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Orthotropic Poroelastic Constitutive Model for Cortical Bone on
Multiple Length Scales (Biot, 1956, 1957, 1962)

Ci1 Cp CG3 0 0 0 &

m

Ll o Vvalues denote total stresses;
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p; denotes fluid pressure;
( denotes change of fluid content;
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All constants in this poro—elastic model can
0 0 G4 0 O be determined from micromechanical analysis.

The model predicts larger fluid pressures under
0 0 0 €& O transverse loadings.
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Bone Permeabilities on Different Length Scales

Haversian/Osteonal Scale Lacunar/Canalicular Scale
[Rouhanaet al, 1980] [Cowin et al, 1998, 1999]
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UNIT CELL MODELING ASSUMPTIONS

* Bone matrix is homogeneous, isotropic, elastic
(E = 12 GPay = 0.38). (Lamellar structure neglected)

 Fluid is elastic, with no shear viscosity on microscale
(K =2.1 GPa).

e The bone is fully saturated.
« Canal matrix in unit cell denotes:

 Haversian canal at osteonal scale;
e canaliculus at lacunar scale;

UNIT CELL MODELLING RESULTS ——

4% fluid—filled porosity

 All parameters in the poroelastic model are computed.

» Physical observation:
* Loading along longitudinal canal axis generates "small" fluid pressures.
« Loading transversely to canal axis generates larger fluid pressures.



CORTICAL BONE SPECIMEN

Experiments:
* Dynamic bending/torsion excitation.
» Measure viscoelastic damping
characteristic tang).
e Air Dry and Saturated 1

Analysis:
* Pressure relaxation under step—loading.
« Compute viscoelastic damping
characteristic tang).

 Fully Saturated Specimen
4.31cm
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Computed Haversian Pressure Relaxation Behaviors
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Computed Viscoelastic tand) Behaviors Associated with Fluid
Flow in Haversian System.




Shear—Induced Fluid Flow at Lacunar/Canalicular Scale

Applied Loading is 1% Shear Strain

Bone matrix is poro—elastic, with anisotropy
due to canaliculi.

Induced fluid pressures in the canaliculi
dissipate on the order microseconds.

Ip 6.8MPa ' '
t = 1.0us

t = 100us t=0.01s
= 0.031MPa

pma pmax_ 4.2MPa p=—6.8MPa Pmax=0-29 MPa Pmax

Space/Time Fluid Pressure Distributions in Lacunar Unit Cell



FINDINGS:

 The Haversian and Volksman canals function as freely draining
conduits under mechanical excitation applied well below 1 MHz.

e On the lacunar scale, load—induced fluid pressures in canaliculi
relax quickly [O(1 — 10Qus)] into lacunae.

 Fluid pressure relaxation frequencies on both the whole—-bone and
the lacunar length scales are on the order of 1-10 MHz. These are

much larger than what are thought to the physiologically meaningful
frequencies (.1 Hz — 1 kHz) .

 Our extensive experimental measurements of viscoelastic energy
dissipation in cortical bone show no evidence of a Debye peak
associated with pressure—driven fluid flow.



