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ABSTRACT

Unit cell homogenization techniques are applied on multiple length scales to compute the macroscopic
hyperelastic stiffness characteristics of textile-reinforced polymer matrix composites. On the smallest
scale (~50µm) the effective transversely isotropic properties of tows (or yarns) are computed based on both
fiber and matrix properties. These position-dependent transversely isotropic effective yarn properties are
then incorporated into a full textile unit cell model and the nonlinear effective stiffness properties of the
textile composite are computed and discussed.

Keywords: FRPs; homogenization; woven-fabric composites; textile composites; finite
deformation; unit cell analysis.

INTRODUCTION
Unit cell computational homogenization methods typically involve constructing a continuum

model of a composite's heterogeneous material structure and then applying loads to the model
with imposed periodic boundary conditions (e.g. Swan, 1994, 1997). When applied to composites
undergoing finite deformations, unit cell analysis can be performed by assuming periodicity of
both stress and deformation fields on the appropriate material scale or microscale. This
assumption of periodicity is indeed likely to be valid up until the point where deformation
becomes highly localized due to fiber or yarn buckling. Textile reinforced composites, also
referred to as woven fabric composites are hierarchical (Fig. 1) in that they feature heterogeneity
and structure on a variety of length scales, specifically a) the fiber diameter scale; b) the yarn-
diameter scale; c) the textile unit cell scale; and d) the structural element scale. When attempting
to analyze structures that utilize textile or woven fabric composites (WFCs), a number of
different modeling approaches have been taken to account for the material hierarchy. For the
sake of brief review, these approaches can be classified into those that develop analytical macro-
scale constitutive models for the nonlinear, hierarchical composites, and those that do not.

Among the works that do not utilize analytical effective medium constitutive models is that of
Tabiei et al (1999, 2000) who performed analysis of shell structures fabricated with WFCs, but
used a structural subcell technique based on local textile material structure and weighted rules of
mixtures to compute stress response to structural scale strains in the shell model. Concurrent
global structural shell analysis and local analysis have also been performed by Peng and Cao
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(2001) who for their local analysis used tabulated results from unit cell analysis of plain-weave
composites. Similar concurrent multi-scale analysis techniques have also been investigated by
Fish and Shek (2000) and Takano et al (2001) who have attempted to address the geometrical
nonlinear effects that occur in textile composites. An important issue with concurrent multi-scale
analysis is minimizing the computational cost of calculating micro-structural stress and strain
fields during global structural analysis.

When the length scale associated with variations of macro-scale structural deformation are
much larger than the unit cell dimensions associated with material structure on a finer scale, the
effective medium approximation will be valid. In this case, one can effectively model the
composite using a constitutive model that relates the homogenized strain and stress measures that
derive from spatial averaging of their microscale counterparts. In this work, unit cell analysis of
an aligned-fiber composite is performed and then used to calibrate a transversely isotropic
hyperelasticity model. This transversely isotropic hyperelasticity model is then employed in unit
cell models for a plain-weave textile to compute nonlinear stress-strain behaviors associated with
finite deformation hyperelastic behaviors.

Much of the preceding research on modeling of transversely-isotropic hyperelastic materials
has been devoted to developing appropriate mathematical forms and to estimation of free
parameters to fit experimentally measured material responses such as those of fibrous biological
tissues (Weiss et al, 1996). The experimental behavior of fibrous biological tissues wherein the
fibers are initially in a wavy, undulating arrangement, features increasing elastic stiffness under
uniaxial tensile loading, and decreasing stiffness under uniaxial compressive loading. Here, the
transversely-isotropic neo-Hookean constitutive model of Bonet and Burton (1998) is employed
to reproduce such homogenized stress-strain behavior of aligned-fibers within the warped yarns
of a plain-weave textile composite. The macro-scale nonlinear stress-strain behaviors of the
textile composite are then computed with unit cell analysis at finite deformations.

SYMMETRIC, CONJUGATE MEASURES FOR AVERAGED STRAIN AND STRESS

When dealing with homogenized stain or stress measures of composites undergoing finite
deformations, it is important that they be conjugate to each other. For example, Nemat-Nasser
(2000) has shown that the volume averages of the rate of deformation gradient dF/dt and nominal
stress P satisfy the following conjugacy identity which assures conservation of energy in the
homogenization process:

Figure 1. Multiple scales in textile composites, including: a) fiber-diameter scale; b)
yarn-diameter scale; c) textile-unit cell scale; and d) structural scale.

c)a) b) d)
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Since both the nominal stress P and the rate of deformation gradient dF/dt are non-symmetric, it
is preferred here to develop constitutive models using symmetric conjugate measures.
Accordingly, it can be demonstrated (Kim, 2002) that the following conjugacy relations hold:
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In the preceding, SIJ denotes the second Piola Kirchoff stress tensor on the material scale, and EIJ

denotes the Green-Lagrange strain tensor on the material scale. Similarly, the following averaged
quantities in (2) are here defined as follows:
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UNIT CELL HOMOGENIZATION

The composite materials under consideration here are assumed to occupy a domain Ωb in ℜ3 and
to exhibit periodic microstructures in that a single wavelength sub-domain forms a unit cell

] [,03
1 iis λ=Π=Ω , where iλ are the dimensions of a specific composite’s unit cell. Regions of the

structural domain Ωb are formed by repetition of a specific composite’s unit cell Ωs. Material
points in an undeformed unit cell Ωs are referenced by local material scale coordinates X, while
the spatial material scale coordinates x locate material points in a deformed cell. Similarly, the
Lagrangian and spatial macro-scale coordinates of a point in the larger domain Ωb are denoted by
Y and y. The undeformed and deformed locations of a material point are related by displacement
vectors u such that

(4)scale.macroscale;material u(Y)Yyu(X)Xx +=+=

Material scale coordinates X and x are used in solving unit cell homogenization problems on one
scale, whereas macroscale coordinatesY and y are used in solving structural analysis problems
with the effective medium approximation on a larger scale.

At the material scale, and at the macroscale, the respective deformation gradients are defined
as follows:
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If the length scale of variation � associated with macroscopic deformation <F> in a composite
domain bΩ is much larger than the wavelengths λ of the material microstructure ( �/|λ|>>1) then

the deformation and stress fields will be λ -periodic on the material scale. The periodicity of the
stress and deformation fields on the material–scale suggests that they admit additive

decompositions into macroscopic contributions ( FS ˆ,ˆ ) defined in (3), which are constant on the
micro-scale and vary slowly on the macroscale, and purely oscillatory contributions [S*(X),
F*(X)], which can vary quite significantly on the unit cell length scale:
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With regard to the constant-periodic decomposition of the deformation field on the microscale
(6b), it can also be shown by integrating (5a) that the displacement field on the microscale
associated with a state of macroscopic deformation F̂ satisfies the linear-periodic decomposition

[ ] (7))(ˆ)( *
per XuX1FXu +⋅−=

where any constant or rigid body contributions to the displacement field u are eliminated by
proper restraints on the unit cell domain, and imposing URF ⋅=ˆ , where R is a rotation operator,
and U is the right stretch tensor. The periodic displacement field contribution u*per(X) permits a
heterogeneous (non-uniform) deformation field within the unit cell domain sΩ , satisfying local
stress equilibrium.

The deformation-controlled homogenization problem involves imposing macroscopic
deformation <F> (or imposing X1Fu ⋅−><= ][ ) on the cell of a composite and computing the

resulting periodic minimal energy displacement field 3
s:* ℜ�Ωu satisfying the equilibrium

equation. From the equilibrium local displacement field u(X), strain-displacement relations, and
constitutive behaviors of the materials in the composites, the corresponding stress field S(X) and

its macroscopic counterpart Ŝ can be computed.
While there are numerous transversely isotropic hyperelasticity models presented in the

literature, we here use that presented by Bonet and Burton (1998) as a point of departure. In this
model, a hyper-elastic potential ψ for transversely-isotropic materials is assumed to have an

additive decomposition into an isotropic potential and a transversely isotropic potential:

(8)ψψ)I,I,I,I,Iψ(ψ tiinh54321 +==
where
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A is a unit normal vector to the transverse plane of symmetry in the undeformed state, and C is
the right Cauchy-Green deformation tensor. The isotropic and transversely isotropic portions of
the strain energy functions take the following specific forms:
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where λ, µ, α, β, γ are the free parameters.
The results of unit cell analysis computations can be used to estimate the five coefficients in

the proposed hyperelastic material model. Specifically, under deformation controlled loading,
the material parameters αααα can be selected to minimize stress-space error between the
homogenized stresses Ŝ and the stresses produced by the proposed material model and a set of
material parameters )(
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In (12) )(ˆ τkS is the homogenized effective stress vector under kth strain-controlled case at

parametric time τ and ),(
~ ταSk is the second Piola-Kirchoff stress from the proposed material

model with a realization of coefficients )γβ,α,µ,λ,(=α .

MATERIAL PARAMETERS FOR TRANSVERSELY ISOTROPIC YARN MODEL

The proposed homogenization techniques are first applied to an aligned-fiber yarn-composite
using the 3D FE model of 8,288 10-noded tri-quadratic tetrahderal elements with 15,073 nodes
(Figure 2). The yarn-composite is made up of aligned E-glass fibers in a hexagonal packing
arrangement with a volume fraction of 76.6%. The epoxy matrix phase has a volume fraction of
23.4%. Four cases of finite deformation-controlled loading are applied to the unit cell model.
The optimum agreement between homogenized stresses and those produced by the transversely
isotropic hyperelasticity model are as shown in Figure 3. The associated material constants in the
transversely-isotropic hyperelastic model of yarn-composite are shown in Table 1.

When individual components of the homogenized Green-Lagrange strain tensor are less than
10%, the transversely isotropic neo-Hookean model agrees quite well with the homogenized
stress-strain responses computed from unit cell analysis of the fibers and matrix comprising the
yarns. For cases of transverse compressive Green-Lagrange strain components E11or E22 in
excess of 10%, the homogenized stress response from unit cell analysis and that from the
transversely isotropic material model start to deviate. This is due to a secondary geometrical
effect of fiber-lockup wherein the interaction between fibers become significant as they approach
a condition of mutual contact. Presently, we focus on range of strains where the homogenized
macro-strains of the yarn composite are less than 10%.

a) b) c) d)

Table 1. Material parameters fiber and epoxy polymer matrix, and computed material parameters
for the yarn composite.

E-glass fiber Epoxy matrix Yarn Composite Properties(GPa)
E ν E ν µ λ α β γ

72.4 (GPa) 0.2 2.76 (GPa) 0.35 12.3 6.92 0.465 -0.498 4.69

Figure 2. Deformed mesh of yarn-composite in hexahegonal arrangement: a) in-plane
compression (F11=0.9, other components zero); b) in-plane tension (F11=1.1, others vanish); c)
out-of-plane shear (F23=F32=0.1, others zero); and d) in-plane shear (F12= F21=0.1, others zero).
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Figure 3. Strain-stress graph of textile composite implemented transversely- isotropic hyper-elasticity:
a) in-plane constrained tension and compression (F11 controlled, others zero); b) out-of-plane
tension and compression (F33 controlled, others zero); c) out-of-plane constrained shear (F23 =F32

controlled, others zero); and d) in-plane constrained shear (F12 =F21 controlled, others zero)

UNIT CELL ANALYSIS OF PLAIN-WEAVES AT FINITE DEFORMATIONS

Unit cell analysis is performed once again at the length scale of the plain-weave textile’s
wavelengths. Using the meshing techniques described by Kim (2002) a three-dimensional unit
cell model for a plain-weave textile composite with a 36% yarn volume-fraction and 64% matrix
volume-fraction is considered (Figure 4). The model employs 39,412 tri-quadratic tetrahedral
elements and 58,221 nodes. The yarns are modeled as a homogenized transversely isotropic neo-
Hookean solid, where the material directors vary smoothly along the length of yarns. With this
model, each finite element comprising the yarn is given a unit director specifying the fiber-
orientation that is sampled at the centroid of the element. Using deformation-controlled loading,
the resulting unit cell analysis problems are solved with a diagonally pre-conditioned memoriless
BFGS solver (Swan and Kosaka, 1997).

To study stiffness behaviors of plain-weave textile composites, two finite deformation loading
cases, one of in-plane uniaxial compression, and one of in-plane uniaxial tension, are applied.
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Periodicity of displacement field holds only in the in-plane directions while the top and bottom
faces of the unit-cell are traction-free. Due to symmetry of the applied loading conditions and the
symmetry of the unit-cell, only one quarter of full unit-cell was needed in these computations, the
deformed meshes of which are shown in Figure 4, and the resulting stresses/strains of which are
shown in Figure 5.
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Figure 4. a) undeformed unit-cell model of plain-weave textile composite
b) deformed under compression; c) deformed under tension.

Figure 5. (a) resulting macroscopic strains in unit cell due to applied compression
in X1 direction; (b) stress-strain response in compression; (c) macroscopic strains
under applied tension loading in X1 direction; (d) stress-strain response in tension.
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The macroscopic stress-strain plots in Figure 5b indicate that material-scale geometric
nonlinearity effects under in-plane compression become significant only at applied strains of
approximately 25% at which point the yarns become unstable and are on the verge of buckling,
whereas the corresponding stress-strain plots in 5d indicate that such effects become pronounced
only at in-plane tensile strains in excess of 25%. In both cases, the textile composite would have
failed at much smaller strains due to material failure and fracture in both the yarn and matrix
phases. In subsequent extensions of this work both material failure and associated finite
deformations at the material scale need to be addressed.
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