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SUMMARY

A framework alternative to that of classical slope stability analysis is developed, wherein the soil mass is
treated as a continuum and in-situ soil stresses and strengths are computed accurately using inelastic "nite
element methods with general constitutive models. Within this framework, two alternative methods of
stability analysis are presented. In the "rst, the strength characteristics of the soil mass are held constant, and
the gravitational loading on the slope system is increased until failure is initiated by well-de"ned mecha-
nisms. In the second approach, the gravity loading on the slope system is held constant, while the strength
parameters of the soil mass are gradually decreased until well-de"ned failure mechanisms develop. Details
on applying both of the proposed methods, and comparisons of their characteristics on a number of solved
example problems are presented. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

The objective of this paper is to brie#y develop and compare the characteristics of two com-
plementary approaches to earthen slope stability analysis which are amenable to usage in
a general purpose Finite Element Method (FEM) framework. A fuller comparison and exposition
of the two methods can be found in Reference.1 The essence of the "rst method is based on
monotonically increasing the gravity loading on soil slopes of "xed strength characteristics until
well-de"ned failure mechanisms develop, while the essence of the second approach involves
holding the gravity loading on slope systems constant, while reducing the strength characteristics
of the soil mass until limit state mechanisms develop. Once the basic methods are developed, their
basic characteristics are explored through a number of slope stability test problems. Both
methods appear to be more general and robust than classical slip-surface-type slope stability
analysis techniques which generally assume classical Mohr}Coulomb soil behaviours.

In classical Slope Stability Analysis (SSA), a sloped soil mass is subjected to realistic self-weight
loading and the objective is to "nd the continuous surface passing through the soil mass, which
has the minimum Factor of Safety (FS) against sliding or shear failure. It is noted that
computation of factors of safety against failure in accordance with this approach can be
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a challenging proposition even for homogeneous soil deposits in that it involves in situ computa-
tion of soil stresses, and shear strengths which are generally dependent upon the in situ stress.
Furthermore, it is well established that the search for the continuous critical surface !* which has
the minimal FS is nontrivial.2 A variety of approximate and specialized methods dating from the
late 19th to mid 20th century exist for computing for computing global factors of safety
depending upon the slope con"guration height, and steepness, as well as the constitutive
properties of the soil which comprise the slope. A thorough review of many of these classical
methods of slope stability analysis methods has been provided by Nash.3 The limitations of many
of these classical approaches are that Mohr}Coulomb shear strength behaviour with a "xed
friction angle is typically assumed, and that the computation of stresses and dependent shear
strengths in the soil mass is approximate due to application of simple statistics methods to
inherently statically indeterminate continuum mechanics problems. To reduce the manual trial
and error associated with these techniques, as with slice methods, a number of engineering
software packages have been developed, but most still compute soil stresses and strengths
approximately using variations of simple statics methods.

In recent years, "nite element methods have been increasingly used to predict both displace-
ments and stresses in statically indeterminate slopes, dams and embankments.4 The potentially
attractive aspects of computing slope stabilities within a continuum/FEM framework are many:
(1) the equilibrium stresses, strains, and the associated shear strengths in the soil mass can be
computed very accurately; (2) general soil material models (including Mohr}Coulomb and
numerous others) can be employed; (3) the method can be applied with complex slope co"gura-
tions and soil deposits in two or three dimensions to model virtually all types of mechanisms;5
(4) the critical failure mechanism developed can be extremely general, and need not be simple
circular or logarithmic spiral arcs; and (5) the method can be extended to account for seepage-
induced failures, brittle soil behaviours, random "eld soil properties, and engineering interven-
tions such as geo-textiles, soil nailing, drains and retaining walls.

When using "nite element methods for slope stability analysis, however, there are a number of
possibilities. One approach demonstrated by Huang6 used elastic FEM analysis to compute the
stress "eld in an earthen dam with steady-state seepage. Based on computed stress "eld and
pore-pressure "elds, which were assumed to be de-coupled, contours of the local factor safety
against shear failure with respect to a general criterion were then computed and displayed.
Interestingly, the results of such analysis by Huang6 demonstrated that contours of minimal local
factors of safety against shear failure do not necessarily constitute potential failure mechanisms
since they are often fully contained within the soil mass. Since contours of minimal local factors of
safety against shear failure do not necessarily represent plausible slope or embankment failure
mechanisms, it is often necessary to use inelastic "nite element methods to fully initiate and "nd
the critical failure mechanisms and their associated factors of safety.

Using inelastic computational methods to perform slope stability analysis, two complementary
techniques have been employed to date:

1. a slope model of "xed soil shear strengths is utilized, and gravity loading on the model is
gradually increased until critical failure mechanisms develop;7 and

2. "xed gravity loading is applied to a slope model, and the shear strengths of the comprising
soils are gradually reduced until critical failure mechanisms develop.8,9

The "rst approach (or the gravity loading to failure method) has been demonstrated previously
by Chen and Mizuno7 for the case of cohesive soils but not for the case of strictly frictional soils.

1360 SHORT COMMUNICATIONS

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 1359}1371 (1999)



The second approach (or the strength-reducing method) has recently been applied by Gri$ths
and Kidger8 for slopes of homogeneous, purely cohesive soil modelled with von Mises elastoplas-
ticity. Earlier, Zienkiewicz et al.9 employed similar methods using viscoplastic Mohr}Coulomb
soil models. Since the preceding works involved manual trial and error on the part of the analyst,
in this work, algorithms for automated limit state analysis are implemented. In addition, the
comparative validity and e$cacy of the proposed methods is examined in the context of speci"c
examples.

Since the intent of the present work is to establish a basic framework for computing the
initiation of slope stabilities, and not necessarily the accurate modeling of post-initiation behav-
iours, a small-deformation continuum formulation with non-softening elasto-plastic material
models is utilized here. The modelling of post-stability behaviours by including large deforma-
tion, material softening, and contact e!ects are issues that can be addressed in future extensions of
this framework. The methods being investigated here can be applied for both soils treated as
a single-phase continuum, or soils treated as a multi-phase #uid}solid continuum. To highlight
the essentials of the methods, attention is con"ned here to treatment of the soil as a single-phase
continuum. The case of embankment failures with pore-pressure di!usion e!ects taken into
account is treated as an extension of this work in Reference 10 and the treatment of slope failures
under activity steady-state uncon"ned seepage is treated in Reference.1

2. DUAL METHODS OF SLOPE STABILITY ANALYSIS METHOD

2.1. The basic analysis problem

In the following, the response of soil slopes subjected to gravitational loading will be treated as
general materially non-linear elliptic boundary value problems. To demonstrate the essential
features of the method, the soil mass is here treated as either &fully drained'with no seepage forces,
or &fully undrained.' In both treatments we will, for simplicity, be concerned only with total
stresses and skeletal displacements, and not with pore pressure and seepage e!ects. (In other
related works, pore pressure e!ects and seepage are explicitly taken into account.1,10 With
seepage and pore pressure e!ects assumed negligible, and the additional assumption of inviscid
soil constitutive models, the problems to be solved here feature no physical time dependence.
Therefore, quasi-static elliptic boundary value problems will be solved to analyse the stability of
the slope. Any and all time dependence in the problems being solved is simply for the application
of time-based parametric loads.

Starting with continuum equilibrium, standard variational arguments can be applied to
derive non-linear "nite element equations governing the equilibrium of the soil mass as at the
Ath node and (n#1)th time step:
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In general, equation (1) represents a set of non-linear algebraic equilibrium equations which must
be solved in an iterative fashion for the incremental displacement "eld (*u)

n`1
"u

n`1
!u

n
for

each time step of the analysis problem. Numerous options exist for solving non-linear systems
such as equations (1) and (2), a few of which are reviewed in detail in Reference 11 but here
a Newton's method with line searching is used.12

In equation (2), B
A

represents the nodal strain displacement matrix (B
A
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A
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denotes the nodal basis function for the Ath node. The quantity (f */5
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forces on node A at time t

n`1
due to stresses in the soil mass, and (f%95

A
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represents the external
forces applied to node A at time t

n`1
due to body force and traction-type loads. As long as

balance can be achieved between the internal soil stresses and external forces, then the slope will
be stable with respect to the applied loads, and solutions to equation (1) will exist. When this
balance can no longer be achieved, however, due to "nite soil strength and increased gravity
loading, then the slope will become unstable and on the verge of failure, since equilibrium
solutions satisfying equation (1) will not exist.

2.2. Limit analysis via gravity increase method

For the gravity-induced method of slope stability analysis problems, the objective is to steadily
increase the gravitational loading applied to the soil mass until the slope becomes unstable, and
equilibrium solutions satisfying equation (1) can no longer be obtained. By monotonically
increasing the magnitude of g(t), the magnitude of applied external forces f%95 [equation (2b)]
increase until the soil mass reaches the limit of its resistive capacity (or strength) and is on the
verge of unstable failure.

To avoid unnecessary manual intervention in the limit state analysis problem, the solution
algorithm of Figure 1 is employed since it reliably and automatically "nds the limit state
(assuming it exists).s In the proposed gravity stability analysis method, the gravitational vector is
prescribed as a function of time as follows:

g(t)"g5 ) t (3)

where g5 is a prescribed vector specifying the direction of gravity loading and its rate of increase
with time, and t is a parametric time variable. By prescribing the applied gravitational acceler-
ation vector g(t) in this manner, the limit analysis problem reduces simply to "nding the largest
time t"t

-*.*5
for which a global equilibrium solution of equation (1) exists, and the limiting

gravitational acceleration on the system is then merely

g
-*.*5

"g5 ) t
-*.*5

(4)

The algorithm of Figure 1 is merely one in which the time t
-*.*5

, which is not known a priori, is
approached asymptotically. For values of t't

-*.*5
solution of equation (1) will not exist. Thus if

during the (n#1)th time step the robust Newton's Method with line-searching fails to "nd
a solution of equation (1), it is reasonably assumed that a solution does not exist and that
t
n`1

't
-*.*5

. In this case, the time step *t is quartered and the algorithm reverts to time t
n
which is

the most recent (or largest) time for which it is known that a solution to equation (1) exists. In the

sFor linear elastic soils, limit states will clearly not exist. For soils with "nite shear strengths, limits tates will typically
exist. Further discussion on existence of limit states is presented in Section 4.
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Figure 1. Automated limit state analysis algorithm

algorithm of Figure 1, the authors typically set the parameter m
.!9

between 10 and 20, with larger
values leading to more precise calculations of t

-*.*5
, and hence g

-*.*5
.

In accordance with the fact that this method uses gravitational loading to induce slope failures,
the proposed gravity-based factor of safety against slope failure is simply

(FS)
'*
"

g
-*.*5

g
!#56!-

(5)

in which g
!#56!-

is an appropriate and representative actual gravitational acceleration for the slope
being analysed (i.e. g

!#56!-
K9)81 ms~2"32)2 ft s~2). Clearly, the higher the computed factor of

safety, the more stable a slope is against failure, with values less than unity indicating that a given
slope is unstable under actual gravity loading.

2.3. Limit analysis via the strength reduction method

With the strength reduction method of slope stability analysis, the basic form of the continuum
equilibrium problem and the corresponding "nite element equilibrium problem for each time step
of analysis are essentially the same as for the gravity loading method of slope stability analysis.
Accordingly, in the strength-reduction method, the algorithm used to solve the resulting system of
non-linear "nite element equations is also Newton's Method with line searching. The primary
di!erence that comes about with the strength-reducing method is that with time, the shear
strength parameters of the soil mass are monotonically decreased. The shear strength parameters
of the soil mass can be reduced quite easily by utilizing a monotonically decreasing time function
to govern the shear strength properties of the soil mass. Thus a typical shear strength parameter
> for the soil mass could be governed in time as follows:

>(t)">
"!4%-*/% *

f (t) (6)

where >
"!4%-*/%

represents the estimated actual soil strength. For such a problem, actual gravity
loading is applied to the soil mass at the outset of the problem, and the strength values of the soils
comprising the slope, which are initially much higher than their true values, are monotonically
reduced until solutions of the equilibrium problem (1) can no longer be found. As with the gravity
loading method of stability analysis, the objective is "nd the maximum t"t

-*.*5
for which
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a solution exists using the algorithm of Figure 1. Once this value is found, the computed factor of
safety for the slope system for the strength reduction method is simply

(FS)
43
"

>
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-*.*5

"

1

f (t
-*.*5

)
(7)

3. A NONLINEAR DRUCKER}PRAGER ELASTO-PLASTICITY MODEL

3.1. Model description

While the proposed slope stability analysis methods described above can be applied with
a wide variety of soil plasticity models, they will generally converge more rapidly and produce
more meaningful results when used with realistic soil models that feature continuous and
smoothly di!erentiable rate constitutive equations. To e$ciently and realistically model coupling
between tensile, compressive, and shearing modes of ductile soil plasticity, a non-linear
Drucker}Prager model with saturating incremental frictional e!ects (Figure 2) is employed in the
calculations that follow in Section 4. In this section, the basic constitutive equations for this
relatively simply soil model are brie#y discussed.

Utilizing the assumption of small deformations, the strain tensor admits the additive elas-
tic}plastic decomposition

e"e%#e1 (8)

where e, e%, e1 are, respectively, the total, elastic, and plastic strain tensors. The small deformation
incremental stress response of the soil is assumed to be related to the strain response by

r5 "C : (e5!e5 1) (9)

where C is a fourth-order isotropic tensor of elastic moduli C"K1?1#2kI
$%7

, in which K is the
bulk modulus of the soil and k is the shear modulus. Using standard continuum mechanics
notation, tensile stresses are taken as positive, and compressive stresses as negative.

In stress space, the elastic domain is bounded by a single non-hardening yield surface whose
mathematical form is

f (r)"EsE!Ma#j(1!exp[bI
1
])N"0 (10)

where s is the deviatoric stress tensor and EsE2"1
2
J
2
; I

1
,tr(r) is the "rst invariant of the stress

tensor and is negative in compression and positive in tension; and a, j, and b are soil shear-
strength parameters. For large compressive con"ning stresses (I

1
P!R) the shear f (r)"a#j

and is thus constant, thus leading to the preceding statement that this model features saturation
of incremental frictional e!ect. Loading and unloading criteria for this plasticity model are
speci"ed by the Karesh}Kuhn}Tucker conditions

f)0, c5 *0, c5 f"0 (11)

with plastic consistency expressed by c5 f 5"0. The #ow rule for this model is associated, and thus

e5 1"c5
L f

Lp
(12)

This soil plasticity model is employed for the calculations of Section 4 using a fully implicit
Backward Euler integration algorithm along with consistent tangent operators.13
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Figure 2. Yield surface of Drucker}Prager plasticity model employed with data used to select parameters for a sandy soil

The Mohr}Coulomb yield criterion has a long history of usage in classical soil shear
strength characteristics in terms of the Mohr}Coulomb cohesion c and friction and /. Here, the
non-linear Drucker}Prager failure envelope with saturating frictional e!ects is employed for two
reasons:

1. It is more realistic in that it predicts a saturation of soil strength with increasing e!ective
con"ning stresses. The classical Mohr}Coulomb model unrealistically predicts no satura-
tion of shear strength with increasing e!ective normal con"ning stresses.

2. The Drucker}Prager model does not su!er from the non-smooth corner regions that
generally a%ict Mohr}Coulomb-type soil models. While implementations of Mohr}
Coulomb models have been developed wherein corners in the yield surface are
smoothed, for computational implementation and numerical performance reasons, a num-
ber of investigators prefer Drucker}Prager and cap model-type plasticity models due to
the relative smoothness of the yield surface, the corresponding lack of sharp corners, the
ability to model ductile tensile failure, and the coupling between shear failure compressive
plasticity.

So that the results of the present work can be compared with results of classical slope-stability
analysis methods wherein the Mohr}Coulomb failure criterion is routinely considered, the yield
criterion in equation (10) is re-written by taking its Taylor series expansion about I

1
"0:

f (r)"EsE!Ga!hI
1C1#
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1
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6
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where hGjb is the slope of the envelope at I
1
"0. For small values of I

1
(i.e. bI

1
@1), the

linearized form of the yield function is

f (r)"EsE!Ma!hI
1
N (14)

which is simply a variation of linear Ducker}Prager yield criterion. A correspondence can be
established between the two parameters a and h of the linearized Drucker}Prager envelope (14)
and the two parameters c and / of the Mohr}Coulomb envelope. For example, translations from
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Mohr}Coulomb parameters to linear Drucker}Prager parameters have been provided in Refer-
ence14 as

a"
J2c

(1#4/3 tan2 /)1@2
h"

J2 tan /

3 (1#4/3 tan2 /)1@2
(15

These equations can be inverted to provided a translation from linear Drucker}Prager envelope
parameters to Mohr}Coulomb which will be used in the following section

c"
a

J2A1#
4

3
tan2 /B1@2, tan /"

3

J2
h (1!6h2)~1@2 (16)

3.2. Soil model parameters

So, that the demonstrative slope stability computations of the following section will be fairly
realistic, parameters for the soil plasticity model are chosen carefully. The example computations
of the next section are performed with two soil types: a cohesive, undrained clay, and a cohesion-
less frictional sand. The Drucker}Prager material model parameters for these soil types are listed
in Table I. It is worth noting here that the shear strength behaviour for the sand di!ers quite
substantially from that predicted using a classical Mohr}Coulomb model. Experimental
measurements of sand shear strength properties presented in Reference 15 were used to select the
model parameters j and b. The agreement between the model response and the published
experimental soil response is shown in Figure 2.

4. COMPARATIVE EXAMPLES

In the examples that follow, the intention is to compare the relative performance characteristics of
the gravity and strength-reduction methods of slope stability analysis. The example problems
include soil slopes having both purely cohesive soils, purely frictional soils, and heterogeneous soils.

4.1. Non-frictional, purely cohesive soils

Both the strength reduction and gravity methods of slope stability analysis are applied here to
a sloped soil mass of uniform cohesive clay soil properties listed in Table I, and having a height of

Table I. Clay and sand materials parameters used in slope stability computations

Material parameter Clay values Sandy values

o 1800 kg/m3 1800 kg/m3
k 2)00 MPa 12)0 MPa
K 3)33 MPa 20)0 MPa
a 428! and 228 kPa" 0)03 kPa
j 0)0 153 kPa
b 3)48]10~6 Pa~1 3)48]10~6 Pa~1

!Used in Section 4.1
"Used in Section 4.3
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Figure 3. Deformed con"gurations showing computed failure mechanisms for a 30 m clay slope with a repose angle of
493. Both the strength-reduction and gravity-increase methods of stability analysis produce mechanisms and stability

factors that are virtually identical

20 m, and a 303 angle of repose. The FEM mesh of the soil mass is constructed using 1125 bilinear
quadrilateral continuum "nite elements. In the gravity increase method of SSA, vertical gravity
loading on the soil mass is monotonically increased until at D g D"29)626 m s~2, the slope is on the
verge of instability, with the dual mechanisms of failure being those shown in Figure 3. The
computed gravitational factor of safety for this slope is (FS)

'*
"3)04. Alternatively, in the strength-

reduction method, standard gravitational loading is applied to the soil mass, and the cohesion
parameter a is gradually reduced until the slope develops a fully initiated mechanism at a"
141 kPa which provides a virtually identical computed factor of safety (FS)

43
for the slope of 3)03. It

should be noted that the Fellenius}Taylor method16,17 for this slope (with a corresponding Mohr}
Coulomb cohesion of 302)6 kPa) provides a traditional factor of safety against slope failure of 3)17.

Here both of the continuum/FEM methods of SSA predict a stable slope, with virtually
identical computed values for factor of safety against failure, which also compare quite favourably
with those computed using the Fellenius}Taylor solution. It is noted, however, that whereas for
the given slope con"guration the Fellenius}Taylor solution is unable to provide de"nite mecha-
nism for slope failure, the proposed stability analysis techniques predict two simultaneous
mechanisms, one a partially developed toe failure, and the other a more fully developed base
failure. This information is very useful in a practical terms, sine it indicates which mechanisms
should be considered in engineering interventions to increase the stability of the slope.

A logical question that occur in conducting slope stability analysis with the proposed con-
tinuum/FE method is how sensitive the computed factors of safety and failure mechanisms might
be with respect to mesh re"nement or coarsening. The same stability analysis problems were thus
repeated here with FEM meshes that are twice as "ne (4450 bilinear continuum elements) as the
meshes shown in Figure 3. With the "ne meshes (not shown here, but in Reference 1, both of the
methods of SSA still produced dual failure mechanisms identical to those achieved with the mesh
of Figure 3, and the computed factors of safety are virtually identical (3)02 with the "ne mesh) to
those computed with the coarse mesh. This simple test indicates that for the material models
considered, which do not feature softening behaviours, the predicted slope stability results are
convergent with mesh re"nement.

4.2. Analysis with purely frictional soils

While the preceding examples utilized strictly cohesive, non-frictional soil behaviours, the
proposed stability methods can easily be utilized with frictional soils as well. Here the stability of
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Figure 4. Limit state mechanisms and stability factors computed for a 203 purely sand slope of varying heights using the
strength-reducing and gravity-increase methods

a sloped sandy soil deposit having an angle or respose of 203, is considered for slope heights of 6,
12, 30, and 60 m. The results of stability analysis for both the strength-reduction and gravity-
loading methods are shown in Figure 4 and indicate that for small slope heights, the strength-
reduction method produces stability factors that are smaller (and thus more conservative) than
the gravity-loading method of analysis. At larger slope height, both methods tend to give stability
factors and failure mechanisms that are somewhat closer to each other.

For shallow slopes comprised of frictional soils as shown here, special care must be taken when
using the gravity-increase method of analysis. If one were to use a traditional Mohr}Coulomb
failure criterion with a su$ciently large friction angle /, or a linear Drucker}Prager failure
criterion such as that of equation (14) with a su$ciently large slope h, then with increasing gravity
loading, the mean normal con"ning stresses in the soil would increase faster than the shear
stresses. Under these circumstances, the rate of strength gain in the soil under increasing gravity
loading would exceed the rate of shear stress increase, and the slope would never develop a failure
mechanism. In other words, for unrealistic soil models, it is possible that no limit state could exist
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for a given combination of slope angle and soil friction angle. To avoid this possibility,
the gravity-based method of slope stability analysis should generally be employed with
more realistic soil models (such as that in Section 3) that capture the realistic saturation of
incremental frictional e!ects that invariably occur at high con"ning stresses. It should be noted
that the strength reducing method of stability analysis is more robust in this regard, since it will
generally yield a failure mechanism even with Mohr}Coulomb and linear Drucker}Prager failure
criteria.

4.3. Analysis with heterogeneous soil deposits

One of the possible advantages of the proposed slope stability frame work is that is can be
applied with a variety of soil conditions which can result in virtually any type of failure
mechanism, and not necessarily circular arcs as are often considered in classical slope stability
analysis. As an example, both the strength reduction and gravity-increase approaches are
employed here to consider the stability of layered soils comprising a slope of height 30 m and an
angle of repose of 303. The computed stability factors for this slope system and the associated
slope failure mechanisms are shown in Figure 5. Two points of interest can be highlighted from
these results:

1. With both the strength-reduction and gravity methods of analysis, the failure mechanisms
shown are quite unusual, involving both interface shear failure along the sand and clay
layers, as well as a rotational failure along a circular arc.

2. The computed stability factors produced by the two methods (gravity and strength-reduc-
tion) are relatively close in value, and neither is always more or less conservative than the
other.

5. DISCUSSION AND SUMMARY

In the slope stability analysis frameworks presented, internal soil stresses and shear strength
behaviours inslopes are computed accurately using well-established non-linear incremental "nite
element methods which are known to converge to exact values with increasing mesh and
load-step re"nement. An attractive aspect of both the gravity-based framework and the strength-
reduction framework is that they use virtually identical methods of analysis, and ideas to generate
limit state failure mechanisms. In the gravity-based method of analysis, only a singly, simple,
gravity loading parameter needs to be monotonically increased to induce failure of the slope
model, whereas with the strength-reduction method only a single load-time function can be used
to simultaneously reduce the shear strengths of all soils comprising a slope system. Both methods
are capable of producing one or more active failure mechanisms at the computed limit state.

At present, the cost of slope stability analysis in the continuum/FEM frame work is quite
reasonable and further advances in computing hardware technology should further improve the
economy of the method. The representative computations shown in Section 4 each took
approximately 30 cpu-min to complete on a Silicon Graphics Powerchallenge workstation using
R8000 processors.t With new generations of workstation and personal computing processors, it is

tThe speci"c research subroutines and equation solvers used for these computations have not yet been optimized for
performance on these workstations, and thus reductions of computing time by 50 per cent or more remain a strong
possibility using the methods outlined in Reference 11.
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Figure 5. Deformed con"gurations showing computed failure mechanisms and stability factors for a layered clay/sand
slope. The dark regions indicate a clay soil and the light regions a sandy soil. The slope height is 30 m and the angle of

repose is 303

reasonably expected that these analysis times will eventually fall to just a few minutes. The
creation of FEM meshes for the slope models can today be created in a matter of minutes using
commercially available pre- and post-processing packages. Hence both the gravity increase and
strength-reduction computational approaches to slope stability analysis outlined here are com-
petitive in terms of analysis time required with classical stability analysis methods based on slice
techniques. Furthermore, the computational methods presented here are signi"cantly more
general than classical slice type methods and can account for engineering interventions such as
soil nailing, retaining walls and reinforcing fabrics.

A close inspection of the computed stability factors for both the strength-reduction and
gravity-increase methods of analysis indicates that the strength-reducing method more often
provides stability factors that are more conservative (smaller), although, there are also instances
where the gravity-increase method provides more conservative stability factors. Thus, for the
total stress analysis example problems considered here, neither method demonstrated a clear
superiority over the other. When the methods are applied to treat slope stability analysis
problems involving seepage and/or pore pressure di!usion e!ects, then the methods will have
certain problems where they show de"nite strengths. For example, the gravity-increase method of
stability analysis is very well suited for analysing the stability of embankments constructed on
saturated soils depots as treated in Reference 10 since the rate of construction of the embankment
can be simulated with the rate at which gravity loading on the embankment is increased. And for
stability analysis of earthen slopes in which active, uncon"ned steady-state seepage is occurring
(as treated in Reference 1), the strength-reduction method of analysis is a natural choice.

While relatively simple, elastic-perfectly plastic soil models have been used in this e!ort, the
frameworks presented are potentially amenable to usage with brittle continuum damage soil
models that feature strain softening behaviours. With softening constitutive models, however, the
nature and di$culty of solving the equilibrium equations becomes somewhat more complicated
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due to loss of ellipticity of the boundary value problem and the introduction of shear bands.
Nevertheless, treatment of softening behaviours with these analysis frameworks is a topic worthy
of exploration since such soil characteristics could well present de-stabilizing in#uences on
earthen slopes.
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