
ENGR:2750 Mech. Def. Bodies 11.1The University of  Iowa

Period #11:  Statically Indeterminate Shafts

A. Review

B. Statically Indeterminate Shafts

Cannot simply use the equations of static equilibrium to calculate reactions or 
internal torques.

Must generally augment conditions of equilibrium with knowledge of how the 
indeterminate system deforms.
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From statics:  TA+TB=TC

Additional constraint:  B/A=0  

 

AB

ACC
B

AB

BCC
A

BCCCBACA

BCACACA

B

C

CB

C

A

AC

AB

L

LT
T

L

LT
T

LTLLT

JG

LTT

JG

LT

dx
JG

T
dx

JG

T














        ;

        

       

0/

Fig. 11.2  (a) Indeterminate shaft fixed at both ends; and (b) the free-body diagram.
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C. Shafts of Solid, Non-circular Cross-Sections (Textbook, Section 5.6)

To this point, we’ve been concerned with shafts that have circular cross-sections.

What about shafts with non-circular cross-sections?

Consider the torsion of a rubber shaft with a square cross-section shown below (Fig. 11.3):

Note that the white square drawn on the square shaft “warps”.  The edges that were 
originally straight, become curved.

(a) undeformed square shaft (b) deformed square shaft when subjected to a torque

Figure 11.3  Twisting of rubber shaft with square cross-section 
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With non-circular cross-sections, the shear stress distribution over the cross-
section cannot  vary linearly with radial distance from the center (Fig. 11.4a).

This leads to warping of the shaft cross-section (Fig. 11.4b).

(a) (b)

Fig. 11.4  Noncircular shaft response to torsion
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Although the torsion formulae do not apply to shafts with non-circular cross-sections, the relevant 
properties of three sections are as indicated in the table below.

Table 11.1.  Properties of non-circular 
sections.



The University of  IowaENGR:2750 Mech. Def. Bodies 11.6

D. Thin-walled Closed Section Shafts (Textbook 5.7)

Though you will not be responsible for this material, be aware that thin-walled, closed 
cross-sections can be treated using the concept of shear flow. 

Fig. 11.5.  Examples of thin-walled closed sections



E.  Examples
Example 11.1:  The shaft is made from a 
solid steel section AB and a tubular portion 
made of steel and having a brass core. If it 
is fixed to a rigid support at A, and a 
torque of T=50lb.ft is applied to it at C, 
determine the angle of twist that occurs at 
C and compute the maximum shear and 
maximum shear strain in the brass and 
steel. Take

ksiGst )10(5.11 3 ksiGbr )10(6.5 3

, 
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Example 11.2.  The two 3-ft-long shafts are 
made of 2014-T6 aluminum.  Each has a 
diameter of 1.5in. and they are connected 
using the gears fixed to their ends.  Their 
other ends are attached to fixed supports at A 
and B.  They are also supported by bearings 
at C and D, which allow free rotation of the 
shafts about their axes.  If a torque of 600 lb-
ft is applied to the top gear as shown, 
determine the maximum shear stress in each 
shaft.
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Example 11.3: The A-36 steel shaft is made from two 
segments: AC has a diameter of 0.5in and CB has a diameter 
of 1 in. If the shaft is fixed at its ends A and B and subjected 
to a uniform distributed torque of 60lb.in/in along segment 
CB, determine the absolute maximum shear stress in the 
shaft.




