Period #12: Bending Behavior

A. Next Topic

Chapter 4 dealt with axial loading of axial members (rods)

Chapter 5 dealt with torsional loading of axial members (shafts)

Chapters 6 and 7 deals with transverse loading of axial members (beams).

Our goal in studying beams is to quantify the internal strains and stresses in members subjected to transverse loads.

B. Beam Sign Conventions for Loads, Transverse Shears, and Bending Moments

Beams subjected to transverse loads w(x) will have internal shear forces V and bending moments M.

The sign conventions for w, V, and M are as shown below:

Loads acting upward are taken to be positive

Internal shears on cut faces that tend to cause counter-clockwise rotation are positive.

Internal bending moments that tend to cause compression of the top fibers of a beam are positive.

C. Calculation of the Shear (V) and Moment (M) distributions

A shear diagram is a graphical representation of the transverse shear force V distribution in a beam.

A moment diagram is a graphical representation of the bending moment M distribution in a beam.

Given a loading that acts on specific beam with well-defined support conditions, it is necessary to be able to compute both V(x) and M(x).

1. Relation between w and V

Consider an infinitesimal beam segment of length dx:

ENGR:2750 Mech. Def. Bodies

12.3

In words, the shear in a beam is obtained by integrating the load function.

Alternatively, the slope of the shear diagram represents the intensity of the load function.

When a discrete load acts on a beam, the shear diagram increases or decreases with that load.

2. Relation Between V and M

Consider an infinitesimal segment of a beam dx:

In words, the moment in a beam is obtained by integrating the shear.

Alternatively, the slope of moment diagram at each point represents the shear at each point

When a concentrated clockwise moment is applied to a beam, the moment distribution increases with that moment.

D. Examples

Example 12.1 Draw the shear and moment diagrams for the beam

Example 12.2. Express the internal shear and moment in terms of *x* and then draw the shear and moment diagrams.

ENGR:2750 Mech. Def. Bodies

The University of Iowa

12.10