53:139 FOUNDATIONS OF STRUCTURES

Department of Civil & Environmental Engineering

College of Engineering The University of Iowa Spring Semester, 2009

<u>Instructor</u> <u>Text</u>

Colby C. Swan, Professor
4120 Seamans Center for Engrg. Arts

Phone: 335-5831

email: colby-swan@uiowa.edu

www.engineering.uiowa.edu/~swan/courses.html

Office Hours: TR 1-2:30 pm

Principles of Foundation Engineering, 6th Ed.

Braja M. Das

Thomson-Brooks/Cole Publishers, 2006.

ISBN: 0495082465

Reference Texts (on reserve in Engineering Library)

1. *Princ. of Geotech. Engrg.*, 6^h Ed. Braja M. Das, Thomson, 2006.

- 4. *Practical Foundation Engineering Handbook*, 2nd. Ed., R.W. Brown, McGraw-Hill, 2001.
- 2. Foundations and Earth Retaining Structures, M. Budhi, John Wiley, 2008.
- M. Budni, John Wiley, 2008.
- 3. *The Engineering of Foundations* R. Salgado, McGraw-Hill, 2008.

5. Soil Strength and Slope Stability, J.M. Duncan and S.G. Wright, John Wiley, 2005.

Course Grading

Total	100%
Final Exam	_30%
Semester Project	30%
In-class participation	10%
Homework Assignments	30%

Course Learning Objectives

- 1. To extend a basic understanding of soil mechanics and structural mechanics to design of structural foundations and retaining structures.
- 2. To gain familiarity with different types of structural foundations and when each might be used.
- 3. To understand alternative types of earth retaining structures and their relative advantages and disadvantages.
- 4. To develop a physical understanding common failure mechanisms and scale effects in geotechnical engineering.
- 5. To integrate the physical understanding with accepted analysis and design techniques.
- 6. To understand how soil properties used in analysis are actually measured or estimated.

Tentative Course Schedule:

Period #	Week of:	Topic	Reading Materials
1	1/19 - 1/23	Soil Strength, Slope Stability and Seepage Effects	R1, Ch. 14; or R2,
2		Planar and Circular Failure Mechanisms	Ch. 3,4, or
3	1/26 – 1/30	Slope Stability Analysis with Methods of Slices	R3, Ch. 17; or
4		Slope Stability Analysis with Software, FEM	R5, Ch. 3, 6.
5	2/2 - 2/6	Subsurface Explorations Ch. 2, & R2, Ch. 5;	
6		Methods for obtaining specific soil parameters	or R3, Ch. 7.
7	2/9 - 2/13	Shallow Foundations, Definitions, Bearing Failures	Ch. 3
8		Terzaghi's Model for Bearing Capacity	R2, Ch. 7;
9	2/16 - 2/20	General Bearing Capacity Equations & Examples	R3, Ch. 10.
10		Sizing of Foundations; Eccentric Loads	
11	2/23 - 2/27	Settlement of Shallow Foundations on Clays and Sands	Ch. 5 & R2, Ch. 7;
12		Scale Effects in Settlements	or R3, Ch. 9.
13	3/2 - 3/6	Mat Foundations; Compensation; Rigid/Flexible	Ch. 6
14		Assumptions; Alternative Design Methods	R2, Ch. 9;
15	3/9 – 3/13	Active and Passive Earth Pressures on Retaining	Ch. 7-8;
		Structures; Stability Checks; Gravity Systems;	R2, Ch 10,11;
16		Cantilever Walls.	
17	3/23 – 3/27	Reinforced Earth Structures, Analysis and Design;	
18		Practical considerations.	
19	3/30 – 4/3	Sheetpile Walls; Construction; Modeling Assumptions;	Ch. 9 &
20		Stability Analysis; Design.	R2, Ch. 10
21	4/6 – 4/10	Types of Deep Foundations; High & Low	Ch. 11 &
22		Displacement Piles; Skin Friction; End Bearing	R2, Ch. 8;
23	4/13 – 4/17	Calculation of Pile Capacities; Pile Driving Formulae;	R3, Ch. 12-15.
24		Group Effects; Pile Caps;	
25	4/20 - 4/24	Settlements of Piles;	
26		Lateral Deflections	
27	4/27 - 5/1	Drilled Pier and Caisson Foundations	Ch. 12
28		Foundations on Collapsible Soils & Highly	Ch. 13
		Compressible Soils	
29	5/4 - 5/8	Project Presentations I	
30		Project Presentations II	
Final Exam	5/11	Final Exam Period #4, Monday 2:15-4:15pm	

Homework Assignments and Due Dates

Assignment #	Date Due	Assignment
	(Tentative)	
1	1/28	Writing assignment regarding slope failure(s)
2	2/4	Selected problems on Slope Stability, from Ref. texts.
3	2/11	Subsurface Exploration Assignment
4	2/25	Bearing Capacity of Shallow Foundations
5	3/2	Settlement of Shallow Foundations
6	3/11	Analysis/Design of Mat Foundations
7	4/1	Lateral Earth Pressures and Retaining Walls
8	4/8	Sheetpile Retaining Walls
9	4/22	Pile Foundation Capacities
10	4/29	Pile and Drilled Shaft Foundations
11	5/6	Foundations on Difficult Soils

- With the exception of Assignment #1, all homework should be submitted on engineering paper or unlined plane paper.
- Pay attention to usage of significant figures in your final answers. Reporting of answers with excessive significant figures will be penalized.
- Since the process by which you solve a problem and obtain an answer are as important as your final answer, **neatly** show the major steps in each problem so your logic and reasoning can be followed.