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Abstract: A continuum topology optimization methodology suitable for finding optimal forms of large-scale sparse structures is
sented. Since the need to avoid long compressive spans can be critical in determining the optimal form of such structures, a for
is used wherein the structure is modeled as a linear elastic continuum subjected to design loads, and optimized in form to maxi
minimum critical buckling load. Numerical issues pertinent to accurate solution of the linearized buckling eigenvalue problem
accurate design sensitivity analysis are discussed. The performance of the proposed design formulation is demonstrated on a few
designed to find optimal forms of a canyon bridge, long-span bridges, and an electrical transmission tower. In all cases, very
structural forms are obtained with the proposed design formulation. The results of the design examples solved are typically s
structural forms with regard to buckling stability than those obtained to minimize the mean structural compliance.
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Introduction

Designing sparse large-scale structures that are not susceptibl
buckling instabilities is a longstanding challenge in structural d
sign optimization. Many structural design optimization method
are in use today and include cross-section selection, or size a
shape optimization of structural cross sections. These types
methods are applicable toward the final stages of designing
structure, but they tend not to be very helpful when one is tryin
to find the optimal forms of a structure based on its size~or span!,
support conditions, and the loads that it is expected to car
While the designer’s intuition and awareness of design precede
will always play a vital role, structural topology optimization
methods are objective tools that might also be very useful
identifying suitable, if not optimal, structural forms. Among struc
tural topology optimization frameworks are there are essentia
two classes of methods~see Ohsaki and Swan 2002!: ~1! discrete
ground-structure topology optimization methods and~2! con-
tinuum structural topology optimization methods.

One of the pioneering works in the field of structural topolog
optimizationper seinvolved presentation of optimal discrete truss
structures now called Michell structures~Michell 1904!. More
recently, discrete ground structure truss topology optimizatio
methods have been employed~Dorn et al. 1964; Dobbs and Fel-
ton 1969; Hemp 1973; Rozvany 1976; Save and Prager 1990! and
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they are now quite standard. In the recent past, such methods
been investigated quite extensively for civil engineering ty
structures with a good deal of attention paid to achievement
designs that are stable with respect to design loads~Oberndorfer
et al. 1996; Rozvany 1996; Zou 1996; Achtziger 1999; Bojcz
and Mróz 1999; Kočvara 2002!. In such frameworks, an attemp
is typically made to achieve stable designs by enforcing lo
Euler buckling constraints. This can be challenging, due to di
culty in identifying buckling lengths that can be considerab
larger than individual member lengths when several collinear a
compressive members form an isolated sequence.

While discrete structural optimization methods date back
least one century to the work of Michell, continuum structur
topology optimization methods have more recent origins, dev
oped in the 1980s as extensions of shape and size optimiza
techniques~Cheng and Olhoff 1981; Bendsøe and Kikuchi 1988!.
In these methods, the structure is modeled as a continuum and
form of the structural system is optimized using a system of d
tributed continuous design parameters@see the recent review by
Eschenauer and Olhoff~2001! for a survey of the numerous con
tinuum topology optimization formulations developed over th
past 2 decades#. Since these methods are not in any way restrict
to truss-like structures, they have been investigated for a con
erable range of applications including: the design of compos
material microstructures,~see Swan and Arora 1997 for one ex
ample!; compliant mechanisms in microelectromechanical sy
tems~Yin and Ananthasuresh 2002! intermediate scale plate and
shell structures~Swan and Kosaka 1997!; and civil engineering
type structures~Mijar et al. 1998; Swan et al. 1998!.

In spite of its arguable successes in design of small and in
mediate scale mechanical systems, there have been some
lenges in applying continuum topology optimization to the co
ceptual design of large-scale civil engineering type structures
which economy of material is typically a vital issue. Large-sca
civil engineering structures such as bridges and transmission t
ers are characteristically very sparse with the volume of mate
that comprises the structural system constituting a very sm
fraction ~<5%! of the structure’s total envelope volume. Con
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tinuum topology optimization methods, unlike discrete truss
timization methods, have some difficulty modeling this spars
since it requires extremely refined models with very high deg
of freedom counts. If the design method cannot capture this s
sity, then it will have difficulty replicating and addressing th
vibrational and stability characteristics of the structure. As a
sult, when continuum topology methods were applied in prec
ing efforts to design the form of structures for both optimal sti
ness and vibrational characteristics, the designed forms of
structure were realistic, but the computed vibrational characte
tics, such as eigenfrequencies, were not~Ma et al. 1995; Mijar
et al. 1998; Swan et al. 1998; Min et al. 2000!.

For large-scale sparse structures, stability considerations
often be the controlling factor in determining the overall form
the structure. For example, in the design of long-span bridg
tension structures are typically optimal since they preclude po
tial buckling under the traffic loading and self-weight loadin
Previous applications of continuum topology optimization to fin
ing optimal forms of bridges based on minimization of the line
elastic structural compliance under traffic loading, or maximi
tion of the fundamental vibrational eigenfrequencies of the str
ture, or combinations of both functionals using multicriterion o
timization approaches~Swan et al. 1998! have not been
satisfactory. Neither linear elastic compliance, nor vibratio
eigenfrequencies of a structural system are directly related
structural stability in sparse structures. For this reason, the re
ing concept designs of structures from these preceding works
cited often feature long slender compression members that w
be highly problematic if the design were pursued from the c
ceptual stage through the detailed design stage.

In continuum structural topology optimization formulation
achievement of designs that are inherently stable in relation to
design loads can be very challenging. For example, it can
difficult to preclude local buckling behaviors with Euler-type co
straints, since it is very difficult to identify discrete structur
members, their geometrical properties, and their end support
ditions from the vector of design variables. One promising
proach to addressing global geometrical instabilities in continu
structural topology optimization~Guedes and Rodrigues 1995
Neves et al. 1995! and that has been employed in design of br
ing systems for portal frames is to model the structure as a
early elastic system and to use the minimum critical buckling lo
computed via eigenvalue analysis either in the objective func
or as a design constraint. While such an approach is very stra
forward in principle, a complicating factor is that when the buc
ling eigenvalues of the structure are nonsimple~repeated!, their
design derivatives are discontinuous. Accordingly, an alterna
approach to designing stable, sparse structures in a contin
topology framework is to model the structure as an elastic c
tinuum taking into account finite deformation effects and the
sociated instabilities~Buhl et al. 2000; Bruns and Tortorelli 2001
Gea and Luo 2001; Rahmatalla and Swan 2003!. Nevertheless,
the advantage of the first approach over the latter is its subs
tially lower computational cost.

In the body of this paper, a linear elastic continuum topolo
formulation is introduced for minimization of mean structur
compliance, and for maximization of minimum critical bucklin
values computed by linearized buckling analysis. One of the
tents is to demonstrate the advantages of designing to maxi
minimum critical buckling loads as opposed to designing to m
mize linear elastic structural compliance. This point is salient
designing for compliance minimization has been frequently
plored in the research literature, and yet it will generally not le
1708 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / DECEMBER
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to satisfactory concept designs of large-scale sparse structure
In this paper, basic elements of continuum structural topolo

optimization are presented including material distribution desi
parameters, problem statements, and design sensitivity ana
expressions. Finally, practical examples including concept d
signs of large structures are demonstrated followed by discuss
and concluding remarks.

Problem Formulations

Structural Model and Material Layout Description

The objective of continuum structural optimization is to find
layout of a structural material of specified properties in a defin
spatial region that provides optimum structural performance.
order that the widest possible class of structural layouts can
considered, the methods in question must accommodate such
erality. In this work, the spatial region that the candidate stru
tural models can occupy is denotedVs . To facilitate both descrip-
tion of the structural material layout inVs and analysis of the
performance associated with each layout considered, the dom
is discretized into a relatively fine mesh of nodes and finite e
ments.

It is desired that at the end of the form-finding process, t
structural regionVs will be decomposed into a collection of re
gions cumulatively denotedVA that contain the structural mate
rial in question, and the remaining regionsVB5Vs /VA that are
devoid of structural material. Since solution of the form-findin
problem in this way is ill-posed, an alternative relaxed approa
is usually employed, wherein it is assumed that an amorpho
‘‘mixture’’ of structural material A and a void material B exists
throughout the structural regionVs . In each region ofVs , the
nature of the mixture is characterized by a local volumetric de
sity fA of structural material A. By permitting mixtures, the
structural material A and a fictitious void material B are allowe
to simultaneously occupy an infinitesimal neighborhood abo
each Lagrangian pointXPVs . The volumetric density of struc-
tural material A at a fixed Lagrangian pointXPVs is denoted by
fA(X) and represents the fraction of an infinitesimal region su
rounding pointX occupied by material A. Natural constraint
upon the volumetric densities are

0<fA~X!<1; 0<fB~X!<1; fA~X!1fB~X!51 (1)

Clearly, whenfA(X)51 the point X contains solid structural
material, and whenfA(X)50 the pointX is devoid of structural
material. The last physical constraint of Eq.~1! states that the
material volume fractions atX are not independent and so on
need only be concerned with the layout of structural material
The design of a structure is here considered to be the spa
distribution of the structural material A inVs .

To describe the distribution of material A throughoutVs using
a finite number of design parameters, the volumetric density
each of theNUMNP nodal point forms a set ofNUMNP design
variables. These are then interpolated over the space of all in
mediate points in the structure using the nodal shape function

f~X!5 (
i 51

NUMNP

biNi~X! ;XPVs (2)

where bi5nodal volumetric density values associated with th
structural material; andNi(X)5nodal shape functions. This ap
proach yields aC0 continuous design variable field that is no
susceptible to ‘‘checkerboarding’’ instabilities.
2003
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Given the finite element model of the structural regionVs , the
structural loads and restraints~or supports! on this region are
specified as the set of design loads. For each set of design
ings, and for each realization of the design vectorb
5$b1 ,b2 ,...,bNUMNP%, the response performance of the structu
will be analyzed as a boundary value problem. From the co
puted response of the structure, the performance of the struc
will be quantified, as will be the sensitivity of the performance
variations in the design variables.

Constitutive Mixing Rules

In the proposed design framework, each finite element compri
the spatial domainVs of the structure will generally contain a
spatially varying mixture of the structural and void materials. It
necessary to prescribe the stiffness~or elastic moduli! of such
mixtures in terms of the stiffness characteristics of the solid m
terial Csolid, those of the fictitious void materialCvoid , and the
local volumetric density of the structural materialf~X!. Here, the
well-known powerlaw formula~Bendsøe and Sigmund 1999! is
used to accomplish this task, providing the local effective st
ness of the mixtureC* as

C* 5fpCsolid1~12fp!Cvoid (3)

where typically the mixing rule parameterpP@1,4#. With p51,
the Voigt rule of mixtures is obtained which does not penal
mixtures, but which does yield a convex formulation for comp
ance minimization problems~Swan and Kosaka 1997! so that
only one solution exists for the design problem. Withp54, mix-
tures are penalized in the final design, so that regions ofVs tend
to be either solid or void, but the optimization problem is n
convex, and will admit a number of solutions that satisfy the fi
order optimality conditions.

Structural Analysis

For each design, a structural analysis problem is solved on
continuum domainVs . In general terms, the structural analys
problem solved for each realization of the design vectorb is the
following: Find the displacement fieldu~X! Vs→R3 such that the
variational equilibrium problem is solved

E
Vs

s:dedVs5E
Gs

h•dudGs1E
Vs

rg•dudVs (4)

wheres~X!5local stress field in the structure;h5traction vector
consistent with the design loads being applied to the struct
r~X!5local mass density of the structural materia
g5gravitational body force vector;du5kinematically admissible
variational displacement field; andde5corresponding variationa
strain field. In the structural model, the material features lin
elastic behavior such thats5C* :e, where the effective elasticity
tensor is design dependent and prescribed in accordance with
~3!. The matrix problem associated with variational equilibriu
of the discrete finite element structural model, for whichu(X)
5( iNi(X)ui is

05K "u2f ext5f int2f ext (5)

where

K jk
LM5E

Vs

Bm j
L Cmn* Bnk

M dVs

f int5K "u5E
V

BTsdVs (6)

s s-
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f ext5E
Gs

NhdGs1E
Vs

NrgdVs

In all of the above,N denotes the nodal shape functions andB
denotes the standard strain–displacement matrices~cf. Bathe
1996!. The structural stiffness matrixK is positive definite due to
the characteristics of the effective elasticity tensorC* , and this
guarantees a unique solution to the structural analysis problem
each realization of the designb.

Once the equilibrium solution to the problem of Eq.~5! is
obtained, then the linearized geometrical stiffness matrixG can
be computed based on the stress fields in the structure

Gjk
LM5E

Vs

N,m
L N,n

Msmnd jkdVs (7)

It is worth noting thatG is not necessarily positive definite bu
rather depends heavily upon the nature of the stress field in
structure. A purely tensile stress field clearly makesG positive
definite, although for any compressive stresses,G will not be
positive definite.

Structural Performance Measures

Overview

As noted previously, structural topology design problems can
formulated in a number of alternative ways through utilization o
assorted objective and constraint functions. Generally, the obj
tive function measures the performance of the structure, and
constraint function limits the amount of structural material th
can be used, although the roles can be reversed equally well.
significant aspects of using CSTO to design large-scale spa
structures can be demonstrated here using the linear elastic st
tural compliance performance measure and the critical load bu
ling factor.

Linear Elastic Structural Compliance

If a structure features a linear elastic response behavior, the
sulting displacement fieldu in response to a set of applied exter
nal loadsf ext will be simply u5K21"f ext, whereK represents the
stiffness matrix of the structure. For a given set of loads, t
complianceP~b! of the structure is simply

P~b!5 1
2f ext"u (8)

Structural concept designsb that are stiff with respect to the ap-
plied loads will have small complianceP~b!, whereas structures
that are not stiff with respect to the applied loads will have larg
compliance. To facilitate usage of gradient-based optimization s
lution techniques, it is necessary to compute the design deri
tives of the compliance function. It can be shown that the desi
gradient of structural compliance is provided by the followin
expression:

dP

db
52

1

2
u•S ]K

]b
•u2

]f ext

]b D (9)

Linearized Bucking Performance Measure

Linearized buckling eigenvalue analysis proceeds as follows:
prescribed force loadingf ext is applied to the structure with its
magnitude necessarily being less than that required to induce g
metric instability in the structure. Once the resulting linear, ela
L OF STRUCTURAL ENGINEERING © ASCE / DECEMBER 2003 / 1709
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am
tostatic displacement solutionu5$ui%PRN in response to the ap-
plied loading f ext is obtained (K "u5f ext), where K is the
linearized stiffness matrix, then the following eigenvalue proble
is solved:

@K ~b!1lG~u,b!#•c50 (10)

In the preceding,b5$be%PRM is again the vector of design vari
ables;K5tangent stiffness operator;G~u,b!5linearized geomet-
ric stiffness matrix;l52~c"K "c/c"G"c!5eigenvalue denoting
the magnitude by whichf ext must be scaled to create instability i
the structure; and c5normalized eigenvector satisfying
c"K "c51. To avoid numerical difficulties in the solution of Eq
~10! stemming from the indefinite characteristics ofG, it is com-
mon ~Bathe 1996! to solve a modified eigenvalue problem th
deals with two positive definite matrices

@~K1G!2gK #•c50 (11)

where

g5
l21

l
⇔l5

1

12g
(12)

In Eq. ~11!, the matrixK is positive definite irrespective of the
loading applied to the structure, whereas the matrix~K1G! will
only be positive definite when the magnitude of the loading a
plied to the structural model is less than the critical magnitu
that creates instability in accordance with linearized buckli
theory.

The design problem is formulated to maximize the calcula
minimum-buckling load factor~l!, and accordingly the objective
function f E to be minimized for this problem would simply be th
reciprocal of the lowest eigenvaluel as follows:

f E~u,b!5
1

min~l!
(13)

The optimization problem is thus stated to minimize the recip
cal of the first~or minimum! critical buckling load as follows:

min
b,u

f E5min
b,u

S 1

l D5min
b,u

S 2 max
iciÞ0

c"G"c

c"K "c D (14)

subject to the normal bound constraints on the design varia
Eq. ~1!, the linear structural equilibrium state Eq.~5!, and a con-
straint on material resources.

The design gradient of the objective function can be expres
as

d fE

db
5

] f E

]b
1

] f E

]u
•

]u
]b

(15)

To avoid explicit computation of the term]u/]b, adjoint design
sensitivity analysis is employed by augmenting the object
function f E with the equilibrium state equation as follows:

J5 f E1ua"r (16)

whereua5adjoint displacement vector which functions as a m
trix of Lagrange multipliers and determined by the solution of
linear adjoint problem. The design derivative of the augmen
Lagrangian is then written as follows:

dJ

db
5S ] f E

]b
1ua

•

]r
]bD1F] f E

]u
1

]r
]u

•uaG• ]u
]b

1S r•
]ua

]b D
(17)

The last term of Eq.~17! vanishes due to satisfaction of the equ
1710 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / DECEMB
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librium constraint~r50!, and the second term can be made
vanish by selecting the adjoint displacement vector to solve
following linear adjoint equality statement

K "ua5c•

]G
]u

•c (18)

Since it can be shown thatdJ/db5d fE /db, it follows that the
design gradient expression for the objective function is

d fE

db
52c•S ]G

]b
1

1

l

]K
]b D •c1ua

•S ]K
]b

•u2
]f ext

]b D (19)

The preceding expression is valid only when the minimu
eigenvalue is a simple, or nonrepeated, eigenvalue. When
minimum eigenvalue is nonsimple, or repeated, the variation
the eigenvalue in design space is nonsmooth, and direct usag
the expression in Eq.~19! is technically incorrect~Choi et al.
1983; Seyranian et al. 1994!. Resolution of this issue is non-
trivial, although it can be ameliorated somewhat by using sm
and variable move limits in the design optimization process. D
spite this challenge, designs that successfully maximize the bu
ling stability of a structural system can nevertheless be obtain

Numerical Issues

Beyond the nonsmooth nature of repeated eigenvalues, when
occur, there are additional numerical issues associated with r
able solution of the buckling eigenvalue problem and the atte
dant effect on accurate sensitivity of buckling eigenvalues w
respect to design changes. As noted previously, due to indefi
characteristics of the linearizedG, the modified buckling eigen-
value problem of Eq.~11! is usually solved rather than that of Eq
~10!. However, when the magnitude of loading applied to th
structure is greatly exceeded by that off crit, thenl→` and ac-
cordingly g→1. As this happens, it is increasingly difficult to
accurately compute bothl and dl/db. This is demonstrated by
considering the simple beam model shown in Fig. 1 for which
load of magnitudei f exti51 MN is applied, and for whichf crit

5l* i f exti55.1855 MN, giving l55.1855. One would expect
that as the magnitude of the loading applied to the structu
model changed, the computed value ofl would change in accor-
dance withl5 f crit/i f exti . The numerical results shown in Table
1 indicate otherwise, however, and that as the inaccuracy in co
puted values ofl increases, the inaccuracy in the design sen
tivities increases dramatically. Accordingly, when computing th

Fig. 1. Undeformed and deformed configurations of coarse be
model with first buckling mode shown
ER 2003
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buckling eigenvalue of the structural model, greater accurac
achieved by using a scaled load magnitudei f exti such that
i f exti / f critP(0.1,1). The ratio cannot exceed unity however sin
in that case~K1G! loses its positive definiteness. To avoid t
problems associated with application of a load to the struct
model that is either far too small~i.e. i f exti / f crit!1), or too large
~i.e. i f exti / f crit>1) an algorithm such as that shown in Fig. 2
necessary.

The essential idea behind the proposed algorithm in Fig.
that while a fixed set of structural loads, here denoted byf ref are
applied to the structural model for all realizations of the des
vectorb, the computed value ofl ref5 f crit(b)/i f refi for each re-
alization of the designb could either be excessively large~i.e.,
l ref@1) and thus contain a large amount of error, or alternativ
too small ~i.e., l ref<1) making it very difficult to compute the
minimum eigenvalue associated with Eq.~10!. An accurate com-
putation of the buckling eigenvalue with respect to the loadsf ref

can be achieved, however, by iterative scaling of the actual
tem of loads applied to the structuref ext5k* f ref until lP~1,10!,
where herel is the minimum eigenvalue with respect to th
scaled loads. Since f crit(b)5l ref* i f refi5(l ref/k)(k* i f refi)
5l* i f exti , it follows that l ref5k* l. To demonstrate the effec
tiveness of the proposed algorithm, the computed buckling eig
values and their design gradients associated with the test pro
of Fig. 1 were computed using the algorithm of Fig. 2, and

Table 1. Buckling Factors Computed with Standard Methods
Model Shown in Fig. 1.

f ext

~N! g l
Analytical DSA

Node 14

Finite difference
DSA

Node 14

102 0.999981 5.297813104 26.709631025 26.749131025

104 0.9981 5.240003103 26.847631023 27.015831023

106 0.8072 5.18553100 27.187731021 27.187731021

Note: Inaccuracies exist in computed eigenvalues and also in both
lytical and finite difference design sensitivity results.

Fig. 2. Algorithm for accurate computation of buckling load fact
eigenvaluel ref with respect to fixed set of design loadsf ref
JOURNAL
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-
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results presented in Table 2. As can be seen from this table,
computed buckling eigenvalues now scale in inverse proporti
to the magnitude of the applied loadsf ref, and the computed
design sensitivity results are now in close agreement with tho
computed by converged finite difference analysis.

Demonstrative Examples

Material Properties and Mixing Rules

In the following examples, the CSTO formulation to maximize
minimum critical buckling loads computed by linearized eigen
value analysis is tested and compared with the more commo
used compliance minimization formulation. In all cases, the initi
starting designs feature a completely solid structural domain; t
solid structural material in all problems is steel with a Young’
modulus of 206 GPa and shear modulus of 79.2 GPa and a m
density of 7,800 kg m23. The powerlaw mixing rule withp54 is
used in all computations to achieve material layouts that, in t
end, are more or less discrete and interpretable. In addition,
nodal design variable formulation of the ‘‘Problem Formulations
Section is employed without any spatial filtering of design var
ables and without any perimeter control. All design optimizatio
problems were solved using fairly standard sequential linear p
gramming techniques with variable move limits. Optimizatio
problems were terminated when the designs satisfied the Kuh
Tucker first order optimality condition.

Canyon Bridge Problem

In this case, we consider seeking optimal forms of a bridge
carry self-weight and traffic loads across a span of 1,000 m. T
bridge is designed in two dimensions and the design traffic lo
applied uniformly to the deck level of the bridge is 10 kPa. Th
candidate spatial region that the bridge superstructure can pot
tially occupy is shown in Fig. 3~a!. Since it is desired that the
structural form obtained be sparse, the volume of structural m
terial used is constrained to be less than or equal to 12.5% of
bridge envelope volume. Even with this material usage constrai
the gross weight of the bridge structure greatly exceeds the m
nitude of the design traffic load. Accordingly, the bridge form i
designed considering only the traffic loading, although once t
designs are obtained, the performance of the structure under b
traffic and self-weight loading are considered. If the self-weigh
loading of the bridge were considered during the optimizatio
process, they would be dominant and unsatisfactory concept
sign would be obtained~see Swan et al. 1998 for both an exampl
and discussion!.

The concept design solution obtained by minimizing the line
elastic structural compliance under the design loading, witho
consideration of potential buckling instabilities, is shown in Fig
3~b!. The primary structural system is a long compression ar
that spans the full canyon width. The deck is very slender, a
supported in the first and last thirds of the span by a system
very slender compression members, and in the central third
slender tension members. The first buckling mode associated w
this material layout is shown in Fig. 3~c! and indicates buckling in
two of the slender compression members.

Two alternative structural concepts were obtained by solvin
slight variations of the optimization problem to maximize th
minimum critical buckling factor subject to material usage con
straints. In the first design@Fig. 3~d!#, the entire structural domain
Vs was treated as designable, while in the second@Fig. 3~f!#

-
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Table 2. Buckling Factors Computed Using Algorithm of Box 2, Along with Accurate Design Sensitivity Analysis Results Confirmed w
Converged Finite Difference DSA

f ref

~N! k g l ref

Analytical
DSA

Node 4

Finite difference
DSA

Node 4

1 13106 0.8072 5.18553106 27.187731027 27.187731027

102 13104 0.8072 5.18553104 27.187731027 27.187731027

104 13102 0.8072 5.18553102 27.187731023 27.187731023

106 13100 0.8072 5.18553100 27.187731021 27.187731021

108 3.12531022 0.3974 5.185531022 27.18773101 27.18773101

1010 3.051731024 0.4115 5.185531024 27.18773103 27.18773103

1012 3.814731026 0.2644 5.185531026 27.18773105 27.18773105
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design variable values of unity were imposed on all nodes at th
deck level. The two structural concepts obtained are markedl
different. The first layout resembles the compliance minimizing
design@Fig. 3~b!#, in that it primary feature is stout compression
arch that crosses the span. The deck is substantially thicker that
the compliance minimizing design, however, reducing the need
for the system of slender compression members that transfer dec
loads to the arch. For this reason the secondary compressio
members appear to be substantially more stout than those in th
compliance minimizing design. The computed fundamental buck
ling mode associated with this material layout@Fig. 3~e!# is not
visible on the global scale and is thus a highly localized mode. In
the second buckling stability design, the primary structural feature
is a long deep tension member crossing the span, with a system
secondary compression members to support the deck. Since t
deck would appear to be predominantly in compression along th
span direction, the proposed design method has stabilized it wit
an irregular system of reinforcing members. The fundamenta

Fig. 3. ~a! Design domain and boundary/loading conditions;~b! re-
sulting material layout to minimize mean compliance of structure
with lowest buckling mode~c!; ~d! layout to maximize minimum
buckling eigenvalue with lowest buckling mode~e!; ~f! layout to
maximize minimum buckling eigenvalue, by considering nondesign-
able layer along bridge deck where traction forces are applied with
lowest buckling mode~g!; computed performance characteristics are
provided in Table 3
1712 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / DECEMBER
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buckling mode for this material layout is also highly localized an
not visible on the global scale@Fig. 3~g!#.

The computed performance characteristics associated with
three layout designs of Fig. 3 are provided in Table 3. Not su
prisingly, the compliance minimizing material layout has th
smallest compliance of all three designs under the traffic loadi
It also shows a computed buckling eigenvalue slightly grea
than that of the first buckling-resistant design@Fig. 3~d!#, although
substantially smaller than that of the second buckling-resist
design@Fig. 3~f!#. Under loadings that also include the self-weigh
of the structural material, the same trends in compliance a
buckling stability persist. The computed performance characte
tics of the layout designs results should be viewed cautious
however, since in taking these concepts to more detailed fi
design stages, the performance characteristics could change
siderably.

Long-Span Concept Designs

For main span lengths greater than 1,000 m, suspension brid
that use primarily tension to carry both the design loads and th
own weight are generally optimal in that the primary structur
elements are not subject to buckling. Here the conceptual lay
optimization of a very long span~3,000 m! bridge is considered in
which the candidate structural region is selected to lie at or abo
the traffic deck level as shown in Fig. 4~a!. Again, the design
traffic loading on the bridge is 10 kPa uniformly distributed o
the deck level. The structural material usage is limited to 12.5
of the envelope volume. The design domain is meshed w
10,000 bilinear continuum finite elements, and the problem
solved first to maximize the minimum critical buckling load@Fig.
4~b!# and then to minimize the structural compliance of the stru
ture under the traffic loading@Figs. 4~c and d!#. Since the
compliance-minimizing design shown in Fig. 4~c! is somewhat
difficult to interpret, the problem was re solved at a substantia
higher mesh resolution, and is shown in Fig. 4~d!.

In both of the compliance-minimizing designs, the propos
methodology yields designs that use flexure of a flying beam-l
structure whose supports are cantilevered out into the span. W
these designs are in many ways quite plausible and realistic,
ticularly regarding the distributed support of the deck by syste
of cables suspended from the compression cord of the beam,
very serious problem with these designs is that the top chord
the beam-like structure is very long, slender, and in compress
under the design loading. If these compliance-minimizing conce
designs were to be taken into a secondary more detailed de
stage, the long compression cord members would need to be s
very large to avoid buckling, and the resulting design would
2003



a bridge
Table 3. Computed Performance Characteristics Associated with Three Canyon Bridge Designs of Fig. 3

Performance measure
Structural compliance

under traffic loading~N m!
Buckling factor

under traffic load only

Buckling factor
under traffic load

and full self weight

Buckling factor
under traffic load
and reduced self

weighta

Compliance design 1.703103 1.743104 65.9 4.843103

Buckling design No. 1 2.493103 1.473104 45.4 3.883103

Buckling design No. 2 1.003104 4.463104 83.3 6.983103

aReduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of
that occupies only 0.125% of the envelope volumeVs .
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excessively heavy and inefficient. It is worth noting that by u
lizing this linear elastic compliance minimizing formulation
similar topologies will result regardless the length of the span
the magnitude of the external loads. On the other hand, the la
design of Fig. 4~b! shows a conceptual design that maximizes t
linearized critical buckling load factor. As can be seen, the s
pension concept design solution uses compression in the
tively stout ‘‘towers’’ that elevate the cable, tension in the lon
suspension cable that extends across the span, and tension
relatively short hanger system that suspends the deck from
suspension cable. That the proposed formulation produces a
pension type concept design@Fig. 4~b!# resembling actual long
span bridges in usage today is an encouraging development.
worth noting here that a concept design similar to that in Fig. 4~b!
was obtained by Oberndorfer et al.~1996! with a discrete ground
structure topology optimization method that considered only lo
buckling instabilities.

To investigate the ability of the linearized buckling approa
to obtain practical long-span designs under different support c
ditions, a similar problem but with two spans and three supp

Fig. 4. ~a! Design domain with loading and support conditions;~b!
layout design obtained by maximizing minimum buckling eige
value; ~c! layout design obtained by minimizing structural comp
ance;~d! compliance minimizing layout obtained with more refine
model. Computed performance characteristics are provided
Table 4
JOURNAL
t

-
-

the
e
s-

is

l

-
t

regions@Fig. 5~a!# is solved. The layout design obtained by max
mizing the buckling stability@Fig. 5~b!# again appears superior to
the compliance-minimizing design solution@Fig. 5~c!# in terms of
global stability.

For the long-span bridge designs, the weight of the structu
material used~12.5% of envelope volume multiplied by the uni
weight of the structural material! again dwarfed the magnitude of
the design traffic loading. Consequently, the weight of the stru
tural material was neglected in the design optimization proble
The compliances and the critical buckling load factors for all o
the designs in Figs. 4 and 5 are provided~Tables 4 and 5!, both
under the design traffic loading, and under the combined traf
loading and the weight of the structural material. Based on t
computed performance characteristics shown in these tables
appears that the layout designs obtained by maximizing the l
earized buckling stability buckling factors@Figs. 4~b! and 5~b!#
are indeed superior performance to the compliance-minimizi
designs@Figs. 4~c!, 4~d!, and 5~c!# in terms of stability. As noted
above, however, the only computed design performance char
teristics that are truly meaningful are those based on the fi
detailed structural design. For long-span suspension bridges,
actually more realistic that structural volume will lie between 0.
and 1% of the envelope volume of the bridge. Hence, in procee
ing from concept designs to realistic final detailed designs, t
structural models would need to undergo substantial refinem
that would significantly further reduce overall weights.

Fig. 5. ~a! Design domain and boundary conditions for two-spa
three-support problem with all dimensions in meters;~b! resulting
material layout to maximize minimal buckling eigenvalue; and~c!
layout to minimize mean compliance of structure
OF STRUCTURAL ENGINEERING © ASCE / DECEMBER 2003 / 1713



bridge
Table 4. Computed Performance Characteristics Associated with Long-Span Bridge Layouts Shown in Fig. 4

Performance measure

Structural compliance
under traffic loading

~N m!
Buckling factor

under traffic load only

Buckling factor
under traffic load

and total self weight

Buckling factor
under traffic load

and reduced self weighta

Buckling design 3.163106 1.253103 5.82 412
Compliance design 2.923105 1.683102 0.882 58.3
aReduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of a
that occupies only 0.125% of the envelope volumeVs .
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Transmission Tower Design

Failure of electrical power transmission towers by buckling du
ing ice storms is a potential problem in the power industry. In th
example, the proposed design formulation is used to obtain o
mal forms in two dimensions for transmission tower that c
carry the static, vertical loads associated with six cables. T
static loading and boundary conditions on the spatial design
main are shown in Fig. 6~a! and are consistent with those used b
Kocer and Arora~2002! in a work entailing detailed optimal de-
sign of transmission towers with respect to cross-section selec
of individual members. In the current layout optimization pro
lem with continuum topology design, the spatial domain of Fi
6~a! is discretized with 12,000 bilinear continuum finite elemen
and concentrated loads of 10 kN are applied at the six ca
support positions. As in the preceding problems the structu
material usage is constrained to 12.5% of the design doma
envelope volume. The design problem was first solved to mi
mize the mean structural compliance under the design loads, w
the resulting topology shown in Fig. 6~b!. While this design has a
low linear elastic compliance, it is relatively unstable with rega
to buckling because it utilizes many long slender unbraced co
pression members. As in the preceding bridge design proble
the major weakness of the compliance minimizing formulation
its inability to detect potential buckling instabilities and to arran
the structure in a way that minimizes the likelihood of their actu
occurrence. Fig. 6~c! shows a layout design solution obtained b
maximizing the fundamental linearized buckling eigenvalue. Th
solution more closely resembles the form of existing transmiss
towers, than the solution of Fig. 6~b!. The comparative perfor-
mance characteristics of both designs in terms of compliance
buckling stability are provided in Table 6.

Discussion and Conclusions

The objective of this paper has been to present and apply a c
tinuum structural topology optimization formulation that can b
used to detect and avoid buckling instabilities in the concept
design stage of large sparse structural systems. The motivatio
to develop design tools that will produce conceptual structu
forms that are optimal and that will be less problematic in t
ensuing detailed design stages. Usage of the proposed formula
1714 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / DECEMBE
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to maximize the minimum critical buckling load of the structur
has been demonstrated here on the concept design of bridge s
tures and a transmission tower. Based on the example probl
solved, designing to maximize the minimum critical bucklin
load appears to be more effective at consistently achieving sta
structural forms than does minimizing the generalized complian
of the structural system. The proposed methods are somew
promising in that they yield structural concept designs in som
cases that are known to be optimal for certain design problem
For example, in the design of very long-span bridges, the meth
yields suspension bridge type designs. If the design tools can
confirmed on a number of such design applications, then they
be used with greater confidence in new classes of design pr
lems for which there is not necessarily any preceding experie
to guide the designer.

A number of investigators have recently demonstrated that l
out optimization of sparse structures can also be achieved
maximize critical buckling loads computed via geometrical
nonlinear structural buckling analysis. For large-scale sparse c
structures, the nonlinear analysis within the models can be qu
computationally expensive, and the proposed formulation p
sented here based on linearized buckling analysis can ach
similar results much more efficiently~see Rahmatalla and Swan
2003!.

The emphasis here has been on problem formulations and
resulting structural design solutions obtained. Numerical a
computational issues have also been addressed to facilitate a
rate calculation of buckling eigenvalues in accordance with t
linearized theory, and accurate design sensitivity analysis of th
buckling eigenvalues. Nonsimple~repeated! eigenvalues can and
often do occur when optimizing the layout of a structure to max
mize the fundamental buckling eigenvalue. While there rema
unresolved issues associated with the design sensitivity of s
non-simple eigenvalues, when they occur, it is worth noting he
that even when the DSA expressions for simple eigenvalues
employed in such cases, the optimization problem still tends
converge, although not monotonically, to designs that achieve
timized buckling stability. The computational cost of performin
the design examples of two-dimensional structures presen
herein has been quite modest, being on the order of a cpu h
each on an HP J-class single processor workstation. Beyond c
putational resource issues, which are significant, there is no c
a bridge
Table 5. Computed Performance Characteristics of Two-Span, Three-Support, Long-Span Bridge Layouts Shown in Fig. 5

Performance measure

Structural compliance
for traffic loading

~N m!
Buckling factor

for traffic load only

Buckling factor
for traffic load

and total self weight

Buckling factor
for traffic load and

reduced self weighta

Buckling design 1.523105 4.843103 63.3 5.153103

Compliance design 2.063104 1.943103 7.18 5.293102

aReduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of
that occupies only 0.125% of the envelope volumeVs .
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ceptual difficulty in extending the proposed design methods
form-finding of structures in three dimensions.

In the example problems solved in ‘‘Demonstrative Ex
amples,’’ the structure was permitted to occupy up to 12.5%
the structure’s envelope volume. In reality, suspension brid
and transmission towers typically feature a higher degree of sp
sity, occupying on the order of 1% or less of the structure’s e
velope volume. Within the current continuum topology optimiz
tion framework, modeling structures with such a high degree
sparsity would require finite element models of much grea
resolution than the models used herein with 104– 105 elements.
Nevertheless, even though the current stability optimizati
framework is limited in its ability to capture the true sparsit
characteristics of structures, it does yield material layouts that
quite realistic.
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