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ABSTRACT

The desired results of variable topology material layout computations are stable and discrete material dis-
tributions that optimize the performance of structural systems. To achieve such material layout designs
a continuous topology design framework based on hybrid combinations of classical Reuss (compliant) and
Voigt (sti�) mixing rules is investigated. To avoid checkerboarding instabilities, the continuous topology
optimization formulation is coupled with a novel spatial �ltering procedure. The issue of obtaining globally
optimal discrete layout designs with the proposed formulation is investigated using a continuation method
which gradually transitions from the sti� Voigt formulation to the compliant Reuss formulation. The very
good performance of the proposed methods is demonstrated on four structural topology design optimization
problems from the literature. ? 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

Variable topology material layout optimization is much more general than �xed topology shape
optimization in that it can lead to spatial material distributions of arbitrary connectedness (or
‘topology’). It is performed early in the design of structures or composite material systems to �nd
potentially optimal starting ‘concept designs’ (Figure 1). Once the gross optimal layout problem is
solved, �xed topology shape optimization methods can be employed to �ne tune designs. For the
sake of both interpretability and manufacturability, designers generally seek discrete or separated
material distributions in their �nal designs. Nevertheless, discrete ‘ground structure’ truss topology
approaches such as those of References 1 and 2 are being increasingly supplemented with contin-
uum or continuous formulations such as those proposed by Kohn and Strang3 and pioneered by
Bendsoe and Kikuchi4 since they permit more general material layout arrangements. In continuum
topology formulations, the material occupying a spatial point X need not be strictly either material
A or material B but can instead be some combination or ‘mixture’ of the two. Various forms
of material mixtures are routinely permitted to exist throughout the design domain in intermediate
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3034 C. C. SWAN AND I. KOSAKA

Figure 1. Topology versus pure shape optimization for (a) structures and (b) composite materials. Black regions represent
(a) solid material and (b) sti� reinforcing material while white regions indicate (a) void spaces and (b) a compliant matrix

phase

and even �nal design states. By careful formulation and solution of the design problem, however,
locally optimal designs can be coaxed to achieve virtually discrete material distributions involving
no local mixing.
An important aspect of developing methods to solve continuous, variable topology material

layout problems is the constitutive treatment of continuous mixtures of materials. The descrip-
tion, modelling and treatment of such mixtures to obtain their e�ective mechanical properties as
functions of the material phase volume fractions is here denoted by the term ‘mixing rules’. Since
mixing rules can and do bear a strong in
uence on the nature of the �nal solutions obtained, the
intent of this paper is to introduce and study the characteristics of a promising new material layout
formulation based on classical Voigt and Reuss mixing rules.
Variable topology material layout optimization is presently revolutionizing the design of elastic

structures and composite material systems. An open question that remains to be answered is what
bene�ts can be realized by extending these potent layout methods to structures and materials
operating in non-linear and inelastic regimes of behavior. Among the numerous obstacles that
must be overcome in extending topology design to more general applications are:

(a) generalizing continuous ‘mixing rules’ to inelastic regimes of material behaviour;
(b) formulating and implementing design sensitivity analysis for non-linear structural topology

applications; and
(c) reducing the high computing expense of topology design for non-linear systems.

One reason that the continuous formulation being studied here is attractive to the authors is that
it addresses the �rst obstacle above; that is, due to its generality, it can be used straightforwardly
with both linear elastic materials and more general path-dependent non-linear materials. Design
sensitivity analysis algorithms for applications involving variable topology material layout design of
composite microstructures for high sti�ness and strength have been implemented and successfully
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Figure 2. Schematic of variable topology material layout design formulations using alternative classes of composites and =or
amorphous mixtures

tested with the proposed formulation in Reference 5. So that the most fundamental characteristics
of the new formulation can be studied and established in a controlled environment, however,
the scope of this paper is con�ned to material layout design in linear elastic structures. In a
subsequent paper6 the formulation is extended to deal with general non-linear materials, including
the development of non-linear sensitivity analysis for structural systems.
In continuum topology optimization formulations two general classes of methods are presently

being employed (Figure 2): (1) relaxed formulations involving assumed parameterized micro-
morphologies; and (2) heuristic mixing rules which assume and involve no microstructure. Char-
acteristic of the relaxed formulations utilizing an assumed micro-morphology is the structured
porous solid approach proposed by Bendsoe and Kikuchi4 and widely used in structural topology
design to �nd optimal distributions of solid and void phases. In this method, local mixtures take
the form of an assumed periodic porous medium with morphology parameters (a, b, �) which rep-
resent, respectively, the normalized dimensions of the rectangular pores and the pore orientation.
Computational homogenization is employed to calculate the e�ective elastic constants for a discrete
sequence of morphology parameters and then in topology optimization numerical interpolation is
employed to compute e�ective elasticity properties of solid–void mixtures for any intermediate
values of the morphology parameters.
A conceptually similar method has been used by a number of investigators (for example, Ref-

erences 7–9), who employ structured, rank-2 plane stress laminates in two-dimensions to mix a
linear elastic solid phase and a void phase. In the formulation of Jog et al.,7 the laminates are
self-adaptive in that their orientation (�) adjusts to the local strain �eld to provide a sti� local
mixture or ‘composite’.10 One strength of this approach is that for linear elastic and void con-
stituents, analytical formulae rather than computational homogenization is employed to calculate
the e�ective mechanical properties of the mixture. It is recognized, however, that as modelled
the self-adaptive laminates are very sti� and do not penalize mixtures of materials in compliance
minimization problems as strongly as the homogenization methods do. One consequently ends up
with �nal material layout designs that yield high overall structural sti�ness designs by making
extensive usage of sti� ‘mixtures’ or ‘composites’.
An alternative relaxed formulation based on an assumed micro-morphology in the material layout

is the Mori–Tanaka mixing rule employed by Gea.11 The Mori–Tanaka mixing rule12 is based on
the physical assumption of dilute suspensions of ellipsoidal particles of material A embedded in
a matrix of material B and uses analytical Eshelby solutions13 to predict the elastic properties of
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the mixtures based solely on the volume fraction and assumed particle shapes and orientations of
the respective phases. This mixing rule can in principle be used in inelastic topology optimization
since its usage for inelastic materials is already established as, for example, in the constitutive
modelling of elastoplastic particulate composites.14

The class of mixing rules which assume no micro-morphology of the mixture have the advan-
tage (when used with isotropic materials) of using only a single scalar volume fraction or density
parameter to characterize the two-material mixtures in both two and three dimensions. Most promi-
nent among the mixing rules in this category are the simple density based power laws originally
investigated by Bendsoe15 and now widely used by others.16–19 While these laws are not believed
to have an underlying physical basis, they have been e�ectively and convincingly employed in
topology design applications involving linear elastic solid and void phases. They also appear to
be readily usable with general elastic and =or inelastic solids.6

The new formulation under study here employs no microstructure of the mixtures and uses
hybrid combinations of the classical Reuss20 and Voigt21 mixing rules to quantify the e�ective
mechanical properties of general multi-material mixtures as functions of volume fractions. A well-
known fact of composite mechanics22 is that the uniform stress Reuss mixing rule signi�cantly
underpredicts the observed strength and sti�ness of most mixtures (or composites), and is typically
employed only to obtain a very loose lower bound on these properties. It is equally well established
that the uniform strain Voigt rule typically provides a loose upper bound on the strength and
sti�ness of most mixtures. Since the aim of this work is not to provide accurate constitutive
models of mixtures, but rather to provide a continuous and di�erentiable algorithmic method for
obtaining the stress–strain behaviours of mixtures of general materials in a way that consistently
penalizes mixtures, the highly compliant nature of the Reuss mixing rule can in fact prove to be
potentially advantageous for many topology design applications. Speci�cally, since many topology
design problems involve designing structures to have high strength and sti�ness with economy
of material, usage of the highly compliant Reuss rule and compliant Voigt–Reuss hybrids treats
mixtures as highly compliant and weak which translates to a very ine�cient usage of limited
material resources. Topology design formulations based on compliant mixing rules therefore tend
to achieve �nal layout designs that are highly discrete.
Topology design formulations that use highly penalized formulations are, in a sense, contin-

uous generalization of the discrete integer programming approaches investigated by Kohn and
Strang3 and found to be unstable. It is thus not surprising that usage of highly compliant hy-
brid Voigt–Reuss topology formulations without any stability precautions can result in unstable
‘checkerboarding’ material layout solutions.∗ Checkerboarding material layout solutions have also
been observed in �nite element studies of bone adaptation phenomena.24; 25 For both topology
design and bone adaptation studies, a proved solution to the checkerboarding problem has been to
use basis functions for the material distribution parameters that vary much more slowly in space
than do those of the displacement �elds. E�ectively, this can be achieved either by using:

(a) high-order �nite element methods matched with low-order material distribution �elds23; 26; or
(b) low-order �nite element methods in combination with �ltering and=or spatial convolution

methods for the material distribution variables.17; 27; 28

∗ It has recently been shown by Jog and Haber23 in a study on the instabilities that lead to checkerboarding, that sti�
topology formulations (i.e. pure Voigt and =or rank-2 laminate formulations) are also vulnerable to this problem as well
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In this work, a variation on the spatial convolution methods is presented and implemented to
assure that stable material layout designs are achieved without the necessity of resorting to higher-
order �nite elements (quadratic, cubic, etc.). When combined with this stabilizing �ltering proce-
dure and exercised on numerous test problems, the hybrid Voigt–Reuss formulations are found to
yield stable, locally optimal material layout solutions that are both interpretable and manufacturable.
The remainder of this paper is organized as follows. In Section 2 the framework for describing

the distribution of material phases (including mixtures) throughout a �xed spatial design domain
for topology design optimization is described. Section 3 reviews the pure Reuss and Voigt mixing
rules and introduces a family of hybrid combinations of the two. The continuous structural topology
design problem for linear elastic structures is then formulated in Section 4 complete with design
sensitivity analysis. Section 5 presents a novel volume-averaging design variable �lter to achieve
stable ‘checkerboard-free’ designs and a brief discussion on uniqueness of solutions based on
convexity. The performance of the proposed new class of mixing rules on linear elastic structural
topology design calculations is demonstrated in Section 6 on four challenging test design problems
previously published in the literature. The general performance of the proposed formulation is
assessed in Section 7 and preliminary conclusions are drawn.

2. DISTRIBUTION OF MATERIALS

In the following development, the complete undeformed spatial domain of the structure being
designed is denoted by 
B; its designable subset by 
D; and its non-designable subset in which
the spatial=topological arrangement of materials is taken to be �xed by 
N. The arrangement of
N pre-selected candidate materials in 
D remains to be determined and so this region is called
designable. A set of single or multiple loading =boundary conditions to which 
B will be subjected
are speci�ed and a starting design b(0) which speci�es the initial material layout in the 
D is
selected. For each set of loading=boundary conditions, the structure is analysed as a boundary
value problem. (For simplicity, attention is restricted here to quasi-static single loading conditions,
although the method can be applied equally well to dynamic and=or multiple loading conditions
also.) The objective of the design process is to iteratively improve upon the initial design of the
structure (that is the spatial arrangement of the N candidate materials in 
D) until an optimal
design is achieved. Accordingly, an objective functional which measures the desired behaviour of
the structure must be speci�ed, along with constraint functionals which place restrictions on the
design, and side constraints which place explicit bounds on the values that can be taken by the
individual design variables.
Since the design of the structure is considered to be the spatial distribution of the N candidate

materials throughout the spatially �xed design domain 
D, a system is needed to describe the
material distributions. For the discrete two-material layout problem involving material A and
material B, the binary indicator function describing the arrangement of material A would be

�A(X)=
{
1 if material A fully occupies point X∈
D
0 otherwise

(1)

while that for material B would be

�B(X)=
{
1 if material B fully occupies point X∈
D
0 otherwise

(2)
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The respective domains 
A and 
B occupied by materials A and B would simply be


A= {X∈
D | �A(X)= 1; �B(X)= 0} (3a)


B= {X∈
D | �B(X)= 1; �A(X)= 0} (3b)

Preference is given in this work to discrete �nal material distributions 
A and 
B that satisfy
equations (3). Such distributions are achieved, however, using continuous formulations which per-
mit mixtures to exist throughout the design domain 
D. By permitting mixtures, the material
phases A and B are allowed to simultaneously and partially occupy an in�nitesimal neighbour-
hood about each spatial point X in 
D. In describing the mixtures, the binary indicator functions
above are no longer useful, but a straightforward and continuous generalization of the binary
indicator function concept is available using the volume fraction concept. As employed here
the volume fraction of material phase A at a �xed spatial point X in the design domain 
D
is denoted by �A(X) and represents the fraction of an in�nitesimal volume element surround-
ing point X occupied by material A. The volume fraction de�nition for material phase B and
others is similar. Natural constraints upon the spatial volume fractions for the two-material problem
are

06�A(X)61; 06�B(X)61; �A(X) + �B(X)= 1 (4)

The last physical constraint of (4) states that the material volume fractions at X are not indepen-
dent. Thus in two-material problems as treated in this paper, one need only be concerned with the
layout of phase A since that of phase B follows directly from (4)3. The volume fraction method
of describing material distributions neither relies upon nor assumes a microstructure or morphology
of the local mixture and is a very straightforward generalization of the binary indicator function
approach.
In the proposed topology design optimization framework, the design domain 
D will be dis-

cretized into NEL low-order �nite elements such as bilinear continuum degenerated shell elements
or trilinear three-dimensional continuum elements. For these low-order elements, the independent
material volume fraction �A is taken as piecewise constant over the spatial domain occupied by
individual �nite elements. The designable spatial=topological distribution of material phase A in

D can thus be described by a vector of design variables b with contributions from each element
comprising 
D. Speci�cally, the design vector b has the de�nition:

b := {�A1 ; �A2 ; : : : ; �ANEL} (5)

That is, the full vector of design variables b is comprised of NEL scalar-valued element level
contributions �Ai , each of which represents the volume fraction of phase A in the ith element.
This system allows the two candidate materials to be arbitrarily distributed throughout the NEL
�nite elements comprising the design domain 
D, subject only to natural constraints such as
�Ai + �Bi=1, and �Ai ∈ [0; 1] for each i∈{1; 2; : : : ;NEL}.
Global material cost constraints are generally imposed upon the designed structure by specifying

appropriate upper or lower limits on the global volume fraction of the independent material phase.
A typical upper bound for a solid phase is represented as 〈�A〉−CA60, where CA is a designer
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speci�ed upper bound value on the global volume fraction of material phase A in the structural
domain 
B. The global volume fraction of phase A over the structural domain is calculated as

〈�A〉=

∫

B
�A(X) d
B∫

B
d
B

(6)

3. CONSTITUTIVE MIXING RULES

3.1. Generalized Voigt and Reuss mixing rules

Since each �nite element in the model of the design domain 
D contains two material volume
fractions of general elastic or inelastic solids, a critical issue that must be addressed is how these
materials are combined at the �nite element level, or more basically at the integration point level,
to form e�ective stress–strain relations. Toward this end, the basic properties and characteristics
of Voigt, Reuss and hybrid Voigt–Reuss mixing rules are discussed here.
In a strict sense, the physical motivation behind the classical Voigt and Reuss mixing rules has

signi�cance only for the very special case of one-dimensional composites or mixtures. For such
mixtures, the Voigt rule assumes that the phases are arranged in parallel (Figure 3) so that when
loaded axially the strain in each material will be the same. The Reuss rule assumes the phases
are arranged in series so that the stress in each will be the same. The one-dimensional Voigt
arrangement leads to very sti�, strong mixtures, whereas the Reuss arrangement leads to compliant
and weak behaviours (Figure 4).
Whereas the sti�ness of the Reuss mixture (Figure 4(a)) smoothly transitions from EB at �A=0

to EA at �A=1 the strength behaviour of the Reuss mixture is discontinuous. The nature of the
discontinuity arises from the fact that the strength of the Reuss mixture (Figure 4(b)) is controlled
by the strength of the weaker constituent B for �A¡1, and by the stronger constituent at �A=1.
Since continuity and piecewise di�erentiability are desired of the mixture behaviours, this feature is
unacceptable. To alleviate this problem, and to achieve a more controllable behaviour of the mixture
which will be quite useful in all topology optimization applications, both elastic and inelastic,
a hybrid Voigt–Reuss mixture such as that shown in Figure 5 is proposed.
For multi-dimensional mixtures, it is generally not possible to devise an equilibrium arrangement

of materials that satis�es either the Voigt or Reuss conditions for all potential loading conditions.22

Nevertheless, the Voigt and Reuss rules can be generalized to higher dimensions simply by as-
suming that the phases share the same local strain tensor (Voigt) or the same local stress tensor

Figure 3. Schematic of Voigt (parallel) and Reuss (series) mixtures. Both materials are characterized by their sti�nesses E
and strengths Y

? 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3033–3057 (1997)



3040 C. C. SWAN AND I. KOSAKA

Figure 4. Schematic of e�ective sti�ness E (a) and strengths Y (b) of the two-material Voigt and Reuss mixtures. For the
diagrams shown, material A is taken to be sti�er and stronger than material B

Figure 5. Schematic of e�ective sti�ness (a) and strengths (b) of the hybridized Voigt–Reuss mixture. For the diagrams
shown, material A is taken to be sti�er and stronger than material B

Int. J. Numer. Meth. Engng., 40, 3033–3057 (1997) ? 1997 by John Wiley & Sons, Ltd.
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(Reuss) under all possible loading conditions. Accordingly, the decomposition equations for the
Voigt mixing of two general phases at a given material point X are as follows:

UVoigt = UA= UB (7a)

bVoigt = �AbA(U) + �BbB(U) (7b)

The corresponding decomposition equations for the Reuss mixing of two general phases are:

UReuss = �AUA + �BUB (8a)

bReuss = bA(UA)= bB(UB) (8b)

For the hybrid Voigt–Reuss mixture (Figure 5), the assumption is that both branches of the mixture
have the same strain and that the volume fraction of the total mixture in the Voigt branch is � and
that in the Reuss branch is 1− �. Accordingly, the e�ective stresses and strains of the partitioned
mixture are

U = UVoigt = UReuss (9a)

b = �bVoigt + (1− �)bReuss (9b)

There are numerous options on how one can treat the hybridizing parameter �. Here, it is proposed
that � be treated as follows:

�=



�0; 06�A6�break

�0 + (1− �0) (�A−�break)
(1−�break) ; �break¡�A61

(10)

where �0 ∈ [0; 1] and �break ∈ (0;∞) are constants chosen to achieve desired mixture behaviours.
By choosing �0 and �break appropriately, one can obtain the Voigt mixing rule, the Reuss mixing
rule, or any intermediate combination of the two. For both sti�ness and strength characteristics, the
hybrid Voigt–Reuss mixing rule is continuous and piecewise di�erentiable. Strength characteristics
of hybrid mixtures are not continuously di�erentiable at �=�break. This generally does not pose
a problem so long as �break is not selected as either ‘0’ or ‘1’ which are the expected terminal
values for volume fraction design variables.

3.2. Special case: linear isotropic solid and Void materials

Application of the Voigt and Reuss mixing rules to the treatment of elastic and inelastic solids
has been treated by the authors in Reference 6. Here attention is con�ned to the special case of
mixing a linear isotropic elastic solid phase and a void phase. Young’s modulus E and Poisson’s
ratio � are commonly used material constants to characterize the elasticity tensor of linear isotropic
elastic solids. In a mixture of a linear isotropic elastic solid and a void phase, the void phase does
not contribute to the sti�ness of the mixture. For simplicity, one can therefore choose the Poisson’s
ratio of the void phase as equal to that of the solid phase, �void = �solid. Thus, only the e�ective
Young’s modulus for the mixture Emix needs to be computed since the Poisson’s ratio of the
mixture will be equal to that of the solid and void phases, �mix = �void = �solid.
In the Voigt mixing rule, usage of isostrain conditions (7) gives an e�ective Young’s modulus

of the mixture as

EVoigt =�solidEsolid + �voidEvoid (11)
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Similarly, using the Reuss isostress assumption (3.2) gives an e�ective Young’s modulus for the
mixture as

EReuss =
[
�solid
Esolid

+
�void
Evoid

]−1
(12)

For mixtures containing both Voigt and Reuss partitions, the e�ective Young’s modulus for the
mixture is simply

E= �EVoigt + (1− �)EReuss (13)

where � is the volume fraction of the mixture in the Voigt partition (10).
Although the Young’s modulus Evoid of the void phase is theoretically zero, a small sti�ness

Evoid compared to that of the solid phase Esolid must be maintained to avoid singularity of the
�nite element equations. In the event that the sti�ness of the void phase is chosen too large, the
structure will derive some sti�ness from the void phase, which is unrealistic. Striking a balance
between these two extremes, the sti�ness ratio in this paper is taken as Evoid=Esolid = 10−6 since
our numerical experiments show it to provide very good performance and results.
For the special case under consideration, a strength of the Voigt and Reuss mixing rules is that

the sti�nesses of mixtures can be written as simple, analytical, and di�erentiable expressions of the
volume fractions (�solid ; �void). As will be discussed in Section 4 in the context of design sensitivity
analysis, the quantity @�=@�A|u must be computed. For the special cases under consideration, this
quantity is easily computed as

@b
@�solid

∣∣∣∣
u
=

@C
@�solid

: U (14)

To evaluate @C=@�solid in (14), one needs only to take the derivative of the e�ective Young’s
modulus E with respect to the design variables, i.e.

@EVoigt
@�solid

=Esolid − Evoid (15a)

@EReuss
@�solid

=
[
1
Evoid

− 1
Esolid

]
[�solidEsolid + �voidEvoid]−2 (15b)

The derivative of E for hybrid mixtures is thus simply

@E
@�solid

= �
@EVoigt
@�solid

+ (1− �)@EReuss
@�solid

+ (EVoigt − EReuss) d�
d�solid

(16)

4. THE TOPOLOGY DESIGN FORMULATION

4.1. Objective and constraint functionals

Numerous formulation options exist in structural topology design optimization in terms of utiliz-
ing assorted combinations of objective and constraint functionals. The design variables as speci�ed
in (5) are continuous and real-valued; it is assumed that dependent functionals, both objective and
constraints, will also be continuous, real-valued, and piecewise di�erentiable.
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It is useful to distinguish between purely cost based functionals which are independent of the
response of the system being designed (that is F=F(b)) and performance based functionals
which by de�nition depend upon both the design variables b and the performance or state of the
designed system which can generally be described in terms of u, the vector displacement �eld (that
is F=F(b; u)). An example of a pure cost functional for the structural topology optimization
problem is the overall volume fraction of one of the candidate constituent phases, de�ned as

F�A = 〈�A〉 − CA (17)

in which 〈�A〉 represents the volume average of �A over the entire analysis domain 
B. In contrast,
the global strain energy functional over the analysis domain for general loading conditions is a
performance functional and would be de�ned as

FE =
∫ t

0

∫

B
b : U̇ d
B d� (18)

where � is a parametric time variable. A typical topology design optimization problem might be
to minimize the strain energy functional FE of the structure under applied force loadings (thereby
maximizing the sti�ness of the structure for the applied loads), subject to a volume constraint on
phase A. Alternatively, an equally viable way to pose the problem would be to minimize the
global volume fraction of material phase A subject to a constraint on the strain energy functional
of the system. Commonly used performance functionals for linear elastic structural problems are
the strain energy functional and eigenvalue functionals while examples of pure cost functionals
are global volume fraction constraints; perimeter constraints;29 and intermediate volume fraction
penalization functionals,29 among many others.
The topology design optimization process is iterative in nature, requiring the solution of an

analysis problem with each new variation of the design (Figure 6). Intermingled with solving
the analysis problem is the evaluation of the objective and constraint functionals as well as their

Figure 6. Topology design optimization algorithm

? 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3033–3057 (1997)
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design gradients. The following two subsections formulate the general linear analysis and design
sensitivity analysis problems.

4.2. The analysis problem

4.2.1. Linear quasi-static analysis of structures. Topology design can be performed to �nd the
optimal layout of a structure to: minimize compliance; maximize strength; tailor eigenvalues; and
tune dynamic response. These varied objectives require the solution of elliptic boundary value
problems; eigenvalue problems; and hyperbolic initial and boundary value problems. While the
framework under study can and does include all of these classes of problems, attention is restricted
here to the class of problems requiring solution of linear static elliptic boundary value problems,
the strong form of which is: Find u :
B 7→<3 such that

�ij; i + �fj =0 on 
B (19)

subject to the boundary conditions:

uj(t)= gj on �gj for j=1; 2; 3 (20a)

ni�ij = hj on �hj for j=1; 2; 3 (20b)

As is customary, it is assumed that the surface � of the analysis domain 
B admits the decompo-
sition �=�gj ∪�hj and �gj ∩�hj = ∅, for j=1; 2; 3. The constitutive behaviour of the material (or
mixture of materials) occupying 
B relates the local stress b to local strain U= 1

2 [(�u) + (�u)
T]

through a linear elastic constitutive model of the general form

b=C : U (21)

The weak or variational form of the problem is obtained by restating the strong form (19) as∫

B
[�ij; i�uj + �fj�uj] d
B =0 (22)

from which integration by parts, usage of the divergence theorem and utilization of the natural
boundary conditions gives the virtual work equation∫


B
�ij��ij d
B =

∫

B
�fj�uj d
B +

∫
�h

hj�uj d�h (23)

Usage of a Galerkin formulation in which the real and variational kinematic �elds are expanded
in terms of the same nodal basis functions leads to the following force balance equations at each
unrestrained node A in the mesh:

rA = f intA − fextA = 0 (24)

where

f intA =
∫

B
BTA : b d
B (25a)

fextA =
∫

B
�NAf d
B +

∫
�h

NAh d�h (25b)

For the class of problems being treated here, (24) represents a set of linear algebraic equations
which can be solved in any number of ways, a few of which are reviewed in Reference 30.
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4.3. Design sensitivity analysis

In any gradient-based (�rst order) optimization algorithm, it is essential that the total design
gradient of the objective and constraint functionals be accurately and e�ciently computable. That
is, for performance functionals, one must be able to compute

dF(b; u)
db

=
@F
@b

+
@F
@u
du
db

(26)

While the �rst term in this derivative is easy to compute, the second is somewhat more involved.
To evaluate it, the equilibrium state equation for the structure r(b; u(b))= 0 (24) must be invoked.
Since the equilibrium state equation must be satis�ed for all designs, it is true that

0 =
dr
db

(27a)

=
@r
@b
+
@r
@u
du
db

(27b)

=
@r
@b
+ K

du
db

(27c)

Simple rearrangement of (27c) gives

du
db
= − K−1 @r

@b
(28)

which can be inserted into (26) to yield

dF
db

=
9F
@b

− ua · @r
@b

(29)

where ua, the ‘adjoint displacement vector’, is the solution of the ‘adjoint problem’

K · ua = − @F
@u

(30)

In many topology design optimization problems, the objective is to minimize the compliance
(or maximize the sti�ness) of a structure to which set of �xed external loads fext are being ap-
plied. Minimization of the strain energy or compliance functional (18) associated with a prescribed
loading maximizes the sti�ness of the structure under the prescribed loading condition. With atten-
tion restricted to linear elastic structures, the strain energy functional (18) can be rewritten using
conservation of energy in the very simple form:

FE = 1
2 f
ext · u (31)

The displacement �eld that solves the equilibrium condition (24) for linear elastic structures is
simply u=K−1 · fext ; and the corresponding adjoint displacement vector ua that solves the adjoint
problem (30) is merely

ua = − 1
2K

−1 · fext = − 1
2u (32)
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As it was assumed that the external loads fext applied to the structure are independent of the design
variables b, the design gradient of the strain energy functional reduces to

dFE

db
= − 1

2

∫

B
U : @b
@b
d
B (33)

The quantity @b=@b in (33) is here termed the ‘stress design gradient’, and clearly depends upon
the mixing rule being employed. The evaluation of this ‘stress design gradient’ for both the Voigt
and Reuss mixing rules and combinations thereof was treated in Section 3.

5. STABILITY AND UNIQUENESS OF SOLUTIONS

5.1. The checkerboarding problem

In solving material layout problems with penalized Voigt–Reuss formulations, one soon dis-
covers (or rediscovers) that layout designs that are simply discrete are not necessarily desirable,
since they might very well contain the studied and documented phenomenon of ‘checkerboarding’.
To illustrate this point, Figure 7 displays a variety of discrete solutions for the ‘three-load bridge
problem’ (solved previously in References 19 and 31 for example) obtained using the Voigt=Reuss

Figure 7. Unstable checkerboarding topology designs and strain energy functional values FE for the three-point
loaded bridge design problem. The alternative designs were obtained by varying the � parameter described in Sec-
tion 3. For all designs, F�solid = 〈�solid〉 − 0·4060: (a) FE = 1·4123× 10−2, �=1·0; (b) FE = 1·6513× 10−2, �=0·1;

(c) FE = 1·735× 10−2, �=0·01; (d) FE = 1·9941× 10−2, �=0·0
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formulation with varying hybridization parameters �. Most of the solutions show the phenomenon
of checkerboarding to some degree. Material layout designs containing this phenomenon are un-
desirable since:

(a) They are unstable with mesh re�nement: Checkerboarding solutions are sti� metastable
artifacts of �nite element and material layout formulations in which the spatial basis func-
tions for displacement �elds are not of su�ciently high order in relation to the spatial basis
functions for volume fraction design variables. With mesh re�nement, checkerboarded lay-
out con�gurations lose their stability and the layout design must change signi�cantly to
regain stability. This cycle can continue inde�nitely with increasing mesh re�nement, so
that convergent material layout solutions that are stable and independent of mesh re�ne-
ment will not be obtained.

(b) They are di�cult to interpret: One of the primary reasons for using mixture penalizing
formulations is to obtain solutions that are both interpretable and manufacturable. Solutions
containing serious checkerboarding are usually neither.

To deal with this problem of unstable, checkerboarding solutions, a simple and mesh-based
�ltering algorithm is proposed and demonstrated. Perceived bene�ts of the �lter being proposed
are that it

(i) is easy to implement;
(ii) permits usage of low-order �nite elements;
(iii) works equally well in 2-D, 3-D, and curved shell problems having either regular or irregular

meshes;
(iv) does not introduce a new functional into the optimization problem; and
(v) works very e�ectively.

In continuous two-material layout problems which use low-order bilinear and trilinear �nite
elements, the volume fractions of the independent material phase are interpolated using basis
functions which are uniform over element domains, but generally C0 discontinuous across element
boundaries. For the two-material layout problem, the design vector b is as de�ned in (5) and is
constituted by the independent material volume fractions in each element. When checkerboarding
occurs in layout designs, the discontinuity feature of the design variable basis functions becomes
active and volume fractions oscillate rapidly between 0 and 1 across element boundaries in groups
of adjacent elements. The problem lies in part with the choice of basis functions for the design
variables which permits strong discontinuities across element boundaries.
If one uses spatially low-pass �lters on discrete checkerboarding designs b with a weighted

volume-averaging process H whose averaging domain spans a number of neighbouring elements,
then a modi�ed design vector b′=H(b) is obtained which contains mixtures and ‘grey’ zones.
The �ltered design b′ is smoother, having slower spatial variation and weaker discontinuities across
element boundaries than b. If used in conjunction with compliant mixing rules, the �ltered rep-
resentations of checkerboarding designs will behave as compliant grey regions and performance
functionals F(b)=F(b′(b)) will su�er suboptimal performance penalties with checkerboarding
solutions. Non-checkerboarding layout designs will thus be obtained by optimization algorithms. If
used with spatial �lters, the same compliant mixing rules which contribute in part to the checker-
boarding problem are therefore a vital aspect of the solution.

Remark 5.1. Previous research e�orts23; 26 have found that checkerboarding instabilities occur
when the displacement �eld basis functions are not of su�ciently high order in relation to those
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of the design variable volume fractions. The result of employing low-pass spatial �lters on design
variables is to e�ectively lower the order of their spatial basis functions relative to those of the
displacement �eld.

5.2. Proposed �lter

Among the spatial �ltering methods which have been previously investigated to control checker-
boarding instabilities are: four-element �lters;28 graphical mesh based �ltering methods;17 and �xed
length scale spatial �ltering.17; 27 The latter two methods attempt to eliminate virtually all types
of mesh dependencies by introducing �xed length scales on material layout design solutions. The
objective of the mesh-based �lter proposed here is simply to eliminate checkerboarding in layout
designs without necessarily introducing absolute length scales. (If an absolute length scale for the
design is desired, then the proposed �lter can easily be used in conjunction with a perimeter control
method29 which is an alternative method of imposing �xed length scales on the design.) The �lter
is applied on an element-by-element basis to all designable elements in the mesh. When applied to
say the ith element in a mesh of bilinear elements, the �lter produces a modi�ed design variable
value b′i by taking the weighted volume average of the design variables in the ith element and all of
its neighbouring elements (Figure 8). In applications that involve bilinear �nite elements, only those
elements that share nodes with the ith element are considered to be neighbours, with those sharing
two nodes classi�ed as �rst-order neighbours, and those sharing only one node classi�ed as second
order neighbours. Using these classi�cations, the �lter is applied to the ith element as follows:

b′i =
biVi + !1

∑ni1
j=1 bjVj + !2

∑ni2
k=1 bkVk

Vi + !1
∑ni1

j=1 Vj + !2
∑ni2

k=1 Vk
(34)

where the V ’s are element volumes; ni1 is the number of �rst-order neighbours; and n
i
2 is the

number of second-order neighbours. The two �ltering parameters are !1 ∈ [0; 1] and !2 ∈ [0; 1].
Typically, the �lter is employed with default values !1 = 1

2 and !2 =
1
4 .

The required modi�cations to the material layout optimization algorithm when using the proposed
�lter are minor and easy to implement. With the �lter turned on, performance functionals are

Figure 8. Schematic of a �nite element ‘i’ and its neighbors. First-order neighbours have j indices, while second-order
neighbours have k indices
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evaluated as F(b)=F[b′(b)]. Accordingly, design gradients are then evaluated using the chain
rule as

dF(b)
db

=
dF
db′

db′

db
(35)

The quantity dF=db′ is evaluated as discussed in Section 4, and db′=db simply by di�erentiating
(34). High-quality checkerboard-free solutions obtained with the proposed �lter are presented in
Section 6.

5.3. Mixing rules and global convexity

With the proposed �ltering methods, stable, checkerboard-free material layout designs can be
obtained. In studying the performance behaviour of Voigt and Reuss mixing rules for material
layout applications, an additional issue that arises is the uniqueness of solutions obtained for �xed
mesh discretizations of the domain 
B. While not proved, it is assumed that locally optimum
solutions b∗ exist such that

FE(b∗)6FE(b∗ + �b) (36)

for all feasible in�nitesimal variations �b of the design vector. Our experience in solving numerous
linear elastic structural topology problems is that stable local minima satisfying (36) can always be
obtained and thus the existence of solutions for a �xed mesh resolution of 
B that satisfy (36) does
not appear to be an issue.† In fact, the problem encountered with highly penalized formulations
is that an excessive number of stable local minima satisfying (36) exist for a given meshing of

B. Our aim here is to gain some insight into this behaviour with the objective of arriving at the
discrete, interpretable, and manufacturable solutions whose performance characteristics approach
that of the mathematical global minimum solution b∗g but which is invariably neither discrete,
interpretable nor manufacturable.
The issue is brie
y studied here using convexity of the strain energy functional [FE = 1

2 f
ext · u]

for linear elastic structures subjected to �xed loadings. Insight on the global convexity of FE is
related to the de�niteness characteristics of its Hessian d2FE=db2. An expression for the design
gradient of FE for the case of linear elastic structures was derived above as

dFE

db
= − 1

2
u · @r
@b

(37)

Taking the derivative of this gradient expression and employing the state equation r= 0 to evaluate
du=db gives the Hessian as

d2FE

db2
=

(
@r
@b

)T
K−1

(
@r
@b

)
− 1
2
uT
@2K
@b2

u (38)

In circumstances where the Hessian can be shown to be uniformly positive de�nite over the entire
space of design variables b and state variables u, solutions to the topology design optimization

† Here, attention is restricted to the nature of solutions for �xed mesh resolutions of 
B. To address the broader issue of
the existence of mesh-independent solutions, �xed length scales are imposed on designs either through perimeter control
methods29 or �xed length scale spatial �lters17
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problem which minimizes FE will necessarily be unique. In cases where the Hessian is not nec-
essarily positive de�nite, the functional FE will not necessarily be convex, and numerous local
optimal might exist.
The �rst term in (38) is uniformly positive de�nite for linear elastic materials due to the positive

de�niteness of K and its inverse K−1, irrespective of whether the Voigt or Reuss rule is employed.
Accordingly, the second term in (38) whose expansion is given below becomes all important in
determining the positive de�niteness of the Hessian:

− 1
2
uT
@2K
@b2

u= − 1
2

∫


U : @

2C
@b2

: U d
 (39)

Clearly, the character of this term depends upon the mixing rule through the expression @2C=@b2.
Since the sti�ness of the Voigt mixture is linear with respect to the design variables [that is
CV =�ACA+(1−�A)CB], the second derivative d2CV=db2 vanishes. Thus with the Voigt mixing
rule, the Hessian ofFE is globally positive-de�nite, assuring convexity ofFE and hence uniqueness
of optimization solutions. If one employs the Reuss mixing rule, however, then C in (39) takes
the form

CR = [�AC−1
A + (1− �A)C−1

B ]
−1 (40)

Di�erentiating this expression twice yields

d2CR
db2

= 2CR
dC−1

d�A
CR
dC−1

d�A
CR (41)

where dC−1=d�A= [C−1
A − C−1

B ]. Since it can be shown that (41) is uniformly positive de�nite,
the Hessian of FE (38) is not necessarily positive-de�nite with the Reuss mixing rule since it
represents the di�erence between two positive-de�nite matrices both of which vary rather unpre-
dictably throughout the design variable space. One can thus expect that multiple local optima could
very well exist as solutions to the optimization problem formulated with the Reuss mixing rule.
The following can thus be stated: Usage of the pure Voigt formulation leads to a uniformly

convex strain energy functional FE, and hence unique solutions of the optimization problem for a
�xed mesh discretization of 
B, irrespective of the starting point bo or the optimization algorithm
employed. Usage of the pure Reuss formulation, on the other hand, does not necessarily lead to
a uniformly convex functional, and so the solution obtained will depend upon both the starting
design bo and possibly the optimization algorithm employed. While the unpenalized Voigt solutions
to topology optimization problems may be unique, they are generally not very desirable in that
they tend to be very grey, containing large regions of mixed materials which can be very di�cult
to interpret. The pure Reuss solutions, on the other hand, while highly discrete, will generally not
be unique. That is, many locally optimal solutions may exist, some of which have performance
characteristics approaching those of the global minimum, and some of which do not.
Given the strengths and de�ciencies of both extremes, it is desirable to combine the Voigt and

Reuss formulations using hybrid mixing rules to obtain the best features of both: the uniqueness
of the Voigt solutions, and the interpretability=manufacturability of the Reuss solutions. One way
that this has been attempted previously17; 32 is through continuation methods in which the topology
optimization problem is begun with a sti� mixing rule, and gradually transitioned to a penalized
formulation. The objective behind the procedure is to get and keep the layout design in the con-
vergence basin of the global optimum while gradually transitioning to a penalized formulation that
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will yield a discrete and manufacturable solution. The results shown in Section 6 and those in
References 17 and 32 demonstrate that this approach invariably gives, interpretable and manufac-
turable designs, and the performance (sti�ness) of these designs often, but not always, exceeds
the performance achieved by beginning with pure Reuss formulations. This behaviour is highly
problem dependent and requires further study.

6. DEMONSTRATIVE RESULTS

The challenging examples that follow were chosen to demonstrate the performance of the proposed
topology design framework on four published test problems from the literature involving linear
elastic structures. In all of the design problems, the optimization solution algorithms employed
were variations of a sequential linear programming algorithm SLP with line-searching and an LP
subproblem move limit of �M =0 · 05. SLP methods are proving increasingly popular for large-
scale topology optimization applications.19; 32 Unless otherwise stated, where the structural domains
featured gross symmetry, the methods outlined in References 33 and 34 were employed both to
enforce symmetry in designs and to reduce the size of the optimization problem.

6.1. The three-load bridge problem

The design domain 
D shown in Figure 9(a) is originally completely �lled with a linear isotropic
solid material of properties �solid = 2·69× 105 and �solid = 1·15× 105, and the loading and restraint
conditions on the domain are as shown in Figure 7. This is a solid material–void material topology
design problem, where the objective is to place the solid material throughout the design domain

D to minimize the compliance of the structure for the loading shown, subject to a global volume
fraction constraint on the solid phase of 40 per cent. This problem was solved four times with
varying Voigt–Reuss mixture parameters and using the �ltering method proposed in Section 5,
with the default �lter parameters.
The pure Voigt solution (Figure 9(a)) is extremely sti� and ‘grey’, as one might expect due

to the incompliant nature of the mixing rule, and thus lacks sharpness and clarity. The authors
�nd that the structural topology solutions obtained with the Voigt mixing rule for a broad range
of test problems (beyond those shown here) visually resemble those obtained using sti� rank-2
laminate mixing rules as, for example in References 7 and 9. The material layout designs shown
with penalized formulations �=0·1; 0·01; 0·0 in Figures 9(b)–9(d), even when some grey fringes
remain, appear for the most part quite interpretable. The designs of Figure 9 should be compared
directly with those of Figure 7 to assess the impact of the spatial volume-averaging �lters. The
topology with local checkerboarding evident in Figure 7 has been largely replaced with material
layouts that are virtually checkerboard free in Figure 9. Whereas, the designs in Figure 7(b)–7(d)
were virtually discrete, however, the corresponding designs in Figures 9(b)–9(d) show some grey
fringes as a result of the �ltering process. It is quite likely, that smaller �lter parameters (!1; !2)
would eliminate the grey fringes. Alternatively, the designs showing grey fringes can be ‘cleaned
up’ by using a continuation process, in which the optimization is continued with increasingly
penalized mixtures. For example, if the fringed design shown in Figure 9(b) is continued with a
sequence of hybridization parameters (�=0·1; 0·01; 0·0001; 0·0), the discrete, interpretable design
shown in Figure 10(b) is obtained. Although not shown here, the discrete layout designs shown
in Figures 9(d) and 10(b) have been tested and found to be stable with mesh re�nement.
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Figure 9. Alternative topology designs and strain energy functional values FE for varied mixing rule pa-
rameters �: (a) FE = 1·4121× 10−2, �=1·0; (b) FE = 2·0813× 10−2, �=0·1; (c) FE = 2·3522× 10−2, �=0·01;

(d) FE = 1·6933× 10−2, �=0·00

Figure 10. Stable, discrete design (b) obtained from slightly grey design (a) using continuation process with �=0·01,
0·0001, 0·00: (a) FE = 2·0813× 10−2, �=0·1; (b) FE = 2·1858× 10−2, �=0·0

6.2. The MBB beam problem

Variations of this challenging test problem involving the design a European Airbus 
oor beam
have been solved previously in References 17, 29 and 35. In the variation of the problem solved
here, the simply supported beam features a solid non-designable border 
N with a designable
interior 
D. This problem is solved with Fsolid = 〈�solid〉 − 0·5060 and with spatial �ltering.
Figure 11(a) shows a moderately grey layout solution obtained with a hybrid Voigt–Reuss for-
mulation (�=0·05) and only moderate �ltering. Figure 11(b) shows the layout design that results
from a continuation of the same design with a pure Reuss formulation (�=0) and the same �lter
parameters.
In both the three-load bridge problem and the MBB beam problem, hybrid formulations with

�ltering have been found to leave fringes of grey mixtures in designs that appear otherwise in-
terpretable. In both problems, when continuation with higher penalization is employed to clean or
discretize the grey regions, the structural e�ect of the grey regions is replaced with the introduction
of entirely new structural members and moderate re-design of the existing members as shown in
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Figure 11. The MBB design problem, and solutions obtained with �=0·05 (a), and as a continuation of the same prob-
lem with �=0·0 (b): (a) FE = 1·29× 10−2, �=0·05, !1 = 0·05, !2 = 0·025; (b) FE = 1·35× 10−2, �=0·0, !1 = 0·05,

!2 = 0·025

Figures 10 and 11. With non-penalized and moderately penalized formulations, the speci�c e�ect
of residual grey regions can thus be deceptively di�cult to interpret.

6.3. The cantilever problem

The cantilever beam design problem (Figure 12) has been used extensively as a test problem
by a number of investigators, as for example in References 9, 17, 19, 28, 31 and 36 and with
the mis-aligned version of this problem considered to be especially challenging in that it tests
the inherent mesh-dependency (if it exists) of alternative topology design formulations. Here, we
solve this as a compliance minimization problem with a 25 per cent global solid volume fraction
constraint for both an aligned mesh, and a mis-aligned mesh (45× 90) consisting of rectangular
elements having an aspect ratio of 2:1. All calculations of this problem used �ltering with the
default �lter parameters.
Figure 12(a) shows the pure Reuss solution (�=0) for the aligned mesh problem without

symmetry control. Even without symmetry control, the design is symmetric, as one would expect,
due to the symmetry of the mesh and the material response to the applied load. Figure 12(b) shows
the design obtained when the same basic problem is solved in pure Reuss mode (�=0) with a
misaligned mesh of rectangular elements. In this case, there is in fact some mesh dependency of
the formulation and a moderately asymmetric design is achieved. Figure 12(c) is a re-solving of
the same mis-aligned mesh problem using continuation (�=1·0, 0·01, 0·0001, 0·0). The resulting
design still shows asymmetry in the design. Finally, to show that symmetric designs can indeed
be obtained even when the mesh is asymmetric with respect to the applied loads, the problem is
solved once again in pure Reuss mode (Figure 12(d)) with gross symmetry control33; 34 imposed
about the centroidal axis of the beam.
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Figure 12. The cantilever design problem and solutions obtained: (a) FE = 6·96× 10−3, �=0·0; (b) FE = 8·27× 10−3,
�=0·0; (c) FE = 1·42× 10−2, �=1·0, 0·01, 0·0001, 0·0; (d) FE = 7·75× 10−3, �=0·0

6.4. The trunk lid problem

The trunk lid problem has been previously presented in the research literature.32; 37 Figure 13(a)
shows the full structural domain 
B, the boundary and loading conditions, and the design domain

D for the trunk lid problem. Although the boundary and loading conditions are asymmetrical,
gross symmetry can easily be imposed on the design via the general methods presented in Refer-
ences 33 and 34. The white region in the structure represents the design domain 
D and the non-
designable black region 
N contains solid material. A thin shell structure such as the trunk lid uses
both bending and membrane action to carry the applied torsional loads. The topology optimization
calculations were performed using continuum degenerated shell elements with reduced integration
of both transverse shear and membrane stresses to avoid numerical locking phenomena.38 For the
�xed loads shown in Figure 13, the topology design problem was solved to minimize compliance
with a global solid volume fraction constraint of 40 per cent in 
D.
The three solutions to this problem presented in Figure 13 were realized with standard �ltering

but varying hybridization parameters �. The formulations used to achieve the designs shown in
Figure 13 are:

(a) �=0·0.
(b) �=0·1, 0·01, 0·001, 0·0;
(c) �=1·0, 0·10, 0·01, 0·001, 0·0.
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Figure 13. Solutions to the trunk lid problem achieved with alternative formulations: (a) FE = 23·204, �=0·0;
(b) FE = 22·622, �=0·1, 0·01, 0·001, 0·0; (c) FE = 26·716, �=1·0, 0·1, 0·01, 0·001, 0·0

All of the solutions presented are clearly stable, interpretable and manufacturable concept designs
to carry the speci�c loads considered. Black regions indicate where structural members should
be located to carry the applied loads considered, and white domains represent regions where only
minimal skin thickness is required to provide the necessary shielding functions of the trunk lid. The
desired e�ect of continuation strategies discussed in Section 5.2 and employed in the calculations
of Figure 13(b) and 13(c) is to obtain unique solutions that approach the performance of the global
minimum. Clearly in this case, however, the continuation did not have the desired result, since the
designs of Figure 13(b) and 13(c) are noticeably di�erent, and their performance characteristics
are roughly equivalent to that of the pure Reuss design Figure 13(a). It is thus apparent that
further work to implement criterion based, and yet e�cient, continuation methods is required.
In the interim, however, it is evident that the proposed formulation yields a number of competing,
locally optimum designs that are highly discrete, stable, and interpretable.

7. SUMMARY AND CONCLUSIONS

A continuous, variable-topology material layout formulation using mixtures characterized simply
by volume fractions has been implemented and tested on a set of four representative struc-
tural topology test problems from the literature. The constitutive behaviour of the mixtures is
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described by the classical Voigt and Reuss mixing rules and hybrid combinations thereof. Due
to the bounding properties of the Voigt and Reuss mixing rules, the proposed hybrid formulation
essentially encompasses all others: With �=1 the maximal sti�ness pure Voigt formulation is
achieved; with �=0 the maximal compliance pure Reuss formulation is achieved. The strengths
and weaknesses of both extremes have been noted, and the hybrid formulation has been employed
here in assorted attempts to obtain the advantages of both extremes: the uniqueness and high
performance of the Voigt solutions and the discreteness and interpretability of the Reuss solu-
tions. This was attempted with ad hoc selection of � in continuation procedures based on heuristic
reasoning. In future e�orts, control of � during the optimization process will be investigated by
maintaining positive de�niteness of the Hessian (38).
A careful inspection of the results obtained on the four-test problems treated in Section 6 would

perhaps lead some to conclude that with the proposed concept design formulation it is generally best
to resort directly to the Reuss formulation. This appears worth trying for most problems, since there
are cases (i.e. the three-load bridge problem; the trunk lid problem; the cantilever problem; and
numerous others) where the best discrete continuum solutions are in fact obtained (most e�ciently)
by resorting directly to the pure Reuss formulation. There are counterexamples, however (the MBB
beam problem, in particular) where resorting directly to the pure Reuss formulation (�=0) can
yield low-performance design solutions. This behaviour is highly problem dependent and warrants
further study both in terms of formulation of the design problem, and in terms of optimization
solution methods. With the proposed design methods each new problem being solved should
generally be attempted (in addition to the pure Reuss formulation) with continuation methods as
well, in which case one begins with the Voigt formulation and gradually transitions to the Reuss
formulation. Given a number of competing designs achieved with various continuation strategies,
a speci�c design can be chosen for further re�nement in the detailed design stage.
The proposed Voigt–Reuss formulation studied here was originally conceived by the authors30 for

the variable topology layout design of multiple solid phases in the unit cells of periodic composites.
Perceived bene�ts of the Voigt–Reuss formulation for such composite design applications are
that it can be used to combine multiple general solid materials with linear elastic and =or more
general behaviours. In this paper, the formulation was applied exclusively to structural topology
applications involving a linear elastic solid phase and a void phase. The performance of the
proposed formulation on this class of problems is encouraging. A key ingredient of obtaining
the stable and interpretable solutions presented herein with low-order �nite element methods was
the usage of spatial �ltering of the design variables as discussed in Section 5.1. The mesh-based
�ltering procedure employed is certainly not unique, but it can be used with a wide range of
elements and clearly solves the problem of checkerboarding instabilities and leads to material
layout designs that are stable with mesh re�nement.
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