. The nodes in the model at which the unknown displacements remain to be determined
form the set denoted � − �g .

Using standard techniques, the virtual work equivalent of the original problem statement in
Equations (9) can be obtained in the following form:

∫
�b

�ij��ij d�S =
∫

�b

�0�j�uj d�S +
∫

�h

hj�uj d�h (10)

In the expression above, the quantity on the left represents the internal virtual work �W int, and
that on the right, the external virtual work �W ext.

Usage of a Galerkin formulation, in which the real and variational kinematic fields are
expanded in terms of the same nodal basis functions, and discretization of the time domain
into a finite number of discrete time points, leads to the following force balance equations at
each unrestrained node A in the mesh as here at the (n + 1)th time step:

rA
n+1 = (f int)An+1 − (fext)An+1 = 0 ∀A ∈ � − �g (11)

where

(f int)An+1 =
∫

�b

(BA)Tn+1 : �n+1 d�b (12)

(fext)An+1 =
∫

�b

�0N
A�n+1 d�b +

∫
�h

NAhn+1 d�h (13)

In Equation (12), BA
n+1 represents the spatial infinitesimal nodal strain displacement matrix

(BA
n+1 = ∇s

xn+1
NA(x)), and NA denotes the nodal basis function for the Ath node. Un-

der finite deformations, Equation (11) represents a set of non-linear algebraic equations that
must be solved in an iterative fashion for the incremental nodal displacements (�uA)n+1 =
uA

n+1 − uA
n for each time step of the analysis problem and ∀A ∈ � − �g . When external forces

applied to a structure are independent of its response, the derivative of the ith residual force
vector component at the Ath node with respect to the j th displacement vector component of
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the Bth node is simply:

KAB
il =

∫
�b

BA
jicjkB

B
kl d�S +

∫
�b

NA
,j �jkN

B
,k�il d�S (14)

where cjk is the spatial elasticity tensor in condensed form. Assembly of this nodal stiffness
operator for all unrestrained nodes A and B gives the structural tangent stiffness matrix. Further
implementational details on the powerlaw mixing rule for two hyperelastic solids in a finite
deformation framework are available in References [28, 29].

2.2. Compliant mechanism performance measures

Within a continuum topology optimization framework, design of compliant mechanisms can be
formulated in a number of alternative ways through utilization of assorted objective and con-
straint functions. Generally, however, the broad objective is to find a compliant mechanism that
efficiently converts applied forces/displacements at an input port into desired forces/displacements
at an output port, while a constraint function limits the amount of structural material that can
be used.

The flexibility and stiffness characteristics of a mechanism can be quantified using relation-
ships between the applied actuation forces, the resulting displacements at the input port of
the mechanism, and the resulting displacements and reaction forces at the output port of the
mechanism. Larsen et al. [5], for example, used the concepts of the mechanism’s GA and MA
to quantify the performance characteristics. The GA of a mechanism is defined [Equation (151)]
as the component of displacement uout in a desired direction �out at the output port due to an
input port force fin divided by the displacement magnitude of the input port uin also due to
the input port force fin. The MA is defined [Equation (152)] as the ratio of the magnitudes of
the reaction force R at the output port and the input port force fin. The mechanical efficiency
(ME) of a mechanism is quantified [Equation (153)] as the product of its GA and MA.

GA = �out · uout

‖uin‖ ; MA = R · �out

‖fin‖ ; ME = MA · GA (15)

The mutual potential energy (MPE) of a mechanism [22] is yet another performance measure
that in accordance with Figure 2(a) can be expressed as

MPE = fv
out · u(1)

out (16)

where u(1)
out is the displacement at the output port due to the load fin applied at the input port,

and fv
out is a virtual force at the output port specifying the direction of the desired output port

displacement. For a given mechanism and input load fin the resulting MPE will typically be
inversely related to the resistance supplied at the O/P. Hence when one refers to specific values
of MPE both the input load fin and the O/P resistance should generally be stated. An additional
quantity worth noting is termed the complimentary compliance of the mechanism here denoted
by EC . As used herein the complimentary compliance EC of a mechanism is similar to the
MPE with the exception that it explicitly takes account of the input force magnitude:

EC = ‖fin‖
‖fv

out‖
(

fv
out · u(1)

out

)
= ‖fin‖

‖fv
out‖

∗ MPE (17)
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Figure 2. Elements of the compliant mechanism design formulation: (a) problem for analysing kinematic
performance of the mechanism (no springs shown attached to �in although there generally will be);

and (b) problem for computing the input-restrained compliance.

Like the MPE, this quantity, for a given mechanism, will typically be dependent upon the
workpiece resistance kout supplied at the O/P.

Two last performance measures to be mentioned are the standard mean compliance of the
mechanism �(1) when the input port is free and a force fin is applied to the input port, and
the compliance �(2) of the mechanism when the input port is restrained and a force fv

out is
applied to the output port. When the mechanism behaves in a linear elastic fashion, the mean
compliance �(1) is simply �(1) = fin ·u(1)

in where u(1)
in is the resulting displacement at the input

port. The compliance of the mechanism for the loading case (Figure 2(b)) where the input port
is restrained and the force fv

out is applied to the output port is denoted �(2) and is computed
as follows:

�(2) = fv
out · u(2)

out (18)

where u(2)
out is the resulting displacement at the output port. In subsequent discussion, this

quantity is referred to as the ‘input-restrained compliance.’
Various combinations of the assorted performance metrics introduced above have been used in

design optimization of compliant mechanisms to achieve the desired stiffness and the flexibility
characteristics. One notable objective function that has been examined [4] is the ratio of the
sign-inverted mutual potential energy and the ‘input-restrained compliance:’

� = −MPE

�(2)
= −fv

out · u(1)
out

fv
out · u(2)

out

(19)

Design optimization of compliant mechanisms (e.g. the force-inverter compliant mechanism in
Figure 1(a) and (b)) using this objective function can suffer from the existence of many local
minima associated with extremization of the numerator, and extremization of the denominator.
Furthermore, this formulation does not appear to preclude the formation de facto hinges.
An alternative objective function that permits greater control of the competing stiffness and
flexibility objectives is a weighted sum of the mechanism’s GA and MA (Figure 1(c) and
(d)). Nevertheless, as the design of Figure 1(c) and (d) suggests this formulation can yield
problematic designs with de facto hinge regions.
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3. ENERGY CONSIDERATIONS FOR COMPLIANT MECHANISMS

Assume that a compliant mechanism is to be designed and that an artificial spring with stiffness
kin is attached to the input port as shown in Figure 3, and an artificial spring with stiffness
kout is attached to the output port. For an actuation force fin applied to the input port it is
assumed that a minimal energy displacement solution exists satisfying the following equilibrium
condition:

fin + fspring
in + f reaction

in = 0 (20)

where fspring
in is the spring reaction force at the input port, and f reaction

in is the reaction force at
the input port from the compliant mechanism system. The total work done by the actuation
force at the input port (Win) can be written as follows:

Win = W
spring
in + W reaction

in (21)

where W
spring
in is the energy stored in the spring and W reaction

in that stored in the mechanism.
The spring on the input port is associated with a given node (or nodes) of the structural model,
and features both a direction and magnitude as follows:

Kspring
in = kin(�in ⊗ �in) (22)

where kin gives the magnitude of the artificial input port spring stiffness, and �in ∈ �ndof×numnp

is a unit vector that defines the node(s) and directionality of the input port spring.
If the mechanism design is much more compliant than artificial spring attached to the

input port, then most of the input force fin will be carried by the spring on the input port,
and consequently it will follow that W

spring
in ?W reaction

in . Alternatively, if the stiffness of the

Γin

Γout

inf

v
outf

ink

kout

Figure 3. Schematic of compliant mechanism design problem using artificial springs attached
to both input port and output port.
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mechanism design approaches that of the artificial input spring kin a significantly larger fraction
of the input force will be transferred to the mechanism, and the energy transferred to the
mechanism W reaction

in will be maximized. This last point is demonstrated quantitatively through
brief consideration of a load f carried by two springs of stiffness ks and 	ks with ks > 0 and
	 > 0 acting in parallel (Figure 4). The upper spring (ks) represents the stiffness of an artificial
spring attached to the input port, and the lower spring stiffness (	ks) the input stiffness of
the mechanism. For a given aligned force f passing through the parallel spring system, the
energy stored in the lower spring (i.e. the mechanism) is denoted by 	/2ks(f/(1+	))2 and this
quantity is maximized when 	 = 1. The point of this analogy is that the energy transmitted to
the mechanism (W reaction

in ) is maximized as the stiffness of the mechanism at the I/P approaches
that of the artificial spring on the input port (kin).

At the output port of the mechanism there is no actuation force and the following equilibrium
state must be satisfied:

fspring
out + f reaction

out = 0 (23)

and all of the mechanical work done at the output port will be stored in the attached spring
so that:

W
spring
out = W reaction

out (24)

The artificial spring attached to the output port can be represented by the expression

Kspring
out = kout(�out ⊗ �out) (25)

where kout gives the magnitude of the stiffness, and �out ∈ �ndof×numnp is a unit vector
that defines the node(s) and directionality of the spring. The work done at the output port
(W

spring
out = W reaction

out ) is bounded above by the energy transmitted to the mechanism at the
input port, (i.e. W reaction

in �W reaction
out ). In fact, the difference between W reaction

in and W reaction
out is

the energy stored in the mechanism Wmechanism
stored . Consequently, if the design goal is to maximize

W reaction
out this can be done by first maximizing W reaction

in and then minimizing the strain energy
stored in the mechanism Wmechanism

stored .
To summarize these observations regarding effects of input and output port spring stiffnesses:

1. Of the actual energy supplied to the mechanism at the input port (W reaction
in ), only a

fraction (Wmechanism
stored ) is stored in the device as strain energy with the remainder (W reaction

out )

available to do work against the artificial springs at the O/P. The mechanism design should
be fairly stiff to minimize (Wmechanism

stored ).
2. In design optimization of the mechanism to maximize W reaction

out , the device stiffness near
the I/P tends to mimic that of the artificial spring kin. If kin is small, then the stiffness
of the mechanism near the I/P will be small, and vice versa.

3. In design optimization of the mechanism to maximize W reaction
out , the device stiffness near

the O/P tends to mimic that of the artificial spring kout.

(a) With compliant artificial springs attached to the O/P, the magnitude of fspring
out will be

relatively small and (W reaction
out ) is maximized by increasing the magnitude of uout.

Accordingly, the mechanism will be very compliant in the vicinity of the output port.
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sk

skα

ff ∆y

∆x

1 

Figure 4. Two springs acting in parallel to carry
an applied force f . Energy stored in the lower
spring is maximized when 	 = 1 so that the up-
per and lower springs have identical stiffnesses.

Figure 5. Boundary value problem to determine
appropriate bounding stiffnesses kb for artificial
springs for the force-inverter mechanism. In the
problem, the design domain with �x = 3 cm
and �y = 3 cm is completely occupied by
structural material, the O/P is restrained, and
a unit load is applied to the I/P. With structural
material of aluminium, kb = 1.6 × 1010 N/m;
with polysilicon kb = 4.4 × 1010 N/m; with

nylon kb = 6.9 × 108 N/m.

(b) Conversely, with stiffer artificial springs attached to the O/P, the reaction force fspring
out

will be larger, and output port work is maximized by creating a large reaction force
there together with a modest output displacement. To generate a large reaction force
at the O/P, the stiffness of the mechanism in the vicinity of the O/P will tend to
match kout.

Based on these observations it is postulated here that mechanism designs containing de facto
hinge regions are ineffective at transmitting energy from an input port to an output port when
working against stiff artificial springs on both the I/P and O/P (Figure 3). It follows from this
postulate that if the mechanism with a set of artificial springs on both the I/P and O/P as
indicated in Figure 3, and for a given actuation force fin, is designed to maximize W reaction

out ,
the mechanism stiffness will tend to match those of the artificial springs attached‡ and the
mechanism design itself will not contain de facto hinges. The objective of this work is to
exploit this tendency and in doing so, to obtain functional compliant mechanism designs that
are free of de facto hinge regions.

In selecting the artificial spring stiffnesses kin and kout to be used in designing a mechanism,
appropriate magnitudes should be selected. It is proposed here that upper bounds on kin and
kout should correspond to the mechanism’s I/P and O/P stiffnesses when the design region �b is
fully occupied by structural material. Such upper bounds will naturally depend functionally on
the size of the mechanism being designed, the stiffness of the material being used to fabricate
the mechanism, and the support conditions applied to the mechanism domain �b. To account
for these factors, upper bound values kb, hereafter called bounding spring values on kin and

‡If the mechanism design is sparse, with significant constraints on the quantity of material that can be used,
then mechanism stiffness will not be able to match that of stiff artificial springs.
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kout, are computed by applying a unit load to the mechanism model I/P in the direction of
the design loading with the O/P restrained and the structural domain �b fully occupied by the
structural material (Figure 5). The stiffness of the model under these conditions provides the
bounding spring value kb as follows: kb = ‖fin‖/‖uin‖ where uin is the resulting displacement
at the I/P when a unit load fin is applied there.

4. A PROPOSED DESIGN FORMULATION

In the proposed design formulation, usage is made of two distinctly different sets of springs
having different purposes. First, the stiff artificial springs discussed above are attached to both
the I/P and O/P of the mechanism with the goal of achieving mechanism designs that, for a
fixed amount of structural material, maximize the linear elastic MPE while working against the
springs (Figure 6(a)). It is emphasized that such designs, for a specified amount of structural
material, will have maximal stiffness in accordance with the energy considerations discussed
above. To subsequently model how such mechanism designs function at finite deformations
under real workpiece resistance, the stiff artificial springs are removed and a second set of
springs, hereafter termed workpiece springs, are used (Figure 6(b)). These workpiece springs
are typically attached only to the O/P of the mechanism, and are generally much smaller in
magnitude than the artificial springs. A realistic goal in design of compliant mechanisms is
to have the mechanism be free of de facto hinges, and to have a complimentary compliance
EC at finite deformation that exceeds a certain threshold value E∗

C when working against the
workpiece resistance in response to a specified actuation force fin.

To design a mechanism within the proposed framework that maximizes the linear elastic
MPE, a mathematical mechanism model on a spatial region �b ∈ �3 is first created and
support conditions are prescribed. An input port region �in to which an input force fin will be
applied is identified, as is an output port region �out at which uout will be monitored. Before
the design problem is solved, one also chooses: (1) the structural material; (2) the amount
(volume) of structural material that will be used in the design as a fraction C of the design
domain spatial volume; and (3) the stiffnesses of the artificial springs that will be attached
to both the I/P and the O/P in accordance with Figure 5. Having made these selections, the
material layout in the mechanism that minimizes the sign inverse of the linear elastic MPE
under a given actuation force fin is obtained as the solution of the following optimization
problem subject to a material usage constraint and existence of an equilibrium solution of the
structural equilibrium problem:

P1: For fixed material usage constraint value C and artificial springs (kin, kout):

min
b

[(−MPE)] (26)

such that

�M(b) − C � 0 (27a)

r(u, b) = 0 (27b)
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Figure 6. Schematic of analysis cases used to design hinge-free compliant mechanism: (a) Case 1
conditions used to solve problem P1 with linear elastic analysis; and (b) Case 2 conditions solved

with geometrically non-linear analysis in problem P2.

where r ∈ �ndof×numnp is the residual force vector for the linearly elastic structural model and
which vanishes when the structure is in equilibrium under the applied actuation force and the
spring reaction forces.

If stiff artificial springs (kin = kout = kb) are used in solving design problem P1 posed above,
the resulting design solutions will tend to have maximal stiffnesses subject to the material usage
constraint value C employed and will be free of de facto hinges. If P1 is solved a number
of times with progressively decreasing values of C, the resulting non-linear complimentary
compliance values EC of the designs under Case 2 analysis conditions (Figure 6(b)) working
against workpiece springs will tend to increase progressively. If the objective is to find the
design b that solves P1 with the largest value of the material usage constraint value C for
which EC = E∗

C then a concise mathematical statement of the extended design optimization
problem P2 is as follows:
P2: For specified artificial springs (kin, kout) and workpiece springs kworkpiece find:

inf C ∈ (0, 1) and min
b∈�N

(−MPE) such that: (28a)

�M − C � 0; material usage constraint (28b)

r(u(1), b, C) = 0; equilibrium state in Case 1 analysis (28c)

r(u(2), b, C) = 0; equilibrium state in Case 2 analysis (28d)

E∗
C − EC(u(2), b, C) � 0; finite deformation Case 2 compliance (28e)

In P2, the Case 1 analysis (Figure 6(a)) has stiff springs attached to both the I/P and O/P of
the structural model, the structure is analysed using linear elastic analysis, and the resulting
displacement field in the structural model from which MPE is computed is denoted u(1). In
Case 2 analysis (Figure 6(b)), the stiff springs are removed from the model’s I/P and O/P and
moderate workpiece springs are attached to the O/P. The finite deformation hyperelastic response
of the structure u(2) to the actuation force fin is computed, from which the complimentary
compliance EC(u(2), b, C) is also computed as follows:

EC

(
u(2), b, C

)
= ‖fin‖

‖fv
out‖

(
fv
out · u(2)

out

)
(29)
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In Equation (28e) of P2, E∗
C is the target value for complimentary compliance when working

against the workpiece springs under actuation force fin (Figure 6(b)). The approach taken
herein to solve P2 is to first solve design problem P1 for numerous values of the material
usage constraint C and to then line search for the infimum value of C that satisfies the
constraint of Equation (28e). Each of the P1 optimal designs for different C values is analysed
at finite deformation under the Case 2 conditions (Figure 6(b)) and complimentary compliances
EC(u(2), b, C) are computed by Equation (29). The design b associated with the material usage
constraint value C that just yields the target complimentary compliance E∗

C is then taken as
the optimum design.

5. DEMONSTRATIVE EXAMPLES

5.1. General features

Many examples of compliant mechanisms such as, inverting, gripping, and crunching mech-
anisms have been presented and demonstrated in the design methods literature. The goal of
this work is to study the effects of springs and material resource constraints on the continuity
and performance characteristics of compliant mechanism designs obtained by solving problem
P1 of Equation (26). This is done here in the context of test computations performed on the
force-inverter and gripper compliant mechanism design problems. Such compliant mechanisms
can be designed and fabricated with a wide variety of materials and here the main materials
considered are aluminium (E = 73 GPa; 
 = 0.35), polysilicon (E = 206 GPa; 
 = 0.26) and
nylon (E = 3GPa; 
 = 0.4). In all the examples solved below the initial starting designs utilized
a completely solid structural domain �b and the power-law mixing rule (Equation (8)) with
p = 4 was used in the computations. The nodal design variable formulation of Section 2 was
employed without any spatial filtering of design variables and a sequential linear programming
(SLP) algorithm that used first-order design gradient information to solve all of the example
problems.

5.2. Inverter mechanism designs

5.2.1. Effect of spring stiffnesses. The function of this device is to have the output port displace
in a direction opposite to that of an input force applied at the input port. Figure 7(a) shows
the design domain �b of the inverter problem with partial fixed support boundaries at the
left hand side. The domain, which is discretized with a 100 × 100 bilinear quadrilateral finite
element model, is loaded with fin = 100 N applied to the input port. The deflection at the
output port in the direction of fv

out as shown in Figure 7(a) is to be maximized. Before solving
this design problem, bounding values for the artificial springs attached to the input and output
ports were obtained as described at the end of Section 3 and in Figure 5. Accordingly, the
bounding stiffness value obtained for the artificial spring was: kb = 1.6 × 1010 N/m for a
structural material of aluminium; kb = 4.4×1010 N/m for polysilicon; and kb = 6.9×108 N/m
for nylon.

The set of design computation results presented here is intended to highlight the effect of
varying the stiffness of the artificial springs attached to input and the output ports of the
device (Figure 7(a)) on the resulting design solutions of problem P1. The design material had
the elastic properties of aluminium, and a material usage constraint value of C = 0.3 was
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Figure 7. (a) Schematic of the force-inverter mechanism design problem;
and (b)–(j) various design solutions of P1 obtained by maximizing mu-
tual potential energy (MPE) with aluminium, and with different artificial

spring stiffnesses on the I/P and O/P of the mechanism.

imposed on all of the designs. Figure 7(b) shows the resulting material layout of a design
obtained by solving the optimization problem of Equation (26) with artificial spring stiffnesses
kin = kout = 10−4 · kb. Clearly, the material layout throughout the model of the device is not
continuous and contains numerous de facto hinge regions. Although the computed performance
characteristics of devices such as that shown in Figure 7(b) (Table I) can sometimes appear to
be remarkably good with large GA and complimentary compliance values, it must be borne
in mind, that the design itself is so fragile that it would fail almost immediately upon being
loaded. Thus the computed performance characteristics of compliant mechanisms that rely on
de facto hinge regions are not necessarily achievable. The remaining material layout designs in
Figure 7(c)–(j) are obtained either by using stiffer artificial springs on the input port, stiffer
springs on the output port, or both. It bears mentioning that all of the intermediate designs
shown in Figure 7(b)–(i) feature de facto hinge regions, and that only the design shown in
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Table I. Computed performance characteristics of selected continuous inverter designs and a hinged
design at finite deformation.

Workpiece Mean Complementary
Mechanism spring compliance compliance EC
description stiffness � (N m) (N m) GA MA ME

Polysilicon K = 105 N/m 7.73 × 10−6 7.43 × 10−6 0.962 7.44 × 10−5 7.15 × 10−5

Figure 8(a), (b) K = 106 N/m 7.73 × 10−6 7.43 × 10−6 0.962 7.44 × 10−4 7.15 × 10−4

C = 0.30 K = 107 N/m 7.73 × 10−6 7.43 × 10−6 0.962 7.44 × 10−3 7.15 × 10−3

Aluminium K = 105 N/m 8.85 × 10−6 1.74 × 10−5 0.988 1.74 × 10−4 1.72 × 10−4

Figure 8(c), (d) K = 106 N/m 8.84 × 10−6 1.74 × 10−5 0.988 1.74 × 10−3 1.72 × 10−3

C = 0.30 K = 107 N/m 8.58 × 10−6 1.70 × 10−5 0.977 1.70 × 10−2 1.67 × 10−2

Nylon K = 105 N/m 4.84 × 10−4 4.89 × 10−4 1.011 4.90 × 10−3 4.95 × 10−3

Figure 8(e), (f) K = 106 N/m 4.62 × 10−4 4.62 × 10−4 1.001 4.63 × 10−2 4.63 × 10−2

C = 0.30 K = 107 N/m 3.34 × 10−4 3.08 × 10−4 0.923 3.08 × 10−1 2.84 × 10−1

Aluminium K = 105 N/m 1.42 × 10−4 2.69 × 10−4 0.947 2.69 × 10−3 2.54 × 10−3

Figure 8(g), (h) K = 106 N/m 1.35 × 10−4 2.63 × 10−4 0.945 2.63 × 10−2 2.47 × 10−2

C = 0.10 K = 107 N/m 9.11 × 10−5 2.13 × 10−4 0.935 2.30 × 10−1 1.98 × 10−1

Aluminium K = 105 N/m 3.57 × 10−3 7.88 × 10−3 1.02 7.81 × 10−2 7.83 × 10−2

Figure 8(i), (j) K = 106 N/m 1.23 × 10−3 4.55 × 10−3 1.00 4.56 × 10−1 4.54 × 10−1

C = 0.03 K = 107 N/m 8.13 × 10−5 8.83 × 10−4 0.94 8.85 × 10−1 8.27 × 10−1

Aluminium K = 105 N/m 3.48 × 10−3 1.22 × 10−2 1.43 1.22 × 10−1 1.74 × 10−1

Figure 8(k), (l) K = 106 N/m 5.60 × 10−4 4.73 × 10−3 1.40 4.73 × 10−1 6.63 × 10−1

C = 0.30 K = 107 N/m 4.82 × 10−5 6.64 × 10−4 1.23 6.65 × 10−1 8.20 × 10−1

Note: No springs were attached to the input port in the computations reported, and three different workpiece
spring stiffnesses were used on the output port. The characteristics of each mechanism are reported for
each of the workpiece stiffnesses considered under an actuation force of 100 N.

Figure 7(j), which was obtained by using artificial spring stiffnesses kin = kout = kb, is a con-
tinuous, monolithic design free of de facto hinge regions. It should be clear from the examples
presented here that the stiffnesses of the artificial springs attached to the input and output ports
of the devices have a very significant effect on the material continuity and preclusion of de facto
hinges.

For a given structural material and a given material usage constraint, continuous, mono-
lithic designs such as that shown in Figure 7(j) generally feature much smaller complimentary
compliances than the family of designs that contain de facto hinges (Table I). In particular,
the complimentary compliances of the hinge-free device shown in Figure 7(j) with workpiece
springs attached to the O/P are orders of magnitude smaller than those of devices that feature
de facto hinges. In order to obtain continuous, hinge-free compliant mechanism designs that
have higher compliance characteristics, the designer can resort to using more compliant struc-
tural materials, or to imposing much more restrictive material usage constraint values, or both.
These issues are examined below.
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5.2.2. Effects of material properties and usage constraints. To explore the effects of material
stiffness and material usage constraints on compliant mechanism characteristics, the inverter
mechanism design problem P1 is solved once again with different structural materials and
varied material usage constraints. When the inverter design problem is solved with a material
usage constraint value C = 0.3 and with structural materials of polysilicon, aluminium, and then
nylon, the designs shown in Figures 8(a), (c), and (e), respectively, are obtained, and all exhibit
material continuity. The corresponding deformed configurations of these three mechanisms,
shown in Figures 8(b), (d), and (f) indicate that each functions without any de facto hinges.
The computed performance characteristics of these mechanism designs when working against
workpiece springs (Table I) indicate that while all have GA values in the neighbourhood of
unity, the mechanisms with more compliant material have higher complimentary compliances
and mechanical advantages.

Sparse designs were also obtained by solving the optimization problem P1 of Equation (26)
with aluminium structural material, bounding values for the artificial springs on the input and
output ports, and more restrictive material usage constraints. With a material usage constraint
C = 0.10, the design shown in Figures 8(g), (h) was obtained, and with C = 0.03, the design
of Figures 8(i), (j) was obtained. The respective deformed configurations of these designs show
the mechanisms functioning with well-distributed elastic deformation and no de facto hinges.
Due to the slenderness of the individual members comprising the designs of Figures 8(h) and
(j), it is tempting to interpret them as pin-jointed truss structures similar to those obtained
in the work of Reference [4]. The obvious curvature in the structural members of the device
designs under loading (Figures 8(h) and (j)) clearly indicates, however, that the joint regions
are continuous and transmit bending moments. The performance characteristics of the sparse,
hinge-free, aluminium designs, reported in Table I are further noteworthy in that with increasing
sparsity, the complimentary compliance and mechanical efficiency characteristics of the designs
increase dramatically.

The computed performance characteristics of the hinged aluminium design of Figure 7(b)
and Figure 8(k), (l) (Table I) indicate that its performance metrics (GA, MA, EC) are typically
greater than those of continuous hinge-free mechanisms. It is re-emphasized, however, that
the hinged mechanism of Figures 7(b) and 8(k), (l), being discontinuous and using hinges,
is not physically realizeable as a compliant mechanism. The most sparse (C = 0.03) hinge-
free monolithic aluminium compliant mechanism considered (Figure 8(i), (j)), has performance
characteristics most comparable to those of the hinged aluminium device.

Since a threshold complimentary compliance E∗
C of the mechanism is generally desired when

working against an anticipated level of workpiece resistance, the extended design problem P2
must typically be solved to obtain the infimum (greatest lower bound) of the material usage
constraint C. To illustrate, problem P1 for the inverter mechanism was solved a number of
times with stiff artificial springs utilizing different material usage constraints (C = 0.03, 0.07,
0.1, 0.15, 0.2, 0.25, and 0.3). For each design solution of P1, finite deformation hyperelastic
analysis was performed to compute the complimentary compliance of the mechanism design
under a 100 N actuation force applied to its input port. For three different workpiece resis-
tances kworkpiece(105 N/m; 106 N/m; 107 N/m; ) the complimentary compliances vs material
usage constraint C were computed (Figure 9). From graphs of this type it is thus possible
to select material usage constraints for given workpiece resistance that will yield the desired
complimentary compliance. To illustrate, for kworkpiece = 105 N/m and fin = 100N, if a desired
complimentary compliance of the force-inverter mechanism of 2 × 10−4 J were required, the
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Figure 8. Inverter mechanism design solutions of P1 achieved with different materials and material
usage constraints. For the designs shown in (a)–(j) with each structural material used, the corresponding
baseline spring stiffnesses were used for the input and output port springs: (a) polysilicon design
[C = 0.30]; (b) deformed configuration; (c) aluminium design [C = 0.30]; (d) deformed configuration;
(e) nylon design [C = 0.30]; (f) deformed configuration; (g) aluminium design [C = 0.10]; (h)
deformed configuration; (i) aluminium design [C = 0.03]; (j) deformed configuration; (k) hinged

aluminium design [C = 0.30] achieved with kin = kout = 10−4kb; and (l) deformed configuration.

greatest lower bound on C (infimum) for which this could be obtained is a value of 0.11.
To further illustrate, for kworkpiece = 106 N/m and fin = 100 N, if E∗

C = 2 × 10−3 J then
inf C = 0.05.
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Figure 9. Inverter mechanism’s computed complimentary compliance at finite deformation vs material
usage factor C for different workpiece spring stiffnesses. The mechanism material is aluminium.

5.2.3. Production model investigation of sparse inverter designs. To further investigate the
sparse aluminium mechanism designs of Figures 8(g), (i) the material layouts were finely
remeshed from grid-type meshes used in continuum topology optimization to more refined
conforming meshes of six-noded biquadratic triangular elements (Figure 10) using the techniques
described in Reference [30]. The mechanism models that utilize the more refined conforming
meshes are here termed ‘production models.’ Due to the sparsity of the model designs with
C = 0.03 and 0.10 and the associated slenderness of structural members, the possibilities of
buckling and material failure within the mechanism cannot be neglected. The output ports of
these production models were restrained (Figures 10(a), (d)) and the buckling loads and modes
were computed (Figures 10(b), (e)) using linearized buckling eigenmode analysis [28, 31].
Hyperelastic geometrically non-linear analysis was also performed on the production models,
loading them at the mechanism input ports until the output ports went through displacements
of 3 mm at the output ports. The input forces required to generate the 3 mm output port
displacements were significantly smaller than the respective computed buckling loads for these
mechanisms. The peak computed von Mises stresses (

√
J2) in the mechanism production models

at loads that generate 3 mm output port displacements in Figures 10(c) and (f) are 31 MPa in
the more sparse model (C = 0.03) and 71 MPa in the less sparse design (C = 0.10). These
peak computed generalized shear stresses are below the yield stresses of many aluminium
alloys.
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Figure 10. Production model analyses of sparse, aluminium inverter designs: (a) mesh of the design with
C = 0.03; (b) computed buckling mode and force with the O/P restrained; (c) geometrically non-linear
response to input force that generates 3 mm output displacement with no workpiece resistance;
(d) mesh of the design with C = 0.10; (e) buckling mode and force with O/P restrained; and

(f) response to input force that generates 3 mm output displacement with no workpiece resistance.

Production model analysis of the compliant mechanism designs is also noteworthy for the
fact that a straight algorithmic translation of the topology design models into production models
was performed without any intelligent decisions required. The production force inverter model
based on C = 0.03 (Figure 10) has a computed finite deformation GA = 1.38, whereas the
production model based on C = 0.10 has GA = 1.26 at the level of deformation shown. That
the computed performance characteristics of the mechanism production models equal or exceed
those of the topology design models confirms the absence of any de facto hinges in the topology
design models which would artificially boost their computed performance characteristics.

5.3. Gripper mechanism designs

It is fair and reasonable to ask whether or not the trends observed in design of the inverter
mechanism hold when designing other mechanisms having different objectives, loading condi-
tions, and boundary restraints. Here this issue is partially explored by considering the gripper
mechanism design problem shown in Figure 11(a). The general design objective is to achieve
a mechanism such that when a horizontal force is applied at its input port, the opposing output
ports move vertically to pinch and thus grip a workpiece. The mechanism is designed with
aluminium, and the bounding spring stiffness for the size and support conditions shown is
kb = 1.6 × 1010 N/m.

The design problem P1 was solved with nine combinations of artificial springs kin and
kout attached to the input and output ports. For each combination of kin and kout the design
problem was solved to maximize the MPE subject to a material usage constraint (C = 0.30).
Many of the design solutions shown in Figures 11(b)–(j) feature numerous de facto hinges and
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Figure 11. (a) Schematic of the gripper mechanism design problem; and (b)–(j) various design solutions
of problem P1 obtained by maximizing mutual potential energy (MPE) with aluminium, C = 0.30,

and with different artificial spring stiffnesses on the I/P and O/P of the mechanism.

lack material continuity when the artificial springs are much smaller than the bounding spring
value. As the artificial spring values on both ports approach the bounding values, however, the
discontinuities and de facto hinges eventually vanish. The design shown in Figures 11(j) was
achieved with the artificial springs having upper bound values attached to both the input and
output ports and is noteworthy for having no de facto hinges.

Since the hinge-free monolithic design of Figure 11(j) is quite stiff, the achievement of
more compliant (but still hinge-free) designs can be achieved by solving P1 with more restric-
tive material usage constraints or by solving the problem with different structural materials.
The gripper mechanism design problem was thus solved with different structural materials
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Figure 12. Various gripper mechanism solutions of P1 achieved with different materials and material
usage constraints. For the designs shown in (a)–(j) with each structural material used, the corresponding
baseline spring stiffnesses were used for the input and output port springs: (a) polysilicon design with
C = 0.30; (b) deformed configuration; (c) aluminium design with C = 0.30; (d) deformed configuration;
(e) nylon design with C = 0.30; (f) deformed configuration; (g) aluminium design with C = 0.10; (h)
deformed configuration; (i) aluminium design with C = 0.03; (j) deformed configuration; (k) hinged
aluminium design achieved with C = 0.30 and kin = kout = 10−4kb; and (l) deformed configuration.

(polysilicon and nylon) and different material usage constraints, with the designs shown in
Figure 12 and the tabulated performance characteristics in Table II. With the exception of
those shown in Figure 12(k) and (l) all of the designs in Figure 12 were obtained by solving
P1 with upper bound artificial spring stiffnesses. It is noteworthy that all of the P1 design
solutions obtained with stiff artificial springs are continuous and free of de facto hinges.

The complimentary compliances of the aluminium gripper mechanisms at finite deformation
with only workpiece springs on the output ports and no springs on the input ports are shown
in Figure 13. As is expected, the complimentary compliances of the mechanisms increase quite
dramatically as the material usage constraints values (C) are reduced, or as the sparsity of
the mechanisms is increased. Accordingly, for target values E∗

C of the gripper mechanism’s
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Table II. Computed performance characteristics at finite deformation of selected continuous gripper
designs and a hinged design.

Workpiece Mean Complementary
Mechanism spring compliance compliance EC
description stiffness � (N m) (N m) GA MA ME

Polysilicon K = 105 N/m 4.58 × 10−6 1.29 × 10−6 1.408 6.45 × 10−5 9.08 × 10−5

Figure 12(a), (b) K = 106 N/m 4.58 × 10−6 1.29 × 10−6 1.408 6.45 × 10−4 9.08 × 10−4

C = 0.30 K = 107 N/m 4.58 × 10−6 1.29 × 10−6 1.408 6.45 × 10−3 9.08 × 10−3

Aluminium K = 105 N/m 1.26 × 10−5 3.58 × 10−5 1.417 1.79 × 10−4 2.54 × 10−4

Figure 12(c), (d) K = 106 N/m 1.26 × 10−5 3.58 × 10−5 1.417 1.79 × 10−3 2.54 × 10−3

C = 0.30 K = 107 N/m 1.20 × 10−5 3.46 × 10−5 1.404 1.74 × 10−2 2.44 × 10−2

Nylon K = 105 N/m 3.39 × 10−4 9.24 × 10−4 1.354 4.62 × 10−3 6.25 × 10−3

Figure 12(e), (f) K = 106 N/m 3.04 × 10−4 8.64 × 10−4 1.329 4.33 × 10−2 5.75 × 10−2

C = 0.30 K = 107 N/m 1.50 × 10−4 5.28 × 10−4 1.197 2.64 × 10−1 3.16 × 10−1

Aluminium K = 105 N/m 1.79 × 10−4 6.04 × 10−4 1.668 3.00 × 10−3 5.00 × 10−3

Figure 12(g), (h) K = 106 N/m 1.64 × 10−4 5.76 × 10−4 1.664 2.90 × 10−2 4.83 × 10−2

C = 0.10 K = 107 N/m 2.26 × 10−4 3.97 × 10−4 1.633 1.90 × 10−1 3.10 × 10−1

Aluminium K = 105 N/m 5.60 × 10−3 1.85 × 10−2 1.443 9.24 × 10−2 1.33 × 10−1

Figure 12(i), (j) K = 106 N/m 1.37 × 10−3 8.34 × 10−3 1.354 4.18 × 10−1 5.66 × 10−1

C = 0.03 K = 107 N/m 2.55 × 10−4 1.29 × 10−3 0.960 6.48 × 10−1 6.22 × 10−1

Aluminium K = 105 N/m 5.07 × 10−3 1.76 × 10−2 1.517 8.80 × 10−2 1.33 × 10−1

Figure 12(k), (l) K = 106 N/m 1.07 × 10−3 8.04 × 10−3 1.497 4.02 × 10−1 6.00 × 10−1

C = 0.30 K = 107 N/m 5.82 × 10−5 1.24 × 10−3 1.398 6.21 × 10−1 8.66 × 10−1

Note: No springs were attached to the input port in the computations reported, and three different workpiece
spring stiffnesses were used on the output port. The characteristics of each mechanism are reported for
each of the three workpiece stiffnesses considered under an actuation force of 100 N.

complimentary compliance under specified input forces and output port resistances, the appro-
priate material usage factors can be determined.

6. DISCUSSION AND CONCLUSIONS

In the examples of the preceding section design problem P1 was solved a number of times for
both a force-inverter mechanism and a gripper mechanism. For demonstrative purposes, each of
the P1 design problems was solved for a fixed material usage constraint value (C = 0.3) with
nine different combinations of artificial spring stiffnesses on the input and output ports (Figures
7 and 11). The results demonstrate that when problem P1 is solved with artificial springs of
relatively low stiffness (k>kb), compliant mechanism designs featuring varying amounts of de
facto hinges are obtained. The results further indicate that when problem P1 is solved with
artificial springs of appropriate stiffness (k = kb) compliant mechanism designs free of de facto
hinges are obtained. Differences in the performance characteristics of mechanisms containing
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Figure 13. Computed complimentary compliance at finite deformation vs material usage
factor C for the gripper mechanism when made of aluminium. Three curves are

shown for different workpiece spring stiffnesses.

de facto hinges and those obtained herein that are free of such hinges can be seen in related
videos showing the mechanisms undergo cyclic loadings [32].

For a given amount of structural material, the hinge-free design solutions emerging from P1
tend to be much stiffer (e.g. having much smaller complimentary compliances when working
against workpiece resistances) than those that feature de facto hinges. Nevertheless, hinge-free
compliant mechanism designs having large finite deformation complimentary compliances were
shown to be achievable herein by solving an extended problem P2 that finds the infimum
of material usage constraint values on the interval (0, 1). The resulting compliant mechanism
designs emerging from P2 were found to be sparse but completely free of de facto hinges. Such
compliant mechanism designs feature elastic deformation that is well-distributed throughout the
mechanism rather than concentrated in a few specific hinge regions [32]. Since the extended
problem P2 involves a search in �1, the computational effort required to solve P2 is typically
only five to ten times that required to solve P1 just once.

The sparse, hinge-free compliant mechanism designs obtained in this work are believed, in
a practical sense that considers both manufacturability and durability, to be superior to the
mechanism designs that contain de facto hinges. Furthermore, the computed kinematic perfor-
mance characteristics of the hinge-free compliant mechanism designs have been found in the
cases considered herein to be comparable to those of the hinged mechanisms as was shown in
Tables I and II.
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For sparse designs, that is those with C>1, very fine meshes are needed both to resolve
the limited material layout distribution and to provide accurate analysis results. In the exam-
ple problems presented above, the starting resolution for both the force-inverter and gripper
problems was a uniform mesh of 100 × 100 bilinear continuum elements. For very sparse ma-
terial usage, however, this mesh resolution was insufficient and so layout designs were mapped
onto refined meshes of 200 × 200 and even 400 × 400 elements and the design process was
continued. For highly refined meshes together with sparse material usage, great economy and
computational efficiency are gained using analysis problem size reduction algorithms [28] in
which empty elements are neglected and nodes in the void region of the structure are restrained.

The proposed design process has been demonstrated herein on the realization of an elastic
force-inverter compliant mechanism and an elastic gripping compliant mechanism where the
output port was designed to go through uni-directional motion either parallel to or perpendicular
to the mechanism’s axis of symmetry. There are many current applications, however, where
the designer might seek to have the output port of the mechanism follow a certain curvilinear
trajectory in response to a sequence of actuation forces while working against specified work-
piece resistances at the output port. While such ‘path-following’ mechanisms can in principle
be designed, they may not be very robust because, for even modest variations in the workpiece
resistance, the mechanism O/P may deviate quite significantly from the desired trajectory.
A potentially more robust approach to obtaining finite deformation path-following compliant
mechanisms that accounts for reasonable variations in workpiece resistances is to employ
control algorithms [29] that solve for the sequence of actuation forces needed to obtain the
desired path-following O/P response of the compliant mechanism under a variety of workpiece
resistances. Sparse flexible designs obtained from the current framework have so-far appeared
quite controllable and well-suited to usage in the proposed approach.
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