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LIMIT STATE ANALYSI S OF EARTHEN SLOPES

USING DUAL CONTINUU M/FEM APPROACHES

A. Review of Classical Methods

B. Proposed Slope Stability Analysis Methods

C. Comparison of the Methods for Total Stress Analysis

D. Application to Problems with Seepage

* Gravity Increase Method

* Strength Reduction Method

E. Assessment of Continuum/FEM Approaches to SSA



A. Review of Common Classical Methods

      M D= The moment of driving forces

* Factor of Safety:
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* Infinite Slope Analysis

* Methods of Slices (Bishop’s simplified method, Ordinary method of slices,...)

* Mass Methods (Culmann’s method; Fellenius−Taylor method)



* Perceived shortcomings in classical methods:

     1)  Analysis of stresses within the soil mass is approximate.

             a) Using statics approximations for continuum system.
             b) Interslice forces?

      2)  Typically restricted to Mohr−Coulomb soil models

             * Other, more realistic soil models are presently 
                 available.  (Critical state models; cap models;
                  softening effects; etc)

      3)  Transient effects associated with pore pressure diffusion
               are difficult to incorporate.

*  Research question:  
        Can continuum/FEM methods be applied to 
        improve state of the art in SSA?
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B. Two Continuum/FEM Slope Stability Analysis Techniques

Gravity Increase Method

* Increase  g until the slope becomes unstable
   and equilibrium solutions no longer exist.
  (W.F. Chen)

* (F.S) gi  =
glimit

gtrue

Strength Reduction Method

* Decrease  the strength parameters of the slope
   until slope becomes unstable and equilibrium
   solutions no longer exist. 
   (D.V. Griffiths, and O.C. Zeinkiewicz)

* Y(t)=Ybase * f(t)    where Ybase  are actual 
                                strength parameters 

* (F.S) sr  =
f(t limit )
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* g(t)=gbase * f(t)    where gtrue  is actual 
                               gravitational acceleration.



Fit of Drucker−Prager Yield Surface  

           with Sand Data of Desai and Sture. 

∗  f(σ) = ||s||  − { α + λ (1 − exp [ β Ι1 ]} ≤ 0

λ = 1.53 kPa,  β = 3.48d−6 Pa−1, α=0



  Application of Loads to Soil Mass (For gravity method)
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Slope surface
tractions

a)Load−time functions for
  gravity and surface 
  tractions.

t
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d) t>t2c) t1<t<t2b) 0<t<t1

For purely frictional soils (non−cohesive), shear strength comes
entirely from effective confining stresses.  

Note:
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(FS)gi=3.03,    (FS)sr=3.04 ;     Fellenius−Taylor Method ; FS=3.17

C.  Comparative Results (Total Stress Analysis)

1) Non−frictional Soil (α = 141kPa)
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a) Undeformed slope.

b) Deformed slope at limit state. 



Strength Reduction Method Gravity Increase Method

2) Frictional Soil: Slope angle 20o 

(FS)gi=6.28

(FS)gi=3.40

(FS)gi=1.25

(FS)gi=0.79

(FS)sr=3.14

(FS)sr=2.49

(FS)sr=1.23

(FS)sr0.64

H=6m

H=12m

H=30m

H=60m

(λ = 1.53 kPa,  β = 3.48d−6 Pa−1, α=0)



Strength Reduction Method Gravity Increase Method

3) Heterogeneous Soil: Slope angle 30o 

Sand:λ = 1.53 kPa,  β = 3.48d−6 Pa−1, α=0

Clay:α = 141kPa(dark region)

(FS)sr=1.52 (FS)gi=1.64

(FS)sr=1.26 (FS)gi=1.11



Steep Slope with tension crack 1

b) Deformed slope at limit state.a) Undeformed slope.
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a) Undeformed slope.

30m

50m

80m 26m 94m
rollers

fixed b) Deformed slope at limit state.

Steep Slope with tension crack 2

Clay:α = 141kPa



Slope under Pseudo−Static Earthquake Loading

g=9.81m/s2 downward and leftward horizontal acceleration of 0.447g

Slope with Building : (FS)grav=2.47

b)Deformed limit state

b)Deformed Configurationa)Undeformed Configuration
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(Clay:α = 141kPa)



Comparative Summary of the Two Continuum/FEM Approaches

1)  Two methods employ virtually identical computational FEM techniques.

2) Computational times are competitive compared to classical methods of slice type.

3) In total stress analysis,neither method is clearly superior over the other

4) Gravity Increase Method : 

This method is well suited for analyzing the stability of embankment constructed on
 saturated soil deposits, since the rate of construction of embankment can be simulated 
 with the rate at which gravity loading on the embankment is increased.

5) Strength Reduction Method:

This method appears well suited for analyzing the stability of existing slopes in
 which unconfined active seepage is occurring

* For purely cohesive soils, both methods yield identical results.

* For frictional soils, strength reduction method typically gives
   more conservative results and it guarantees the existence of a limit state.



D.1  STABILITY ANAL YSIS OF EMBANK−
        MENTS ON SATURATED DEPOSITS

A) Use a coupled porous medium model

B) Use the smooth elasto−plastic cap model

C) Use the Gravity Increase Method

* This method can simulate the rate of embankment construction.

*  This model can account for coupled shear and compressive soil behaviors. 

* This model can capture the time dependent pore−pressure diffusion

behaviors of a saturated porous medium.



A. Continuum Formulation

Find us and vw, such that

Boundary Conditions

ρs  as = ∇ ⋅σ’  − n s  ∇ pw
 − ξ ⋅ ( vs−vw) + ρsb

Initial Conditions

uw = u w on Γgw

( σ’ −nspwδ) n = hs on Γhs

−nspwn = hw on Γhw

us(0)  = u o
s

us = u s on  Γgs

us(0)  = u o
s⋅ ⋅

uw(0)  = u o
w⋅ ⋅

( vw)= −n w ∇ pw +ξ ⋅ ( vs−vw) + ρwbDs
Dtρw



Matrix Equations

Mα = ∫ NA ρα NB dΩ

Z = ∫ NA ⋅ξ⋅ NB dΩ

+ [ Z  −Z
−Z  Z][ vs

vw] +[ ns( ds, v )
nw( v ) ] [ f s(ext)

f w(ext) ]=[ Ms 0
0 Mw][ as

aw]

[ f s(ext)

f w(ext) ] =[ ∫ NA ρs  b dΩ+∫ NA hs  dΓ

∫ NA ρw b dΩ+∫ NA hw dΓ
]

Tangent operator

Cαβ = ∫ dΩnα nβ
λw

nw ∇NA ∇NB

K = ∫ BA D BB dΩ

[ Ms 0
0 Mw] + [ ∆t γZ −∆t γZ

−∆t γZ  ∆t γZ] [ ∆t 2β( K+Css )  ∆t 2βCsw

∆t 2βCws     ∆t 2βCww]+

[ ns( ds, v )
nw( v ) ] =[ ∫ BA σ’ dΩ + ]∫ NAns  pwdΩ

− ∫ ∇NA
nw pwdΩ



B. Material Model Description

Sandler−DiMaggio Cap Model

Smooth Cap Model
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Features:
* Five elasto−plastic subcases

* Singular tangent operators in
    the corner regions
    (no bulk stiffness)

* Three elasto−plastic subcases

Features:

* No problems with singular
   tangent operators



Flow rule (associated)

Non−associated hardening laws

Karesh−Kuhn−Tucker Condition

f 2( σ,ξ,κ)=| η| 2−Fc(I 1, κ) ≤ 0  where F c(I 1, κ)=R 2( κ)−  (I 1−κ) 2 

f 1( σ,ξ) =| η|−F e(I 1) ≤ 0     where F e(I 1)= α − θ I 1 

f 3( σ,ξ) =| η| 2−Ft (I 1) ≤ 0     where F t (I 1)=T 2 −  I 1
2 

Yield functions

Plastic consistency condition

εp = ∑ γα⋅ ⋅ ∂f α
∂ σ

f α ≤ 0  γα  ≤ 0⋅  γα f α
 = 0⋅

q =H εp 
⋅⋅

 γα f α
 = 0

⋅ ⋅

, χ( κ)= κ−R( κ)where h’( κ)=
exp[−D χ( κ)]

WDχ’( κ)κ =h’( κ)tr( εp 
⋅

)⋅



Drained triaxial compression test

Pore
pressure

Confining
 fluid

Specimen
σ1=
σ2=σ3

∆σ1

Membrane

00
00
00
00
00

Experimental data and Model Response
  data for drained triaxial compression test

1−D  Compression test on sand

Specimen
  ring

Load
Dial
 guage

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAACCCCCCCC
CCCCCCCC
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Soil specimen

22222222222222
22222222222222

Experimental data and Model Response
for 1−D compression on dry sand



C. Examples
Cubzac −les−Point  embankment in France

* Experimental embankment constructed in
   10 days up to failure in 1971.

* In 1982, Pilot et al anlalyzed the embankment’s
   stability by Bishop’s method of slices 

1000 days
construction : FS=1.35

100 days
construction : FS=0.909

10 days
construction : FS=0.739

1 day
construction : FS=0.657

F.S=1.24

γ=21.2kN/m 3

c’ =0
φ’ =35o

γ=15.5kN/m 3

c’ =10kN/m 2

φ’ =24o~28o

4.5m

9m

Mechanism and FS computed by Pilot

* Observation:

The computation method of SSA is more
realistic (and conservative) than the classical
method, since it accounts for the shear and
compressibility behaviours of the clay soil.

foundation:    α=12.3kPa  θ=0.2003, w=0.15, D=3.2e−7 Pa−1

embankment: α=10.0Pa   θ=0.2567,  w=0.01, D=5.0e−7Pa−1



Modeling of Sand Drains to Enhance Stability

1000 days
construction : FS=2.61

100 days
construction : FS=1.64

10 days
construction : FS=1.175

1 day
construction : FS=0.968

without drains :FS=0.675

without drains :FS=0.739

without drains :FS=0.909

without drains :FS=1.35



A . Formulation

B.  Example Solutions

D.2   SLOPE STABILITY ANALYSIS WITH
         UNCONFINED SEEPAGE



A .  Coupled Porous Medium

1)  Problem Geometry

Find us and p, such that

∇ ⋅ ( σ’  −  pδ)  + ρb = 0  in Ω    (Total Stress Equilibrium)

∇ ⋅ vs + ∇ ⋅ vw = 0       in Ωw (Conservation of Fluid Mass)

Solid Boundary Conditions

Fluid Boundary Conditions

2) Statement of the Problem

Steady state seepage and incompressible fluid are assumed

S2

Γ2

Γ1⊂ S 1

Γ3=S3

Γ4⊂ S 2
Γ3=S3

Ωd

Ωw

h1 h2

5555555555555555555
5555555555555555555

( σ’  −pδ)  ⋅ n = hs on S 1 ∪ S2

us = u s on S 1

p > 0 in Ωw   ; p=0 elsewhere 

n ⋅ vw = 0             on Γ1

p=0  and  n ⋅ vw = 0   on Γ2

p=0  and  − n ⋅ vw ≤ 0  on Γ4

p = p                  on Γ3

{where p =
γw(h 2−y) on the right side of dam

γw(h 1−y) on the left side of dam

vw =  − κ ⋅ grad(
p
γw

+ y) (Darcy’s Law)

x

y
  Free−Boundary Problem



 Purely Cohesiveless Soil

Strength Reduction Method
             (dry  slopes)

Strength Reduction Method
   (seepage effects included)

H=12m

H=30m

H=60m

(FS)=2.24

(FS)=1.13

(FS)=0.58

(14.7%)

(18.5%)

(19%)

(FS)=2.26

(FS)=1.91

(FS)=0.92

(FS)=0.47

H=6m

(FS)=2.56

(12%)



E.  SUMMARY ON FEM SLOPE STABILITY
      ANALYSIS

     1)  Approximations required in SLICE type methods are
           not required.

     2)  The method can use virtually any realistic soil material
            model.

              *  Usage of more sophisticated material models 
                   typically requires more laboratory testing.

     3)  For many applications, classical methods are suitable,
            given the uncertainty in soil properties.  

    4)  FEM/SSA appears to hold an advantage over classical 
           methods for problems involving seepage − as in
           embankment stability analysis.



      5)  Requirements for SSA with FEM are non−trivial.
 
            * High−end PC or workstation
            * FEM software (starting at $2k per year for commercial
                                         licenses)
            * Understanding of soil mechanics, material models 
                and FEM. 

     6)  The 2D SSA examples presented here took between 
             15 minutes and a few hours to run on an engineering
             workstation (SGI Powerchallenge).

            Presently, 3D SSA with FEM is too expensive to be
             feasible on PCs and workstations.  In the future, 
             this may become feasible as computing power 
             advances.

         


