Slope Stability Analysis Using Finite Element Techniques

Colby C. Swan, Assoc. Professor Young–Kyo Seo, Post–Doctoral Research Assoc.

> Civil & Environmental Engineering Center for Computer–Aided Design The University of Iowa Iowa City, Iowa USA

13th Iowa ASCE Geotech. Conf. 12 March 1999 Williamsburg, Iowa

LIMIT STATE ANALYSIS OF EARTHEN SLOPES USING DUAL CONTINUUM/FEM APPROACHES

A. Review of Classical Methods **B.** Proposed Slope Stability Analysis Methods * Gravity Increase Method * Strength Reduction Method C. Comparison of the Methods for Total Stress Analysis D. Application to Problems with Seepage E. Assessment of Continuum/FEM Approaches to SSA

A. Review of Common Classical Methods

- * Infinite Slope Analysis
- * Mass Methods (Culmann's method; Fellenius-Taylor method)
- * Methods of Slices (Bishop's simplified method, Ordinary method of slices,...)

- * Perceived shortcomings in classical methods:
 - 1) Analysis of stresses within the soil mass is approximate.
 - a) Using statics approximations for continuum system.b) Interslice forces?
 - 2) Typically restricted to Mohr–Coulomb soil models
 - * Other, more realistic soil models are presently available. (Critical state models; cap models; softening effects; etc)
 - 3) Transient effects associated with pore pressure diffusion are difficult to incorporate.
- * Research question: Can continuum/FEM methods be applied to improve state of the art in SSA?

B. Two Continuum/FEM Slope Stability Analysis Techniques

Gravity Increase Method

* Increase g until the slope becomes unstable and equilibrium solutions no longer exist. (W.F. Chen)

Strength Reduction Method

* Decrease the strength parameters of the slope until slope becomes unstable and equilibrium solutions no longer exist.
(D.V. Griffiths, and O.C. Zeinkiewicz)

* $g(t)=g_{base}$ * f(t) where g_{true} is actual gravitational acceleration.

*
$$Y(t)=Y_{base} * f(t)$$
 where Y_{base} are actua
strength parameters

Fit of Drucker–Prager Yield Surface

with Sand Data of Desai and Sture.

* $f(\sigma) = ||s|| - \{ \alpha + \lambda (1 - \exp [\beta I_1] \} \le 0$

 $\lambda = 1.53 \text{ kPa}, \beta = 3.48 \text{d} - 6 \text{ Pa}^{-1}, \alpha = 0$

Application of Loads to Soil Mass (For gravity method)

Note: For purely frictional soils (non–cohesive), shear strength comes entirely from effective confining stresses.

C. Comparative Results (Total Stress Analysis)

1) Non–frictional Soil ($\alpha = 141$ kPa)

 $(FS)_{gi}$ =3.03, $(FS)_{sr}$ =3.04; Fellenius–Taylor Method; FS=3.17

3) Heterogeneous Soil: Slope angle 30°

Clay: $\alpha = 141$ kPa(dark region)

Sand: $\lambda = 1.53$ kPa, $\beta = 3.48d-6$ Pa⁻¹, $\alpha = 0$

Strength Reduction Method

Gravity Increase Method

Slope under Pseudo-Static Earthquake Loading

g=9.81m/s² downward and leftward horizontal acceleration of 0.447g

Comparative Summary of the Two Continuum/FEM Approaches

- 1) Two methods employ virtually identical computational FEM techniques.
- 2) Computational times are competitive compared to classical methods of slice type.
- 3) In total stress analysis, neither method is clearly superior over the other
 - * For purely cohesive soils, both methods yield identical results.
 - * For frictional soils, strength reduction method typically gives more conservative results and it guarantees the existence of a limit state.
- 4) Gravity Increase Method :

This method is well suited for analyzing the stability of embankment constructed on saturated soil deposits, since the rate of construction of embankment can be simulated with the rate at which gravity loading on the embankment is increased.

5) Strength Reduction Method:

This method appears well suited for analyzing the stability of existing slopes in which unconfined active seepage is occurring

D.1 <u>STABILITY ANALYSIS OF EMBANK-</u> <u>MENTS ON SATURATED DEPOSITS</u>

A) Use a coupled porous medium model

- * This model can capture the time dependent pore-pressure diffusion behaviors of a saturated porous medium.
- B) Use the smooth elasto-plastic cap model
 - * This model can account for coupled shear and compressive soil behaviors.
- C) Use the Gravity Increase Method
 - * This method can simulate the rate of embankment construction.

A. Continuum Formulation

Find \mathbf{u}^{s} and \mathbf{v}^{w} , such that

$$\rho^{s} \mathbf{a}^{s} = \nabla \cdot \sigma' - n^{s} \nabla p_{w} - \xi \cdot (\mathbf{v}^{s} - \mathbf{v}^{w}) + \rho^{s} \mathbf{b}$$
$$\rho^{w} \frac{D^{s}}{Dt} (\mathbf{v}^{w}) = -n^{w} \nabla p^{w} + \xi \cdot (\mathbf{v}^{s} - \mathbf{v}^{w}) + \rho^{w} \mathbf{b}$$

Boundary Conditions

$\mathbf{u}^{s} = \overline{\mathbf{u}}^{s}$	on Γ_{g^S}
$\mathbf{u}^{w} = \overline{\mathbf{u}}^{w}$	on Γ_{g^W}
$(\sigma' - n^{s} p_{W} \delta) \mathbf{n} = \mathbf{h}^{s}$	on Γ _h s
$-n^{s}p_{w}n = \bar{h}^{w}$	on Γ_{h^W}

Initial Conditions

 $\mathbf{u}^{s}(0) = \mathbf{u}_{o}^{s}$ $\dot{\mathbf{u}}^{s}(0) = \dot{\mathbf{u}}_{o}^{s}$ $\dot{\mathbf{u}}^{w}(0) = \dot{\mathbf{u}}_{o}^{w}$

Matrix Equations

$$\begin{bmatrix} \mathbf{M}^{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{\mathrm{w}} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{\mathrm{s}} \\ \mathbf{a}^{\mathrm{w}} \end{bmatrix} + \begin{bmatrix} \mathbf{z} & -\mathbf{z} \\ -\mathbf{z} & \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{\mathrm{s}} \\ \mathbf{v}^{\mathrm{w}} \end{bmatrix} + \begin{bmatrix} n^{\mathrm{s}} (\mathbf{d}^{\mathrm{s}}, \mathbf{v}) \\ n^{\mathrm{w}} (\mathbf{v}) \end{bmatrix} = \begin{bmatrix} \mathbf{f}^{\mathrm{s}(\mathrm{ext})} \\ \mathbf{f}^{\mathrm{w}(\mathrm{ext})} \end{bmatrix}$$
$$\mathbf{M}^{\alpha} = \int \mathbf{N}_{\mathrm{A}} \rho^{\alpha} \mathbf{N}_{\mathrm{B}} d\Omega$$
$$\mathbf{z} = \int \mathbf{N}_{\mathrm{A}} \cdot \boldsymbol{\xi} \cdot \mathbf{N}_{\mathrm{B}} d\Omega$$
$$\begin{bmatrix} n^{\mathrm{s}} (\mathbf{d}^{\mathrm{s}}, \mathbf{v}) \\ n^{\mathrm{w}} (\mathbf{v}) \end{bmatrix} = \begin{bmatrix} \int B_{\mathrm{A}} \sigma' d\Omega + \int N_{\mathrm{A}} n^{\mathrm{s}} p_{\mathrm{w}} d\Omega \\ - \int \nabla N_{\mathrm{A}} n^{\mathrm{w}} p_{\mathrm{w}} d\Omega \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{f}^{\mathrm{s}(\mathrm{ext})} \\ \mathbf{f}^{\mathrm{w}(\mathrm{ext})} \end{bmatrix} = \begin{bmatrix} \int N_{\mathrm{A}} \rho^{\mathrm{s}} \mathbf{b} d\Omega + \int N_{\mathrm{A}} \mathbf{h}^{\mathrm{s}} d\Gamma \\ \int N_{\mathrm{A}} \rho^{\mathrm{w}} \mathbf{b} d\Omega + \int N_{\mathrm{A}} \mathbf{h}^{\mathrm{w}} d\Gamma \end{bmatrix}$$

Tangent operator

$$\begin{bmatrix} \mathbf{M}^{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}^{\mathrm{w}} \end{bmatrix} + \begin{bmatrix} \Delta t \gamma \mathbf{Z} & -\Delta t \gamma \mathbf{Z} \\ -\Delta t \gamma \mathbf{Z} & \Delta t \gamma \mathbf{Z} \end{bmatrix} + \begin{bmatrix} \Delta t^{2} \beta (\mathbf{K} + \mathbf{C}^{\mathrm{ss}}) & \Delta t^{2} \beta \mathbf{C}^{\mathrm{sw}} \\ \Delta t^{2} \beta \mathbf{C}^{\mathrm{ws}} & \Delta t^{2} \beta \mathbf{C}^{\mathrm{ww}} \end{bmatrix}$$
$$\mathbf{K} = \int B_{\mathrm{A}} \mathbf{D} B_{\mathrm{B}} d\Omega$$
$$\mathbf{C}^{\alpha \beta} = \int \lambda^{\mathrm{w}} \frac{n^{\alpha} n^{\beta}}{n^{\mathrm{w}}} \nabla N_{\mathrm{A}} \nabla N_{\mathrm{B}} d\Omega$$

B. Material Model Description

Sandler-DiMaggio Cap Model

Features:

- * Five elasto-plastic subcases
- * Singular tangent operators in the corner regions (no bulk stiffness)

Smooth Cap Model

Features:

- * Three elasto-plastic subcases
- * No problems with singular tangent operators

Yield functions

$$\begin{split} f_1(\sigma,\xi) &= |\eta| - F_{\mathsf{C}}(\mathsf{I}_1) \leq 0 & \text{where } F_{\mathsf{C}}(\mathsf{I}_1) = \alpha - \theta \mathsf{I}_1 \\ f_2(\sigma,\xi,\kappa) &= |\eta|^2 - F_{\mathsf{C}}(\mathsf{I}_1,\kappa) \leq 0 & \text{where } F_{\mathsf{C}}(\mathsf{I}_1,\kappa) = \mathsf{R}^2(\kappa) - (\mathsf{I}_1 - \kappa)^2 \\ f_3(\sigma,\xi) &= |\eta|^2 - F_{\mathsf{t}}(\mathsf{I}_1) \leq 0 & \text{where } F_{\mathsf{t}}(\mathsf{I}_1) = \mathsf{T}^2 - \mathsf{I}_1^2 \end{split}$$

Flow rule (associated)

$$\dot{\varepsilon}^{p} = \sum \gamma^{\alpha} \frac{\partial f_{o}}{\partial \sigma}$$

Non-associated hardening laws

$$\dot{\mathbf{q}} = \mathbf{H} \hat{\mathbf{\epsilon}}^{\mathrm{p}}$$

 $\dot{\mathbf{\kappa}} = \mathbf{h}'(\kappa) \operatorname{tr}(\hat{\mathbf{\epsilon}}^{\mathrm{p}})$ where $\mathbf{h}'(\kappa) = \frac{\exp[-D\chi(\kappa)]}{WD\chi'(\kappa)}$, $\chi(\kappa) = \kappa - R(\kappa)$

Karesh-Kuhn-Tucker Condition

 $f_{\alpha} \leq 0$ $\dot{\gamma}^{\alpha} \leq 0$ $\dot{\gamma}^{\alpha} f_{\alpha} = 0$

Plastic consistency condition

$$\dot{\gamma}^{\alpha} \dot{f}_{\alpha} = 0$$

Experimental data and Model Response for 1–D compression on dry sand

Experimental data and Model Response data for drained triaxial compression test

C. Examples

Cubzac -les-Point embankment in France

foundation: $\alpha = 12.3$ kPa $\theta = 0.2003$, w=0.15, D=3.2e-7 Pa⁻¹ embankment: $\alpha = 10.0$ Pa $\theta = 0.2567$, w=0.01, D=5.0e-7 Pa⁻¹

- * Experimental embankment constructed in 10 days up to failure in 1971.
- * In 1982, Pilot <u>et al</u> anlalyzed the embankment's stability by Bishop's method of slices

Mechanism and FS computed by Pilot

* Observation:

The computation method of SSA is more realistic (and conservative) than the classical method, since it accounts for the shear and compressibility behaviours of the clay soil.

construction : FS=1.35

Modeling of Sand Drains to Enhance Stability

without drains :FS=0.675 1 day construction : FS=0.968

without drains :FS=0.739 10 days construction : FS=1.175

without drains :FS=0.909 100 days construction : FS=1.64

without drains :FS=1.35 1000 days construction : FS=2.61

D.2 <u>SLOPE STABILITY ANALYSIS WITH</u> <u>UNCONFINED SEEPAGE</u>

A . Formulation

B. Example Solutions

A. Coupled Porous Medium Free–Boundary Problem

- 1) Problem Geometry
- 2) Statement of the Problem

Steady state seepage and incompressible fluid are assumed

Find \mathbf{u}^{s} and p, such that

 $\nabla \cdot (\sigma' - p\delta) + \rho \mathbf{b} = 0$ in Ω (Total Stress Equilibrium) $\nabla \cdot \mathbf{v}^{\mathbf{S}} + \nabla \cdot \mathbf{v}^{\mathbf{W}} = 0$ in $\Omega^{\mathbf{W}}$ (Conservation of Fluid Mass)

Solid Boundary Conditions

$\mathbf{u}^{s} = \overline{\mathbf{u}}^{s}$	on S ₁
$(\sigma' - p\delta) \cdot n = \overline{h}^{s}$	on $S_1 \cup S_2$

Fluid Boundary Conditions

 $p > 0 \text{ in } \Omega^{w} \quad ; p=0 \text{ elsewhere}$ $\mathbf{n} \cdot \mathbf{v}^{w} = 0 \qquad \text{on } \Gamma_{1}$ $p=0 \text{ and } \mathbf{n} \cdot \mathbf{v}^{w} = 0 \qquad \text{on } \Gamma_{2}$ $p = \overline{p} \qquad \text{on } \Gamma_{3}$ $p=0 \text{ and } -\mathbf{n} \cdot \mathbf{v}^{w} \leq 0 \quad \text{on } \Gamma_{4}$ $where \ \overline{p} = \begin{cases} \gamma_{w}(h_{2}-y) \text{ on the right side of dam} \\ \gamma_{w}(h_{1}-y) \text{ on the left side of dam} \end{cases}$ $\mathbf{v}^{w} = -\kappa \cdot \text{grad}\left(\frac{p}{\gamma_{w}} + y\right) \text{ (Darcy's Law)}$

E. SUMMARY ON FEM SLOPE STABILITY ANALYSIS

- 1) Approximations required in SLICE type methods are not required.
- 2) The method can use virtually any realistic soil material model.
 - * Usage of more sophisticated material models typically requires more laboratory testing.
- 3) For many applications, classical methods are suitable, given the uncertainty in soil properties.
- FEM/SSA appears to hold an advantage over classical methods for problems involving seepage – as in embankment stability analysis.

5) Requirements for SSA with FEM are non-trivial.

* High-end PC or workstation
* FEM software (starting at \$2k per year for commercial licenses)
* Understanding of soil mechanics, material models and FEM.

6) The 2D SSA examples presented here took between 15 minutes and a few hours to run on an engineering workstation (SGI Powerchallenge).

Presently, 3D SSA with FEM is too expensive to be feasible on PCs and workstations. In the future, this may become feasible as computing power advances.