

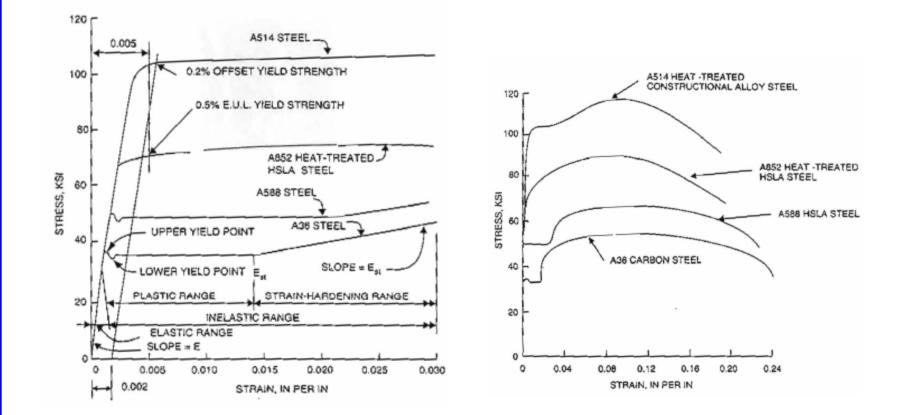
Continuous-cooling transformation diagram for a type 4340 alloy steel with superimposed cooling curves illustrating the manner in which transformation behavior during continuous cooling governs the final micro-structure. (Adapted from Mechanical Engineers' Handbook, 2nd Ed., M. Kutz, Ed. Wiley-Interscience, 1998).

53:086 Civil Engineering Materials, Metal Handout Slides

C.C. Swan The University of Iowa

Variations in properties of 1% Ni steel with varying tempering temperatures. TS denotes tensile strength; RA denotes reduction in area; and YP denotes yield point. (From O.H. Wyatt and D. Dew-Hughes (1974) Metals, Ceramics and Polymers, Cambridge University Press.)

53:086 Civil Engineering Materials, Metal Handout Slides


C.C. Swan The University of Iowa

Series Designation ^a	Турез	Series Desig- nation ^a	Types
10xx	Nonresulfurized carbon-steel grades	47.xx	1.05% Ni-0.45% Cr-0.20% Mo
11xx	Resulfurized carbon-steel grades	48xx	3.5% Ni-0.25% Mo
12xx	Rephosphorized and resulfurized Carbon-steel grades	50xx	0.28 or 0.40% Cr
13xx	1.75% Mn (51xx	0.80, 0.90, 0.95, 1.00, or 1.05% Cr
23xx	3.50% Ni	5xxxx	1.00% C-0.50, 1.00, or 1,45% Cr
25xx	5.00% Ni	61xx .	0.80 or 0.95% Cr-0.10 or 0.15% V
31xx	1.25% Ni-0.65% Cr	86xx	0.55% Ni=0.50 or 0.65% Cr=0.20% Mo
33xx	3.5% Ni-1.55% Cr	87xx	0.55% Ni-0.50% Cr-0.25% Mo
40xx	0.25% Mo	92xx	0.85% Mn-2.00% Si
41xx	0.50 or 0.95% Cr-0.12 or 0.20% Mo	93xx	3.25% Ni-1.20% Cr-0.12% Mo
43xx	1.80% Ni=0.50 or 0.80% Cr=0.25% Mo	98xx	1.00% Ni-0.80% Cr-0.25% Mo
46xx	1.55 or 1.80% Ni=0.20 or 0.25% Mo		

Standard numerical designations of plain carbon and constructional alloy steels in the AISI-SAE system. (Adapted from Mechanical Engineers' Handbook, 2nd Ed., M. Kutz, Ed. Wiley-Interscience, 1998).

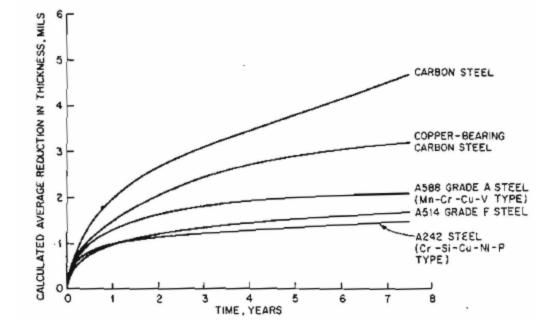
"The first figure indicates the class to which the steel belongs; 1xxx indicates a carbon steel, 2xxx a nickel steel, and 3xxx a nickel-chromium steel. In the case of alloy steels, the second figure generally indicates the approximate percentage of the principal alloying element. Usually, the last two or three figures (represented in the table by x) indicate the average carbon content in points or hundredths of 1 wt %. Thus, a nickel steel containing a 3.5% nickel and 0.30% carbon would be designated as 2330.

C.C. Swan The University of Iowa

Comparative tensile stress vs. strain curves for different types of structural steels at low strains (ϵ <.03) and at much higher strains. The curves have been modified to reflect minimum strength properties of the various steel types.

Spec	ified minimu	ASTM			Elongation.		hapes an	d plates.
ASTM designation	Plate-thickness range, in	group for structural shapes†	Yield stress, ksi	Tensile strength, ksi‡	ln 2 inš	In 8 in		
		Carbon stee	els					
A36	8 maximum over 8	1-5 1-5	36 32	58-80 58-80	23-21 23	20 20		
A573 Grade 58	1½ maximum	1	32	58-71	24	21		
Grade 65 Grade 70	1½ maximum 1½ maximum	1	35 42	65-77 70-90	23 21	20 18		
	High-	strength low-a	lloy steels					
A242	¼ maximum Over ¼ to 1½ max Over 1½ to 4 max	1 and 2 3 4 and 5	50 46 42	70 67 63	21 21 21	18 18 18		
A588	4 maximum Over 4 to 5 max Over 5 to 8 max	1-5 1-5 1-5	50 46 42	70 67 63	21 21 21	18 18		
A572 Grade 42	6 maximum	1-5	42	60	24	20		
Grade 50 Grade 60	4 maximum 1¼ maximum	15 1 and 2	50 60	65 75	21 18	18 16	ASTM designation	Plate-thick range, i
Grade 65	1¼ maximum	1	65	80	17	15		. H
	Heat-trea	ted carbon an	d HSLA st	eels			A514	2½ maximun
A633								Over 21/2 to 8
Grade A Grade C	4 maximum Over 21/2 to 4 max	ę Ę	42 50	63-83 70-90	23 23	18 18		ving are approxim
Grade D	Over 21/2 to 4 max	Ŷ	50	70-90	23	18		tulus of clasticity- tr modulus11 ×
Grade E	4 maximum	1	60	80-100	23	18	Pois	son's ratio-0.30.
	Over 4 to 6 max	1	55	75-95	23	18	Ultu	d stress in shear- nate strength in s
A678 Grade A	1½ maximum	9	50	70-90	22	_	to +1	ficient of thermal
Grade B	21/2 maximum	ŕ	60	80-100	22	_		sity-490 lb/ft ³ .
Grade C	1/4 maximum	Ŷ	75	95-115	19	_	+See ASTN	A A6 for structure
	Over ¾ to 11/2 max	1	70	90-110	19	_		o values are show num elongation va
	Over 11/2 to 2 max	1	65	85-105	19	_		. Where two val
Grade D	3 maximum	P	75	90-110	18		second for s	
A852	4 maximum	q	70	90-110	19	_	INot applie	Laole.

53:086 Civil Engineering Materials, Metal Handout Slides


Elongation. % ASTM group for Yield Tensile In Plate-thickness structural stress. strength, In ksi‡ 2 in§ 8 in shapes† ksi range, in . Heat-treated constructional alloy steels 100 110-130 18 4 maximum P 90 100 - 13016 ver 21/2 to 6 max. ş are approximate values for all the steels: of clasticity-29 × 103 ksi. dulus-11 × 103 ksi. ratio-0.30. ass in shear-0.57 times yield stress in tension. strength in shear-3 to % times tensile strength. nt of thermal expansion- -6.5×10^{-6} in per in per deg F for temperature range -50 -490 lb/ft*. for structural shape group classification. ues are shown for tensile strength, the first is minimum and the second is maximum.

The minimum elongation values are modified for some thicknesses in accordance with the specification or the steel. Where two values are shown for the elongation in 2 in, the first is for plates and the econd for shapes.

C.C. Swan The University of Iowa

	Aluminum	Steel	Stainless steel
Average weight density (kg m ⁻³)	2700	7850	7900
Melting point (°C)	658	1450-1530	1450
Linear thermal expansion coefficient (°C ⁻¹)	24×10 ⁻⁶	12×10^{-6}	17.3×10 ⁻⁶
Specific heat (cal g ⁻¹)	0.225	0.12	0.12
Thermal conductivity (cal cm s °C) Electrical resistivity	0.52	0.062	0.035
(μΩ cm)	2.84	15.5	70
Young's modulus (N mm ⁻²)	68 500	206 000	206 000

Comparative room temperature physical properties of aluminum, steel, and stainless steel

Comparative rate of dry corrosion curves for structural steels in an industrial atmosphere. (From R.L. Brockenbrough and B.G. Johnston, USS Steel Design Manual, R.L. Brockenbrough & Associates, Inc., Pittsburgh, PA).

C.C. Swan The University of Iowa