Period #1 : CIVIL MATERIALS COURSE OVERVIEW

A. Materials Systems to be Addressed

- Metals and Alloys (steel and aluminum)
- Portland Cement Concrete
- Asphalt Cement Concrete
- Fiber Reinforced Composites
- Masonry
- Wood/Timber

Fundamental Questions Addressed for Each Material System:

- How is the material produced?
- What is its chemical composition?
- What are the material's physical and mechanical properties?
- What is the nature of its micro- and nano-structure?
- How does the material system behave in service?
- Relationships between physical, mechanical behavior and micro-structure?
- What are the durability issues?

B. Understanding of Material Systems

- 1. Three Complementary Approaches to Understanding of Materials
 - a. Empiricism
 - Laboratory experiments (a significant part of this course)
 - Trial and error
 - b. Craft
 - Accumulation of best practices built up over time and experience with materials;
 - Observations built up over years of experience
 - Example: crafting of Samurai Swords or Katana (see http://en.wikipedia.org/wiki/Katana#Forging)
 - Another example: the making of Roman concrete (<u>http://www.romanconcrete.com/docs/spillway/spillway.htm</u>)
 - c. Scientific:
 - Study of material at different length scales:
 - Molecular level (sub-nano-meter scale)
 - Material structural level (micro-meter to milli-meter scale)
 - Engineering structural level (milli-meter to meter scales)
 - Chemistry
 - Scale effects

- 2. Proposed Sequential Treatment of Each Material System in this course
 - a. Source of relevant raw materials and their chemical composition;
 - b. Processing of the material and manufacturing;
 - c. Material structure on multiple length scales with discussion of scale effects;
 - d. Laboratory study (measurement of mechanical properties for different variations of the same system)
 - e. Discussion of physical & mechanical properties relative to those of other materials.
 - f. Durability issues and how to prolong service life of the material

C. Criteria For Comparison of Materials Systems

Generally, more than one material system can serve the required function for a given job. Our objective is to gain familiarity with all of the major systems, so decisions can be made based on relatively complete information.

- Fitness for purpose:
 - strong enough?
 - stiff enough?
 - sufficiently durable?
 - watertightness?
 - speed of construction?
- Other Factors
 - aesthetics
 - environmental considerations
 - experience with the material system?
 - do design and usage codes exist?
 - availability
- Cost Issues
 - first cost
 - lifecycle costs
 - energy costs (manufacture; transport; fabrication;)
- Material Quality
 - What is the variability in material properties?
 - What are the factors that contribute to variability?

D. States of Matter for Materials

- 1. Gases:
 - Particles (or molecules) are not in direct contact with each other
 - Gases typically expand to fill their container
 - Representative Constitutive Models:

• Van der Waals Gas Law:
$$\left(P + \frac{a}{V^2}\right)(V-b) = RT$$

- Gas diffusion:
 - Gases readily diffuse into each other typically in accordance with Fick's Law, the 1-D form of which is: $J = -D \frac{\partial c}{\partial c}$
 - Where: J is the flux rate of the gas;
 - C is the concentration of the gas;
 - D is the gas diffusivity which increases with temperature; and
 - x is the spatial coordinate dimension
- 2. Fluids
 - Particles (molecules) are essentially in direct contact, but they move freely with respect to each other
 - Although fluids generally have a fixed volume they do take the shape of their container.

$$T = -D\frac{\partial C}{\partial x}$$

• Representative Constitutive Model for Fluids

shear behavior : $\tau = \eta \dot{\gamma}$ where :

 τ is shear stress, η is viscosity, and $\dot{\gamma}$ is the rate of shear

volume behavior : $p = K \varepsilon_v$ where :

p is pressure, K is the bulk modulus, and \mathcal{E}_{v} is volumetric strain

- Fluid diffusion. Like gasses fluids diffuse into each other in accordance with Fick's Law. The diffusivity of liquids, however, is typically much lower than that of gases.
- Fluid flow: Fluids flow into porous solids in accordance with Darcy's Law.
- 3. Solids
 - Molecules are do not move freely with respect to each other, and <u>may</u> be highly organized in crystalline lattice structures (as in metals).
 - Solids generally have fixed volumes;
 - They diffuse into each other in accordance with Fick's Law, although at very, very slow rates. The diffusivity increases with temperature.
 - Representative Constitutive Behaviors
 - Generalized Hookes Law for Linear Elastic Solids: $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$
 - Hookes Law for Linear Isotropic Solids

$$\sigma = E\varepsilon$$
$$p = K\varepsilon_{v}$$
$$\tau = \mu\gamma$$

- 4. Gels
 - Gels are a state of matter intermediate to the liquid and solid states, and can involve phases in both the liquid and solid states;
 - Solid particles are in suspension in fluids. The solid particles can bond with each other strongly or loosely.
 - If the material is stressed, the bonds can either remain intact, or temporarily weaken leading to fluid-like behavior
 - Hydrated portland cement paste is a gel in which the bonds remain intact under moderate stresses;
 - Clays soils are gels in which the bonds weaken under moderate stresses.
 - When the bonds weaken, the clay behaves as a fluid.
 - When the stressing is removed, the bonds between the particles will reestablish. This behavior is labeled <u>thixotropic</u>.
 - Polymers are gels
 - Asphalt cement is a polymer and a gel that behaves both like a fluid and a solid
 - Gels tend to exhibit <u>viscoelastic</u> constitutive behaviors. Some of their characteristics are fluid-like, and other characteristics are solid-like.