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Period #11 Notes: MECHANICS OF PORTLAND CEMENT CONCRETE

A. Brief Overview 

Portland cement concrete is a composite material consisting of aggregate particles and the 
hydrated cement paste matrix that binds them together. The mass density, stiffness, and 
strength properties of portland cement concrete (pcc) are thus functionally dependent on the 
properties of both the matrix material (i.e. the hcp) and the reinforcement material (the 
aggregate).   In this course, we study at least three composite material systems:  (1) pcc;        
(2) asphalt cement concrete (acc); and (3) fiber-reinforced plastics (FRPs).  Since pcc is the first 
composite material on this list, we’ll have to begin by introducing some basic ideas that apply to 
all composite materials. 

B. Mass Density and Volume Fractions

When heavy materials are used in composites, the mass density of the composite increases, and 
vice versa. 

Consider the schematic of the composite shown in 
Fig. 11.1 that consists of two materials:  
(1) a particulate reinforcing phase (r); and 
(2) the continuous matrix phase (m).
The total volume of the composite sample shown 
can be decomposed into that of the particulate 
reinforcing phase, and that of the continuous matrix phase.

Fig. 11.1.  Representative volume element 
of a two-phased composite material.
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If one takes the volume equation (11.1) and divides through by the total volume V, the 
following equation results:

It is common to discuss the composition of composite materials in terms of the volume 
fractions of the reinforcing phase and the matrix phase.

Generally in pcc, the aggregate volume fraction is between 60% and 80%, and the matrix 
volume fraction between 20% and 40%.

The total mass of a composite material is the sum of the masses of the reinforcement and 
matrix phases.

The mass density of the composite is the total mass per total unit volume:
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C. Effective Stiffness of Composites

While the effective mass density of a composite is directly expressed by (11.4), it is much less 
straightforward to express the effective stiffness of a composite in terms of the stiffnesses and 
volume fractions of the constituent phases.  For this reason, there are a variety of different 
models and assumptions that can be used to estimate the effective stiffness (or elastic moduli) 
of composites.  Three models that will be presented here are:

1. The Voigt isostrain rule of mixtures;

2. The Reuss isostress rule of mixtures; and

3. The hybrid rule of mixtures.

1. The Voigt rule of mixtures

To understand the isostrain rule of mixtures, consider a representative volume element of the 
composite where the matrix and reinforcement phases have been separated into distinct regions 
as shown in Fig. 11.2.   

Now assume that the composite is subjected
to a one-dimensional stress loading of magnitude 
σ as shown.

Arranged and loaded as shown, the matrix and
reinforcement phases are being loaded in parallel.

Loaded in parallel like this, the strain in both
phases should be the same.

reinforcement matrix

Fig. 11.2.  
Composite 
grouped into 
separate 
materials and 
loaded parallel to 
material 
allignment.
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If the strain in both the matrix εm and reinforcement εr phases is the same, then the overall 
strain of the composite is also the same.

Assuming linear elastic behavior, the stress in each phase would be consistent with its 
Young’s modulus:

The forces carried in the reinforcing and matrix phases, respectively, are:

The average stress in the composite is the total force per gross cross-sectional area:

So, when the material phases of a composite are oriented in parallel with a one-dimensional 
loading, the strain in both phases is the same, and the effective stiffness of the composite is 
the weighted average of the two individual phase moduli.
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Restated:

The Voigt-isostrain rule of mixtures provides an upper-bound on the Young’s modulus of a 
composite with phases r and m.

2. The Reuss Isostress Rule of Mixtures

To understand the isostress rule of mixtures, consider a representative volume element of 
the composite where the matrix and reinforcement phases have been separated into 
distinct regions as shown in Fig. 11.3.   

Now assume that the composite is again 
Subjected to a one-dimensional stress loading 
of magnitude σ as shown.

Loaded in series like this, the stress in both
phases should be the same and equal to the
overall applied stress σ.

The strain in each phase is as follows:
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matrix Fig. 11.3.  
Composite 
grouped into 
separate 
materials and 
loaded orthogonal 
to material 
allignment.
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The total change in length of the specimen is as follows:

The overall strain of the specimen is the total change in length divided by the original length:

Thus, the effective Young’s modulus of a composite in accordance with the Reuss isostress
assumption is:

Just as the Voigt isostrain rule of mixtures gives an upper bound on composite stiffness, the 
Reuss isostress rule of mixtures gives a lower bound on composite stiffness.
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3. The Hybrid Rule of Mixtures

The hybrid rule of mixtures is based on the assumption 
that the reinforcement is embedded within the matrix 
as shown in Fig. 11.4.

The effective stiffness associated with this arrangement
of materials can be obtained using combinations of the
Voigt and Reuss assumptions.

The central region of the composite can be treated
using the isostress assumption to obtain:

The overall composite stiffness can then be found using the isostrain assumption:

The modulus predicted by the hybrid rule is always greater than or equal to that of the Reuss rule 
and less than or equal to that of the Voigt rule.

reinforcement

matrix
Fig. 11.4.  
Composite 
grouped into 
separate 
materials for the 
hybrid rule of 
mixtures.
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Example 11.1:

For PCC assume that the Young’s modulus of the hcp is 20 GPa and that the Young’s 
modulus of the aggregate is 100 GPa.  Also, assume that the aggregate volume fraction 
in the PCC is 75%.  Compute the different Young’s modulus estimates for the PCC 
given based on:
a) The Voigt isostrain rule;
b) The Reuss isostress rule; and
c) The hybrid rule of mixtures.

Solution:  φr=0.75; φm=0.25; Em=20 GPa; Er=100 GPa.

•

•

•

Thus, the modulus from the hybrid rule is indeed intermediate to that of the Voigt and Reuss rules, 
as would be expected.//
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D. Empirical Relations for Strength & Stiffness of PCC

1. Realistic values for the Young’s modulus of stone that might be used as aggregate in 
pcc ranges from:  20 GPa ≤Er ≤150 GPa, with slates, shales, and sandstones having 
the lower stiffnesses and granites and limestone having the higher stiffnesses.

2. Mechanical Properties of Hydrated Cement Paste:

• For hydrated cement paste, both the elastic stiffness and the shear strength 
tend to decrease as the capillary porosity in the hcp increases.

• Different semi-empirical models exist that relate the elastic stiffness of hcp to 
the capillary porosity.  One in particular [from Concrete 2nd Ed., by Mindess, 
Young and Darwin,  Prentice-Hall, (2003)] is : 

where nc represents the capillary porosity of the hcp.  Thus, the higher the capillary 
porosity is, the lower the stiffness of the hcp will be. 

• As the large capillary voids in hcp increase, the fracture stress decreases with 
the square root of the typical void size.  (The Griffith microcrack model 
presented in the Period #3 notes is the basis for this statement.)

3. Empirical Formulae Relating E and fc’

• Although the shear strength of pcc is typically a function of the strengths of both 
the matrix phase (hcp) and the reinforcement phase (aggregate), the hcp is 
usually the weakest link that limits the strength of pcc.
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chcp nE −=



53:086 Civil Engineering Materials, Period #11 11.10C.C. Swan          The University of Iowa

• This helps to explain why there are empirical relations between the unconfined 
compressive strength f’c of pcc and its Young’s modulus.  One such model is as follows:

• Another empirical relation between the static Young’s modulus of pcc E and fc’ is:

• PCC has viscoelastic elastic characteristics that make it stiffer when loaded rapidly and 
less stiff when loaded over a long period of time.  An empirical relation similar to that of 
(11.21) for the dynamic modulus of PCC is:

• The normal range for the unconfined compressive strength of pcc is roughly:

When the unconfined compressive strength of pcc exceeds 10,000 psi (70 MPa), the 
concrete is usually called “high-performance concrete” or hpc. Such high-performance 
concrete (hpc) is generally achieved by using blended cements (i.e. those in which 
cement replacement has been employed) together with low water-cement ratios.
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The Poisson’s ratio of pcc usually decreases with an increasing aggregate volume fraction:

• For pure hcp (concrete w/o any aggregate) ν ≈ 0.20 – 0.28;

• For aggregate volume fractions in the range of 70-80%, ν ≈ 0.10 – 0.18;

If one knows the Young’s modulus of pcc and the Poisson’s ratio, then the shear modulus can be 
obtained using the following formula appropriate for isotropic, linearly elastic materials”

It is worth mentioning that in pcc, the matrix phase or the hcp is usually quite a bit weaker than
the aggregate phase.  If one considers the rule of mixtures composite models applied to pcc, both 
the Reuss isostress model (Fig. 11.3) and the hybrid model (Fig. 11.4) are such that the strength 
of pcc is controlled by the weakest constituent (or the weakest link). Thus these models predict 
that: 

The Voigt or iso-strain model is not realistic for pcc and thus would over-estimate the strength of 
pcc.

E. Measuring the Strength of PCC

It is common to measure the unconfined compressive strength of pcc and less common, although 
still sometimes done, to measure the tensile strength.

1. Unconfined Compressive Strength

This test is usually performed on cylinders of 6” dia. (150mm) and 12” height (300mm).  The test 
can also be performed on smaller cylinders and also on smaller cubes of pcc.
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It is usually best to use specimens with a height to diameter ratio
of 2 to 1.  With this ratio, the confining effects of friction between the
specimen and the loading platens is reduced.  With specimens having 
an aspect ratio of 1 (height to width = 1), the confining effect tends to
make the measured strength of the pcc higher than it would otherwise
be.  Therefore, the measured fc’ of cubical specimens would tend to
larger than that of 2:1 cylindrical specimens.

2. Tensile Strength Testing

There are two common procedures for measuring the tensile strength of
pcc.  These are:  (a) the split cylinder test; and (b) the bending test.

a) split cylinder test. This test is performed by taking a 2:1 pcc
cylinder, turning it on its side (Fig. 11.6) and then loading it to
failure.  The tensile strength of the pcc from this test is given
as follows:

where d is the diameter of the cylinder, h is its height, and P is
the magnitude of the load at failure.  It is also worth mentioning 
here that the load P is applied over the full length of the cylinder
edge rather than just at a point.

Fig. 11.5.  Schematic 
of unconfined 
compression test.
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Fig. 11.6.  
Schematic of 
the split 
cylinder test.
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P/2 P/2b) The bending test: In this test, a 
prismatic beam like that of Fig. 11.7 is
loaded at the one-third points.  When the
beam (of depth h, width b, and length L) 
ruptures , the peak tensile bending stress
in the middle third of the beam is the tensile
strength of the pcc:
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Fig. 11.7.  Bending test to measure ft’.


