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Abstract: A continuum topology optimization methodology suitable for finding optimal forms of large-scale sparse structures is pre-
sented. Since the need to avoid long compressive spans can be critical in determining the optimal form of such structures, a formulatio
is used wherein the structure is modeled as a linear elastic continuum subjected to design loads, and optimized in form to maximize th
minimum critical buckling load. Numerical issues pertinent to accurate solution of the linearized buckling eigenvalue problem and
accurate design sensitivity analysis are discussed. The performance of the proposed design formulation is demonstrated on a few proble!
designed to find optimal forms of a canyon bridge, long-span bridges, and an electrical transmission tower. In all cases, very credible
structural forms are obtained with the proposed design formulation. The results of the design examples solved are typically superiol
structural forms with regard to buckling stability than those obtained to minimize the mean structural compliance.
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Introduction they are now quite standard. In the recent past, such methods have
been investigated quite extensively for civil engineering type
Designing sparse large-scale structures that are not susceptible tstructures with a good deal of attention paid to achievement of
buckling instabilities is a longstanding challenge in structural de- designs that are stable with respect to design I¢@dgerndorfer
sign optimization. Many structural design optimization methods €t al. 1996; Rozvany 1996; Zou 1996; Achtziger 1999; Bojczuk
are in use today and include cross-section selection, or size andand Mra 1999; Kowara 2002. In such frameworks, an attempt
shape optimization of structural cross sections. These types ofis typically made to achieve stable designs by enforcing local
methods are applicable toward the final stages of designing aEuler buckling constraints. This can be challenging, due to diffi-
structure, but they tend not to be very helpful when one is trying culty in identifying buckling lengths that can be considerably
to find the optimal forms of a structure based on its $@espan), larger than individual member lengths when several collinear and
support conditions, and the loads that it is expected to carry. compressive members form an isolated sequence.
While the designer’s intuition and awareness of design precedents While discrete structural optimization methods date back at
will always play a vital role, structural topology optimization least one century to the work of Michell, continuum structural
methods are objective tools that might also be very useful in topology optimization methods have more recent origins, devel-
identifying suitable, if not optimal, structural forms. Among struc- oped in the 1980s as extensions of shape and size optimization
tural topology optimization frameworks are there are essentially techniguegCheng and Olhoff 1981; Bendsge and Kikuchi 1988

two classes of methodsee Ohsaki and Swan 20021) discrete In these methods, the structure is modeled as a continuum and the
ground-structure topology optimization methods af@l con- form of the structural system is optimized using a system of dis-
tinuum structural topology optimization methods. tributed continuous design parametgsse the recent review by

One of the pioneering works in the field of structural topology Eschenauer and Olhof200J) for a survey of the numerous con-
optimizationper seinvolved presentation of optimal discrete truss tinuum topology optimization formulations developed over the
structures now called Michell structurédlichell 1904. More past 2 decadésSince these methods are not in any way restricted
recently, discrete ground structure truss topology optimization to truss-like structures, they have been investigated for a consid-
methods have been employédorn et al. 1964; Dobbs and Fel-  erable range of applications including: the design of composite
ton 1969; Hemp 1973; Rozvany 1976; Save and Prager)1880 material microstructureg§see Swan and Arora 1997 for one ex-

ample; compliant mechanisms in microelectromechanical sys-
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tinuum topology optimization methods, unlike discrete truss op- to satisfactory concept designs of large-scale sparse structures.
timization methods, have some difficulty modeling this sparsity In this paper, basic elements of continuum structural topology
since it requires extremely refined models with very high degree optimization are presented including material distribution design
of freedom counts. If the design method cannot capture this spar-parameters, problem statements, and design sensitivity analysis
sity, then it will have difficulty replicating and addressing the expressions. Finally, practical examples including concept de-
vibrational and stability characteristics of the structure. As a re- signs of large structures are demonstrated followed by discussion
sult, when continuum topology methods were applied in preced- and concluding remarks.
ing efforts to design the form of structures for both optimal stiff-
ness and vibrational characteristics, the designed forms of the
structure were realistic, but the computed vibrational characteris- Problem Formulations
tics, such as eigenfrequencies, were (Mda et al. 1995; Mijar
etal. 1998; Swan et al. 1998; Min et al. 2000 Structural Model and Material Layout Description

For large-scale sparse structures, stability considerations can o ) o i
often be the controlling factor in determining the overall form of 1€ objective of continuum structural optimization is to find a
the structure. For example, in the design of long-span bridges,'ayof‘t of a.structural mqtenal of.specmed properties in a defined
tension structures are typically optimal since they preclude poten-SPatial region that provides optimum structural performance. In
tial buckling under the traffic loading and self-weight loading. ©rder that the widest possible class of structural layouts can be
Previous applications of continuum topology optimization to find- considered, the methods in question must accommodate such gen-

ing optimal forms of bridges based on minimization of the linear €rality. In this work, the spatial region that the candidate struc-
elastic structural compliance under traffic loading, or maximiza- tural models can occupy is denotd. To facilitate both descrip-

tion of the fundamental vibrational eigenfrequencies of the struc- tlonf of the structurz_al mdate_r 'ﬁl Iayﬁtit i, and "’.‘ga'yfj's r?f t:e .
ture, or combinations of both functionals using multicriterion op- performance gssomate W't eac ayout considered, t.e. omain
timization approaches(Swan etal. 1998 have not been is discretized into a relatively fine mesh of nodes and finite ele-

satisfactory. Neither linear elastic compliance, nor vibrational ment;. . -
eigenfrequencies of a structural system are directly related to Itis deswe_d that "?“ the end of the fo_rm-fmdlng process, the
structural stability in sparse structures. For this reason, the result-S‘FrUCtUIraI reglc_)nQS will be decomposed _|nto a collection of re-
ing concept designs of structures from these preceding worksjustg'ons cumulatively denotefd, that contain the structural mate-
cited often feature long slender compression members that would
be highly problematic if the design were pursued from the con-
ceptual stage through the detailed design stage.
In continuum structural topology optimization formulations,

achievement of designs that are inherently stable in relation to the
design loads can be very challenging. For example, it can be

difficult to preclude local buckling behaviors with Euler-type con- sity &, of structural material A. By permitting mixtures, the

straints, since it is very difficult to identify discrete structural structural material A and a fictitious void material B are allowed
members, their geometrical properties, and their end support con-

ditions from the vector of design variables. One promising ap- to simultaneo_usly occupy an infinitesimal_neighb_orhood about

proach to addressing global geometrical instabilities in continuum each Lagra}nglan po@( €{)s. The .volum.etnc dgnsny of struc-
2 - . tural material A at a fixed Lagrangian poite ()¢ is denoted by

structural topology optimizatioiGuedes and Rodrigues 1995; . oS .

Neves et al. 1995and that has been employed in design of brac- da(X) and represents the fraction of an infinitesimal region sur-

. : : -~ rounding pointX occupied by material A. Natural constraints

ing systems for portal frames is to model the structure as a lin- upon the volumetric densities are

early elastic system and to use the minimum critical buckling load P

computed via eigenvalue analysis either in the objective function 0=sdpp(X)=<1; O0=o¢g(X)=<1; PaX)+ds(X)=1 (1)

or as a design constraint. While such an approach is very straight-

forward in principle, a complicating factor is that when the buck-

ling eigenvalues of the structure are nonsimfriepeatey] their material. The last physical constraint of E{) states that the

gesL%r;gs rt';/agggf ;lirne d;;:glnet 'n:O:rZ'eAgtcr 32‘33:22/’ir?naagg;?iiﬂ\l’ﬁnmaterial volume fractions aX are not independent and so one
toppolo framewogrk isgto mod’el ?he structure as an elastic con- need only be concerned with the layout of structural material A.
tin%umg¥akin into account finite deformation effects and the as- The design of a structure is here considered to be the spatial
. King Nt ) . = distribution of the structural material A if).
sociated instabilitie$Buhl et al. 2000; Bruns and Tortorelli 2001, d ibe the distributi f ial A th h .
Gea and Luo 2001; Rahmatalla and Swan 200&vertheless _Tc_) escribe the |str_| ution of material A throug musmg_
’ ’ a finite number of design parameters, the volumetric density at

the advantage of the_ first approach over the latter is its substan-each of theNUMNP nodal point forms a set diUMNP design
tially lower computational cost.

In the bodv of this paper. a linear elastic continuum topolo variables. These are then interpolated over the space of all inter-
- body ¢ Paper, AT POIOGY " e diate points in the structure using the nodal shape functions
formulation is introduced for minimization of mean structural

compliance, and for maximization of minimum critical buckling NUMNP

values computed by linearized buckling analysis. One of the in- b(X)= 2, BNi(X) VXelQq 2
tents is to demonstrate the advantages of designing to maximize =1

minimum critical buckling loads as opposed to designing to mini- where b=nodal volumetric density values associated with the
mize linear elastic structural compliance. This point is salient as structural material; and\;(X)=nodal shape functions. This ap-
designing for compliance minimization has been frequently ex- proach yields aC® continuous design variable field that is not
plored in the research literature, and yet it will generally not lead susceptible to “checkerboarding” instabilities.

rial in question, and the remaining regiofig =/ 4 that are
devoid of structural material. Since solution of the form-finding
problem in this way is ill-posed, an alternative relaxed approach
is usually employed, wherein it is assumed that an amorphous
“mixture” of structural material A and a void material B exists
throughout the structural regiof}. In each region of)4, the
nature of the mixture is characterized by a local volumetric den-

Clearly, whend(X)=1 the pointX contains solid structural
material, and wheb 5(X) =0 the pointX is devoid of structural
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Given the finite element model of the structural region, the
structural loads and restraintsr supports on this region are fex{:j thrﬁf NpgdQs
specified as the set of design loads. For each set of design load- Fe s
ings, and for each realization of the design vectbr In all of the aboveN denotes the nodal shape functions @hd

={b,,b,,....onumne}, the response performance of the structure denotes the standard strain—displacement matricés Bathe
will be analyzed as a boundary value problem. From the com- 1996. The structural stiffness matrik is positive definite due to
puted response of the structure, the performance of the structurghe characteristics of the effective elasticity ten€dr, and this
will be quantified, as will be the sensitivity of the performance to guarantees a unique solution to the structural analysis problem for

variations in the design variables. each realization of the design
Once the equilibrium solution to the problem of E®) is
Constitutive Mixing Rules obtained, then the linearized geometrical stiffness marigan

] o ~ be computed based on the stress figlth the structure
In the proposed design framewaork, each finite element comprising

the spatial domair) of the structure will generally contain a G!_M:J NS NMoo §..dO @)
spatially varying mixture of the structural and void materials. It is ik g, M nomn jkOils
necessary to prescribe the stiffnggs elastic moduli of such
mixtures in terms of the stiffness characteristics of the solid ma-
terial Cqyq, those of the fictitious void materidl,,;q, and the
local volumetric density of the structural materdalX). Here, the
well-known powerlaw formulaBendsge and Sigmund 1998
used to accomplish this task, providing the local effective stiff-
ness of the mixtur€* as

C* = pPCoggt (1— bP)Coog 3) Structural Performance Measures

It is worth noting thatG is not necessarily positive definite but
rather depends heavily upon the nature of the stress field in the
structure. A purely tensile stress field clearly mak&gositive
definite, although for any compressive stresseswill not be
positive definite.

where typically the mixing rule parametpre[1,4]. With p=1,

the Voigt rule of mixtures is obtained which does not penalize
mixtures, but which does yield a convex formulation for compli- As noted previously, structural topology design problems can be
ance minimization problemg§Swan and Kosaka 199%o0 that formulated in a number of alternative ways through utilization of
only one solution exists for the design problem. Witk 4, mix- assorted objective and constraint functions. Generally, the objec-
tures are penalized in the final design, so that regiorid gfend tive function measures the performance of the structure, and the
to be either solid or void, but the optimization problem is not constraint function limits the amount of structural material that
convex, and will admit a number of solutions that satisfy the first can be used, although the roles can be reversed equally well. The

Overview

order optimality conditions. significant aspects of using CSTO to design large-scale sparse
structures can be demonstrated here using the linear elastic struc-

Structural Analysis tural compliance performance measure and the critical load buck-
ling factor.

For each design, a structural analysis problem is solved on the

continuum domair()s. In general terms, the structural analysis

problem solved for each realization of the design vebtds the Linear Elastic Structural Compliance

following: Find the displacement fiela(X) Qg—R¥suchthatthe it 4 strycture features a linear elastic response behavior, the re-

variational equilibrium problem is solved sulting displacement field in response to a set of applied exter-
nal loadsf ® will be simply u=K ~1-f ® whereK represents the

jﬂsﬂiﬁedﬂf frsh'SUdrer LSPQ'BUdQs 4) stiffness matrix of the structure. For a given set of loads, the

compliancell(b) of the structure is simply
whereo(X)=local stress field in the structurb=traction vector _leext
consistent with the design loads being applied to the structure; I1(b) =3t *u (®)
p(X)=local mass density of the structural material; Structural concept desigisthat are stiff with respect to the ap-
g=gravitational body force vectoBu=kinematically admissible  plied loads will have small compliandd(b), whereas structures
variational displacement field; ard&=corresponding variational  that are not stiff with respect to the applied loads will have large
strain field. In the structural model, the material features linear compliance. To facilitate usage of gradient-based optimization so-
elastic behavior such that=C*:e, where the effective elasticity  |ution techniques, it is necessary to compute the design deriva-
tensor is design dependent and prescribed in accordance with Edtives of the compliance function. It can be shown that the design
(3). The matrix problem associated with variational equilibrium gradient of structural compliance is provided by the following

of the discrete finite element structural model, for whigtX) expression:

—=NCOu s | dil 1 (oK afed
OZK.u_fext:fmt_fext (5) %:_Eu_ E.u_ ab (9)

where

KM _ J' BL.C* BM 40 Linearized Bucking Performance Measure
Ik o, MM e Linearized buckling eigenvalue analysis proceeds as follows: A
prescribed force loading®" is applied to the structure with its
fint=K.y= f BTadQ), (6) magnitude necessarily being less than that required to induce geo-
Q’S

metric instability in the structure. Once the resulting linear, elas-
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tostatic displacement solutian={u;} e RN in response to the ap- ot

plied loading f®* is obtained K-u=f®"Y, where K is the

linearized stiffness matrix, then the following eigenvalue problem 15 16 17 v 18 19 20 21

is solved: ] 9 10 11 12 13 14
[K(b)+XG(u,b)] =0 (10) ' e —1

In the precedingb={b.} € RM is again the vector of design vari-
ables;K =tangent stiffness operato@(u,b)=linearized geomet-
ric stiffness matrix;\=—(Us-K -ds/s-G-ds) =eigenvalue denoting
the magnitude by which®!must be scaled to create instability in
the structure; and {s=normalized eigenvector satisfying
P-K-s=1. To avoid numerical difficulties in the solution of Eqg.
(10) stemming from the indefinite characteristics®f it is com-
mon (Bathe 1996 to solve a modified eigenvalue problem that
deals with two positive definite matrices

A

Fig. 1. Undeformed and deformed configurations of coarse beam
model with first buckling mode shown

[(K+G)—yK]-$=0 (11)
where librium constraint(r=0), and the second term can be made to
A1 1 vanish by selecting the adjoint displacement vector to solve the
Y= ON= = (12) following linear adjoint equality statement
In Eq. (11, the matrixK is positive definite irrespective of the K -ua=1s- §'¢ (18)
loading applied to the structure, whereas the matix-G) will au

only be positive definite when the magnitude of the loading ap- gice it can be shown that=/db=d . /db, it follows that the
plied to the structural model is less than the critical magnitude design gradient expression for the objecti’ve function is

that creates instability in accordance with linearized buckling

theory. dfe (GG 10K oK af ext

The design problem is formulated to maximize the calculated db FRRENET) b Y ab ) (19)

minimum-buckling load factof\), and accordingly the objective The preceding expression is valid onlv when the minimum
function f¢ to be minimized for this problem would simply be the . preceding exp lon 1s vall y w inimu
eigenvalue is a simple, or nonrepeated, eigenvalue. When the

reciprocal of the lowest eigenvalueas follows: 2 . . . I
minimum eigenvalue is nonsimple, or repeated, the variation of
the eigenvalue in design space is nonsmooth, and direct usage of

fE(“vb):m (13) the expression in Eq(19) is technically incorrect{Choi et al.
1983; Seyranian et al. 1994Resolution of this issue is non-
The optimization problem is thus stated to minimize the recipro- trivial, although it can be ameliorated somewhat by using small

. lb-}- u2.

cal of the first(or minimum critical buckling load as follows: and variable move limits in the design optimization process. De-
1 G spite this challenge, designs that successfully maximize the buck-
min fE:min(X) =min< - maxlb.K.‘b) a4) ling stability of a structural system can nevertheless be obtained.

b,u b,u b,u [l =0

subject to the normal bound constraints on the design variables
Eq. (1), the linear structural equilibrium state E®), and a con-

straint on material resources. B dth h ¢ dei | h h
The design gradient of the objective function can be expressed eyond the nonsmooth nature of repeated eigenvalues, when they
occur, there are additional numerical issues associated with reli-

able solution of the buckling eigenvalue problem and the atten-
dfg ofg ofg ou dant effect on accurate sensitivity of buckling eigenvalues with
db %Jr Bu ab (15) respect to design changes. As noted previously, due to indefinite
) o ) o ) characteristics of the linearized, the modified buckling eigen-
To avoid explicit computation of the terwu/ob, adjoint design  yajye problem of Eq(11) is usually solved rather than that of Eq.
sensitivity analysis is employed by augmenting the objective (10). However, when the magnitude of loading applied to the
function f¢ with the equilibrium state equation as follows: structure is greatly exceeded by thatfdf!, then\—c and ac-
E=fe+udr (16) cordingly y—1. As this happens, it is ipcreasingly difficult to
accurately compute both andd\/db. This is demonstrated by
whereu®=adjoint displacement vector which functions as a ma- considering the simple beam model shown in Fig. 1 for which a
trix of Lagrange multipliers and determined by the solution of a |oad of magnitudd|f ®j=1 MN is applied, and for whictf ot
linear adjoint problem. The design derivative of the augmented =) *||f ®|=5.1855 MN, giving \=5.1855. One would expect

Numerical Issues

as

Lagrangian is then written as follows: that as the magnitude of the loading applied to the structural
G e ) e o v (TS S e cped bscteds e
db b Y ap) T au Tau Y Tap T :

17 1 indicate otherwise, however, and that as the inaccuracy in com-
(17) puted values oh increases, the inaccuracy in the design sensi-
The last term of Eq(17) vanishes due to satisfaction of the equi- tivities increases dramatically. Accordingly, when computing the
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Table 1. Buckling Factors Computed with Standard Methods for results presented in Table 2. As can be seen from this table, the

Model Shown in Fig. 1. computed buckling eigenvalues now scale in inverse proportion
Finite difference to the magnitude of the applied load€", and the computed

fext Analytical DSA DSA design sensitivity results are now in close agreement with those

(N) v by Node 14 Node 14 computed by converged finite difference analysis.

107 0999981 5.2978%10* —6.7096<10°° —6.7491x10°

10 09981  5.2400810° —6.8476<10 % —7.0158<10 2 Demonstrative Examples

10° 0.8072 5.185%10° —7.1877%10 ' -—7.1877 10!

Note: Inaccuracies exist in computed eigenvalues and also in both ana-Material Properties and Mixing Rules
lytical and finite difference design sensitivity results.

In the following examples, the CSTO formulation to maximize
. . . minimum critical buckling loads computed by linearized eigen-
buc!dlng elgenvqlue of the structural modgl, greater accuracy is gjue analysis is tested and compared with the more commonly
aceryevec(rjit by using a scaled load magnltqtféx‘]\ such that used compliance minimization formulation. In all cases, the initial
“f {l/f e (0.1,1). The ratio cannot exceed unity however since g4ting designs feature a completely solid structural domain; the
in that case(K +G) loses its positive definiteness. To avoid the g|ig structural material in all problems is steel with a Young's
problems associated with application of a load to the structural ,oqulus of 206 GPa and shear modulus of 79.2 GPa and a mass
model that is either far too smaile. fe/f cM<1), or too large density of 7,800 kg m®. The powerlaw mixing rule wittp=4 is
(i.e.[[f=/f ©*=1) an algorithm such as that shown in Fig. 2is e in all computations to achieve material layouts that, in the
necessary. , o _ end, are more or less discrete and interpretable. In addition, the
The essential idea behind the proposed algorithm in Fig. 2 is 4| design variable formulation of the “Problem Formulations”
that while a fixed set of structural loads, here .denotetﬂrEI)are _ Section is employed without any spatial filtering of design vari-
applied to the structural model fofr all _reahzatltf)ns of the design 4pjes and without any perimeter control. All design optimization
vectorb, the computed value of"'=f “b)/fre H for each re-  yroplems were solved using fairly standard sequential linear pro-
alization of the desigrb could either be excessively lardee., gramming techniques with variable move limits. Optimization

\'e>1) and thus contain a large amount of error, or alternatively roplems were terminated when the designs satisfied the Kuhn—
too small(i.e., \"*'<1) making it very difficult to compute the Tucker first order optimality condition.

minimum eigenvalue associated with Ef0). An accurate com-
putation of the buckling eigenvalue with respect to the lo&éfs ]
can be achieved, however, by iterative scaling of the actual sys- Canyon Bridge Problem

tem of loads applied to the structuf&"=k* ' until A (1,10, In this case, we consider seeking optimal forms of a bridge to
where here is the minimum eigenvalue with respect to the ¢4y self-weight and traffic loads across a span of 1,000 m. The
scaled loads. Since f () = N1 [f o = (N k) (k* 1)) bridge is designed in two dimensions and the design traffic load
_:)\*”fex'”- it follows thamref:_k*)\- To demonstrate the effec-  applied uniformly to the deck level of the bridge is 10 kPa. The
tiveness of the proposed algorithm, the computed buckling eigen-candidate spatial region that the bridge superstructure can poten-
values and their design gradients associated with the test problerrﬁa”y occupy is shown in Fig. @). Since it is desired that the

of Fig. 1 were computed using the algorithm of Fig. 2, and the gy ctural form obtained be sparse, the volume of structural ma-
terial used is constrained to be less than or equal to 12.5% of the
bridge envelope volume. Even with this material usage constraint,
the gross weight of the bridge structure greatly exceeds the mag-

Given a fixed set of applied external forces ™

Step1: Solve the structural analysis problem for u™ = K -£~ nitude of the design traffic load. Accordingly, the bridge form is
Step2: Compute the linearized geometric siffness matrix G™ (u™) designed considering only the traffic loading, although once the
Step3: Letk =1 designs are obtained, the performance of the structure under both
Stepd: f =k*f™, G'=k*G™ traffic and self-weight loading are considered. If the self-weight
Step 5: Using G'attempt to solve the eigenvalue problem of Eqs. (11) Ioading of the bridge were considered during the optimization

and (12) for 4 process, they would be dominant and unsatisfactory concept de-
Step6: If (K +G') is not positive definite) then sign would be obtainetsee Swan et al. 1998 for both an example

k=k2 and discussion

refurm to Step 4. The concept design solution obtained by minimizing the linear

endif

) elastic structural compliance under the design loading, without
Step7: if(4 €(1,10))then

consideration of potential buckling instabilities, is shown in Fig.

=27k . ) :

compute &% for 4 by Eq, (19) using G = G 3(b). The primary structural system is a Iong compression arch

return @ that spans_the fuII_ canyon Wldth: The deck is very slender, and
else supported in the first and last thirds of the span by a system of

K=10*k: very slender compression members, and in the central third by

return m’smp4_ slender tension members. The first buckling mode associated with
endif this material layout is shown in Fig(& and indicates buckling in

two of the slender compression members.

Two alternative structural concepts were obtained by solving
slight variations of the optimization problem to maximize the
minimum critical buckling factor subject to material usage con-
straints. In the first desiglFig. 3(d)], the entire structural domain
Q¢ was treated as designable, while in the secPrid. 3(f)]

Fig. 2. Algorithm for accurate computation of buckling load factor
eigenvalue\" with respect to fixed set of design loafi§"
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Table 2. Buckling Factors Computed Using Algorithm of Box 2, Along with Accurate Design Sensitivity Analysis Results Confirmed with
Converged Finite Difference DSA

Analytical Finite difference

f ref DSA DSA
(N) k v Aref Node 4 Node 4

1 1x10° 0.8072 5.185% 1¢° —7.187% 1077 —7.187% 1077
107 1x10* 0.8072 5.185% 10* —7.1877x 107 —7.1877% 107
10t 1X10? 0.8072 5.185% 107 —7.1877x 103 —7.1877x 1073
10° 1x10° 0.8072 5.185% 10° —7.1877 107! —7.1877%10 ¢
108 3.125x 1072 0.3974 5.185% 102 —7.1877% 10 —7.1877 10"
10% 3.0517x 104 0.4115 5.185% 104 —7.187% 10 —7.187X% 10°
10 3.814710°© 0.2644 5.185% 10 © —7.187710° —7.187710°

design variable values of unity were imposed on all nodes at the buckling mode for this material layout is also highly localized and
deck level. The two structural concepts obtained are markedly not visible on the global scalé=ig. 3(g)].

different. The first layout resembles the compliance minimizing The computed performance characteristics associated with the
design[Fig. 3(b)], in that it primary feature is stout compression three layout designs of Fig. 3 are provided in Table 3. Not sur-
arch that crosses the span. The deck is substantially thicker that ofrisingly, the compliance minimizing material layout has the
the compliance minimizing design, however, reducing the need smallest compliance of all three designs under the traffic loading.
for the system of slender compression members that transfer deckt also shows a computed buckling eigenvalue slightly greater
loads to the arch. For this reason the secondary compressiorthan that of the first buckling-resistant desdig. 3(d)], although
members appear to be substantially more stout than those in thesubstantially smaller than that of the second buckling-resistant
compliance minimizing design. The computed fundamental buck- design[Fig. 3f)]. Under loadings that also include the self-weight
ling mode associated with this material layd&ig. 3(e)] is not of the structural material, the same trends in compliance and
visible on the global scale and is thus a highly localized mode. In buckling stability persist. The computed performance characteris-
the second buckling stability design, the primary structural feature tics of the layout designs results should be viewed cautiously,
is a long deep tension member crossing the span, with a system ohowever, since in taking these concepts to more detailed final
secondary compression members to support the deck. Since thelesign stages, the performance characteristics could change con-
deck would appear to be predominantly in compression along thesiderably.

span direction, the proposed design method has stabilized it with

an irregular system of reinforcing members. The fundamental .
9 y 9 Long-Span Concept Designs

For main span lengths greater than 1,000 m, suspension bridges
that use primarily tension to carry both the design loads and their
own weight are generally optimal in that the primary structural
elements are not subject to buckling. Here the conceptual layout
300 m optimization of a very long spaf8,000 m) bridge is considered in
which the candidate structural region is selected to lie at or above
the traffic deck level as shown in Fig(a}. Again, the design
traffic loading on the bridge is 10 kPa uniformly distributed on
the deck level. The structural material usage is limited to 12.5%
of the envelope volume. The design domain is meshed with
10,000 bilinear continuum finite elements, and the problem is
solved first to maximize the minimum critical buckling lofig.
4(b)] and then to minimize the structural compliance of the struc-
ture under the traffic loadindFigs. 4c and d]. Since the
compliance-minimizing design shown in Fig(ch is somewhat
difficult to interpret, the problem was re solved at a substantially
higher mesh resolution, and is shown in Figd}4

In both of the compliance-minimizing designs, the proposed
methodology yields designs that use flexure of a flying beam-like
200 elements structure whose supports are cantilevered out into the span. While
these designs are in many ways quite plausible and realistic, par-
ticularly regarding the distributed support of the deck by systems
of cables suspended from the compression cord of the beam, the
very serious problem with these designs is that the top chord of
the beam-like structure is very long, slender, and in compression
under the design loading. If these compliance-minimizing concept
designs were to be taken into a secondary more detailed design
stage, the long compression cord members would need to be sized
very large to avoid buckling, and the resulting design would be

Fig. 3. (a) Design domain and boundary/loading conditioi®; re-
sulting material layout to minimize mean compliance of structure
with lowest buckling mode(c); (d) layout to maximize minimum
buckling eigenvalue with lowest buckling mode); (f) layout to
maximize minimum buckling eigenvalue, by considering nondesign-
able layer along bridge deck where traction forces are applied with
lowest buckling mod€g); computed performance characteristics are
provided in Table 3
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Table 3. Computed Performance Characteristics Associated with Three Canyon Bridge Designs of Fig. 3

Buckling factor

Buckling factor under traffic load
Structural compliance Buckling factor under traffic load and reduced self
Performance measure under traffic loadingN m) under traffic load only and full self weight weighf
Compliance design 1.2010° 1.74x 10 65.9 4.8410°
Buckling design No. 1 2.4910° 1.47x10* 45.4 3.8%10°
Buckling design No. 2 1.0010 4.46x10% 83.3 6.98<10°

®Reduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of a bridge
that occupies only 0.125% of the envelope voluthe.

excessively heavy and inefficient. It is worth noting that by uti- regions[Fig. 5a)] is solved. The layout design obtained by maxi-
lizing this linear elastic compliance minimizing formulation, mizing the buckling stabilityFig. 5(b)] again appears superior to
similar topologies will result regardless the length of the span or the compliance-minimizing design solutipRig. 5(c)] in terms of
the magnitude of the external loads. On the other hand, the layoutglobal stability.
design of Fig. 4b) shows a conceptual design that maximizes the  For the long-span bridge designs, the weight of the structural
linearized critical buckling load factor. As can be seen, the sus- material used12.5% of envelope volume multiplied by the unit
pension concept design solution uses compression in the relaweight of the structural materjghgain dwarfed the magnitude of
tively stout “towers” that elevate the cable, tension in the long the design traffic loading. Consequently, the weight of the struc-
suspension cable that extends across the span, and tension in th@ral material was neglected in the design optimization problem.
relatively short hanger system that suspends the deck from theThe compliances and the critical buckling load factors for all of
suspension cable. That the proposed formulation produces a susthe designs in Figs. 4 and 5 are provid@@bles 4 and b both
pension type concept desigfig. 4(b)] resembling actual long  under the design traffic loading, and under the combined traffic
span bridges in usage today is an encouraging development. It iSoading and the weight of the structural material. Based on the
worth noting here that a concept design similar to thatin Hig) 4~ computed performance characteristics shown in these tables, it
was obtained by Oberndorfer et 81996 with a discrete ground  appears that the layout designs obtained by maximizing the lin-
structure topology optimization method that considered only local earized buckling stability buckling factof&igs. 4b) and 5b)]
buckling instabilities. are indeed superior performance to the compliance-minimizing
To investigate the ability of the linearized buckling approach designg Figs. 4c), 4(d), and 5c)] in terms of stability. As noted
to obtain practical long-span designs under different support con-ahove, however, the only computed design performance charac-
ditions, a similar problem but with two spans and three support teristics that are truly meaningful are those based on the final
detailed structural design. For long-span suspension bridges, it is
actually more realistic that structural volume will lie between 0.1
200 and 1% of the envelope volume of the bridge. Hence, in proceed-
% 200 m ; : o . .
ing from concept designs to realistic final detailed designs, the
_ I structural models would need to undergo substantial refinement

that would significantly further reduce overall weights.

375 it @) 375 m
ro elements

mé-’\mx/‘&‘

200 elements
250
ro ®) [ [

I

+ 3 AL 3 Y3
ik} rk“z}\LAth’{L_‘,i‘ ‘

> 200 elements 50 elements (@

60 elements (C)

50 elements ®)

—_— 900 elements

(d)

200 elements

Fig. 4. (a) Design domain with loading and support conditiofts; ©

layout design obtained by maximizing minimum buckling eigen-

value; (c) layout design obtained by minimizing structural compli- Fig. 5. (a) Design domain and boundary conditions for two-span
ance;(d) compliance minimizing layout obtained with more refined three-support problem with all dimensions in meteis; resulting
model. Computed performance characteristics are provided in material layout to maximize minimal buckling eigenvalue; &gl
Table 4 layout to minimize mean compliance of structure
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Table 4. Computed Performance Characteristics Associated with Long-Span Bridge Layouts Shown in Fig. 4

Structural compliance Buckling factor Buckling factor

under traffic loading Buckling factor under traffic load under traffic load
Performance measure (Nm) under traffic load only and total self weight and reduced self weight
Buckling design 3.1810° 1.25x 10° 5.82 412
Compliance design 2.9210° 1.68x 107 0.882 58.3

®Reduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of a bridge
that occupies only 0.125% of the envelope voluthe.

Transmission Tower Design to maximize the minimum critical buckling load of the structure
has been demonstrated here on the concept design of bridge struc-
tures and a transmission tower. Based on the example problems
solved, designing to maximize the minimum critical buckling
load appears to be more effective at consistently achieving stable
structural forms than does minimizing the generalized compliance
of the structural system. The proposed methods are somewhat
promising in that they yield structural concept designs in some

Kocer and Arora2002 in a work entailing detailed optimal de- ~ C3S€S that are known t(_) be optimal for certain_design problems.
sign of transmission towers with respect to cross-section selectionFOr €xample, in the design of very long-span bridges, the method
of individual members. In the current layout optimization prob- Yi€lds suspension bridge type designs. If the design tools can be
lem with continuum topology design, the spatial domain of Fig. confirmed ona number of _such de_5|gn applications, then_they can
6(a) is discretized with 12,000 bilinear continuum finite elements P& used with greater confidence in new classes of design prob-
and concentrated loads of 10 kN are applied at the six cable!®@ms for which there is not necessarily any preceding experience

support positions. As in the preceding problems the structural 0 guide the designer.

material usage is constrained to 12.5% of the design domain’s A number of investigators have recently demonstrated that lay-
envelope volume. The design problem was first solved to mini- OUt optimization of sparse structures can also be achieved to
mize the mean structural compliance under the design loads, withmaximize critical buckling loads computed via geometrically
the resulting topology shown in Fig(l§. While this design has a nonlinear structural _buckllng angly5|§. For large-scale sparse C|y|I
low linear elastic compliance, it is relatively unstable with regard Structures, the nonlinear analysis within the models can be quite
to buckling because it utilizes many long slender unbraced com- computationally expensive, and the proposed formulation pre-
pression members. As in the preceding bridge design problems,Sented here based on linearized buckling analysis can achieve
the major weakness of the compliance minimizing formulation is Similar results much more efficientsee Rahmatalla and Swan

its inability to detect potential buckling instabilities and to arrange 2003.

the structure in a way that minimizes the likelihood of their actual ~ The emphasis here has been on problem formulations and the
occurrence. Fig. @) shows a layout design solution obtained by resulting structural design solutions obtained. Numerical and
maximizing the fundamental linearized buckling eigenvalue. This computational issues have also been addressed to facilitate accu-
solution more closely resembles the form of existing transmission rate calculation of buckling eigenvalues in accordance with the

Failure of electrical power transmission towers by buckling dur-
ing ice storms is a potential problem in the power industry. In this
example, the proposed design formulation is used to obtain opti-
mal forms in two dimensions for transmission tower that can
carry the static, vertical loads associated with six cables. The
static loading and boundary conditions on the spatial design do-
main are shown in Fig.(®) and are consistent with those used by

towers, than the solution of F|g([® The comparative perfor- linearized theory, and accurate design sensitivity analysis of these
mance characteristics of both designs in terms of compliance andbuckling eigenvalues. Nonsimpleepeated eigenvalues can and
buckling stability are provided in Table 6. often do occur when optimizing the layout of a structure to maxi-

mize the fundamental buckling eigenvalue. While there remain

unresolved issues associated with the design sensitivity of such
Discussion and Conclusions non-simple eigenvalues, when they occur, it is worth noting here

that even when the DSA expressions for simple eigenvalues are
The objective of this paper has been to present and apply a conemployed in such cases, the optimization problem still tends to
tinuum structural topology optimization formulation that can be converge, although not monotonically, to designs that achieve op-
used to detect and avoid buckling instabilities in the conceptual timized buckling stability. The computational cost of performing
design stage of large sparse structural systems. The motivation ishe design examples of two-dimensional structures presented
to develop design tools that will produce conceptual structural herein has been quite modest, being on the order of a cpu hour
forms that are optimal and that will be less problematic in the each on an HP J-class single processor workstation. Beyond com-
ensuing detailed design stages. Usage of the proposed formulatiomputational resource issues, which are significant, there is no con-

Table 5. Computed Performance Characteristics of Two-Span, Three-Support, Long-Span Bridge Layouts Shown in Fig. 5

Structural compliance Buckling factor Buckling factor
for traffic loading Buckling factor for traffic load for traffic load and
Performance measure (Nm) for traffic load only and total self weight reduced self weight
Buckling design 1.5%10° 4.84x 10° 63.3 5.15¢10°
Compliance design 2.0610* 1.94x10° 7.18 5.2K 107

®Reduced self-weight assumes that bridge weight is only approximately 1% of the weight it has in the model. This approximates the weight of a bridge
that occupies only 0.125% of the envelope voluthe.
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Fig. 6. (&) The design domain and boundary/loading conditions for
the transmission towelp) resulting layout for compliance minimi-
zation; (c) resulting layout to optimize global stability. Computed
performance characteristics are in Table 6

Table 6. Computed Performance Characteristics Associated with
Transmission Tower Layout Designs Shown in Fig. 6

Performance measure Complian®em) Buckling eigenvalue
Buckling design 25.0 2.0410°
Compliance design 0.782 3.300

ceptual difficulty in extending the proposed design methods to
form-finding of structures in three dimensions.

In the example problems solved in “Demonstrative Ex-
amples,” the structure was permitted to occupy up to 12.5% of

the structure’s envelope volume. In reality, suspension bridges
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and transmission towers typically feature a higher degree of spar-MiChe"' A. G. M. (1904. “The limits of economy in frame structures.”

sity, occupying on the order of 1% or less of the structure’s en-
velope volume. Within the current continuum topology optimiza-
tion framework, modeling structures with such a high degree of
sparsity would require finite element models of much greater
resolution than the models used herein witf-10 elements.
Nevertheless, even though the current stability optimization
framework is limited in its ability to capture the true sparsity

characteristics of structures, it does yield material layouts that are

quite realistic.
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