Period #6: Material Properties

A. Context
We have introduced two concepts thus far:

Loads applied to structures result in internal stresses.
i.e. the stress tensor (Fig. 6.1)

Deformation on the material scale is quantified by strain.
i.e. the strain tensor (Fig. 6.2)

Material properties and constitutive relations provide the critically
important connection between stress and strain in materials.
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Fig. 6.1. Meaning of the stress tensor components
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Fig. 6.2. Meaning of the strain tensor components
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B. General Material Properties Relating Stress and Strain

Common Material Tests

2) b) )

Fig. 6.3 Material properties are measured in a variety of mechanical tests.
Some of the common mechanical tests performed on materials are: a) the
tension test; b) the compression test; and c) the torsion test.
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When a monotonic tension test to failure is performed on a mild untreated steel specimen, one
typically sees the type of result shown below.

The result would look quite different for different material types (aluminum, FRP composites,
bone, muscle, concrete, wood, etc.)

/\ Features of the stress-strain diagram

* Elastic modulus:

* Yield stress:

* Ultimate stress

*  Fracture or Breaking stress
*  Ductility

*  Modulus of toughness

*  Modulus of resilience

* Strain energy

v

€

Types of material behavior:

* Elastic behavior
* Linear behavior
* Plastic behavior
* Hardening behavior
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C. Models for Linear Elastic Material Behavior

Hooke’s Law for linear elastic materials (not necessarily isotropic)

o1 [C. C. C. C. C. C.llTe T XX Sy S Sz Sy S5 S
XX 11 12 13 14 15 16 XX S S S S S S
£
Oy c, C, C,; C, C,. C, g, Yy S21 S22 S23 S24 st st
&
Cu | _ C, C, C,, C, C, Cix|leg, yzz _[ P31 V32 Y33 V3 V35 V36
Ty c, C, C; C,, C,. C, Yy X Siw Sip Suz Sy Sis Sus
7, | |Cy C, Co Cu Cu Cill7v Vv | |Se1 Ss Sss Sss Sss  Sss
(7] [Ca Co Cos Coi Cos Cool |7 7] [Ser Se2 Ses Ses Ses Ses] |
Hooke’s Law for isotropic, linear elastic materials
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Special cases of Hooke’s Law (for linear elastic, isotropic materials)

Uniaxial Stress State (in the x-direction). All other stresses vanish

O-XX = E(C:XX <« 8XX = E/()-XX

ootz T Here, is known as the Poisson’s ratio.
Pure Shear
Ty = Gﬂfxy where G= E is known as the shear modulus
2(1+v)
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D. Example Problems o (MPa)

440
Example #6.1. The stress-strain diagram for a steel alloy having 40_0 ~X
an initial diameter of 12.5 mm and an initial gauge length of 360 |4
) L : ) i 3204
50mm is provided in the figure. Determine the approximate >80
modulus of elasticity for the material, the load on the specimen 240
that causes yielding, and the ultimate load that the specimen 200
will support 160
120
80
40

Y% 010 020 o030 €(mm/mm)
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Example #6.2. The stress-strain diagram for

polyethylene, which is used to sheath coaxial cables, is
determined from testing a specimen that has a gauge 5
length of 10 in. If a load P on the specimen develops a s
strain of € = 0.024, determine the approximate length of T =5
the specimen, measured between the gauge points, 3940

when the load is removed. Assume the specimen j

recovers elastically. /
1

o (ksi)

P

€ (in./in.)

0
0 0.008 0.016 0.024 0.032 0.040 0.048
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Example #6.3. A plug has a diameter of 30mm and fits within a rigid sleeve having an inner
diameter of 32mm. Both the plug and the sleeve are 50mm long. Determine the axial stress
o that must be applied to the plug so that it just makes contact with the sleeve. Also, how far
must the plug be compressed downward in order to do this? The plug is made of a material

for which E=5 MPa, and v = 0.45.
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Example #6.4: A shear spring is made from two blocks of
rubber, each having a height h, width b, and thickness a. The
blocks are bonded to three plates as shown. If the plates are
rigid and the shear modulus of the rubber is G, determine the
displacement of plate A if a vertical load P is applied to this
plate. Assume that the displacement is small so that

Jo=atany=ay
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