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Period #6: Material Properties

A. Context

We have introduced two concepts thus far:

Loads applied to structures result in internal stresses.
i.e. the stress tensor (Fig. 6.1)

Deformation on the material scale is quantified by strain.
i.e. the strain tensor (Fig. 6.2)

Material properties and constitutive relations provide the critically 
important connection between stress and strain in materials.
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Fig. 6.1.  Meaning of the stress tensor components
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Fig. 6.2.  Meaning of the strain tensor components
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B. General Material Properties Relating Stress and Strain

Common Material Tests

Fig. 6.3  Material properties are measured in a variety of mechanical tests.  
Some of the common mechanical tests performed on materials are:  a) the 
tension test; b) the compression test; and c) the torsion test.
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

e

When a monotonic tension test to failure is performed on a mild untreated steel specimen, one 
typically sees the type of result shown below.

The result would look quite different for different material types (aluminum, FRP composites, 
bone, muscle, concrete, wood, etc.)

Features of the stress-strain diagram
• Elastic modulus: 
• Yield stress:
• Ultimate stress
• Fracture or Breaking stress
• Ductility
• Modulus of toughness
• Modulus of resilience
• Strain energy

Types of material behavior:

• Elastic behavior
• Linear behavior
• Plastic behavior
• Hardening behavior
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C. Models for Linear Elastic Material Behavior

Hooke’s Law for linear elastic materials (not necessarily isotropic)

Hooke’s Law for isotropic, linear elastic materials
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Special cases of Hooke’s Law (for linear elastic, isotropic materials)

Uniaxial Stress State (in the x-direction). All other stresses vanish

Here, is known as the Poisson’s ratio.

Pure Shear

where  is known as the shear modulus
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D. Example Problems

Example #6.1.  The stress-strain diagram for a steel alloy having 
an initial diameter of 12.5 mm and an initial gauge length of 
50mm is provided in the figure.  Determine the approximate 
modulus of elasticity for the material, the load on the specimen 
that causes yielding, and the ultimate load that the specimen 
will support
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Example #6.2.  The stress-strain diagram for 
polyethylene, which is used to sheath coaxial cables, is 
determined from testing a specimen that has a gauge 
length of 10 in.  If a load P on the specimen develops a 
strain of e = 0.024, determine the approximate length of 
the specimen, measured between the gauge points, 
when the load is removed.  Assume the specimen 
recovers elastically.
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Example #6.3.  A plug has a diameter of 30mm and fits within a rigid sleeve having an inner 
diameter of 32mm.  Both the plug and the sleeve are 50mm long.  Determine the axial stress 
 that must be applied to the plug so that it just makes contact with the sleeve.  Also, how far 
must the plug be compressed downward in order to do this?  The plug is made of a material 
for which E=5 MPa, and  = 0.45.
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Example #6.4: A shear spring is made from two blocks of 
rubber, each having a height h, width b, and thickness a.  The 
blocks are bonded to three plates as shown.  If the plates are 
rigid and the shear modulus of the rubber is G, determine the 
displacement of plate A if a vertical load P is applied to this 
plate.  Assume that the displacement is small so that 

tana a g g 

.  




