53:243/58:251 Computational Inelasticity College of Engineering The University of Iowa Fall Semester, 2005

Instructor:

Text:

Colby C. Swan, Assoc. Prof. 4120 Seamans Center for Engrg. Arts Phone: 335-5831 email: colby-swan@uiowa.edu www.engineering.uiowa.edu/~swan **Computational Inelasticity**

J.C. Simo and T.J.R. Hughes Springer, 1998. ISBN: 0387975209

Course Objective:

• To facilitate a detailed knowledge of implementing and testing sound inelastic material constitutive models.

Attendance policy:

• For those taking the course for credit, please check in with the instructor whenever a class period will be missed.

Grading policy:

- 70% of course grade will be determined based on work submitted in fulfillment of course assignments;
- 10% will be determined based on in-class participation in discussion and questions.
- 20% will be determined by an oral examination given during finals week.

Tentative Course Schedule:

Week of:	Торіс	Reading
		Materials
08/22 - 08/26	Overview of computational inelasticity; preliminary	Malvern, Ch. 2.
	concepts; notations of continuum mechanics.	or equivalent
08/29 - 09/02	Basic elements of continuum mechanics; stress and strain	Malvern, Ch.
	invariants and decompositions.	3,4 or
		equivalent
09/05 - 09/09	Thermodynamics of continuous media; first and second	Malvern, Ch. 5
	laws; thermodynamically admissible constitutive models.	or equivalent.
09/12 - 09/16	Classical elastoplasticity; incremental form of constitutive	Text, Ch. 1 and
	equations; Flow rules and hardening laws; Kuhn-Tucker	2.
	conditions; Softening and Hardening material behaviors.	
09/19 - 09/23	Principle of Maximum Plastic Dissipation; relations	Text, Ch. 2.
	between classical elastoplasticity and two forms of elasto-	
	viscoplasticity.	

09/26 - 09/30	Integration algorithms for incremental constitutive	Text, Ch. 3.
	equations; The generalized closest point projection return	
	mapping algorithm.	
10/03 - 10/07	Cutting plane integration algorithm; consistent tangent	Text, Ch. 3.
	operators based on linearization of the integration algorithm.	
10/10 - 10/14	Integration algorithms for classical forms of elasto-	Text, Ch. 3.
	viscoplasticity.	
10/17 - 10/21	Issues related to solution of elliptic BVPs with inelastic	Text, Ch. 4.
	material behaviors; implementation issues; Newton	
	iterations; stress, strain, and internal variable updating.	
10/24 - 10/28	Nonsmooth multisurface plasticity and viscoplasticity	Ch. 5.
10/31 -11/04		
11/07 - 11/11	Finite deformation continuum mechanics; objective	Ch. 7.
	increments; Lie derivatives; Hyperelasticity.	
11/14 - 11/18	Objective integration algorithms for incremental	Ch. 8.
	elastoplasticity at finite deformations	
11/21 - 11/25	Thanksgiving Holiday Break (no classes)	
11/28 - 12/02	Plasticity modeling at finite deformations based on	Ch. 9.
	multiplicative decomposition of F . Notion of intermediate	
	stress-free configuration.	
12/05 - 12/09	Issues in viscoelasticity.	Ch. 10.