Charpy Impact Test

Standards

• ASTM E23: Test Methods for Notched Bar Impact Testing of Metallic Materials

Purpose

• To determine the energy required to fracture a v-notched specimen. This energy translates into the toughness of the material.

Equipment and Materials

- Charpy V-notch impact testing machine (figure 1.3.1)
- Specimens: 1018 CR steel & 6061-T6 aluminum
- Thermometer
- Water
- Dry ice
- Hot plate
- Oven
- Bowls, tongs
- Heavily insulated gloves,
- Safety glasses

SAFETY WARNING

- Extreme caution should be used with the Charpy impact machine.
- The pendulum is very heavy and will easily break bones!
- Only one person should be around the machine at a time.
- Use the safety catch until ready to test.
- Make sure the doors are closed before releasing the pendulum.

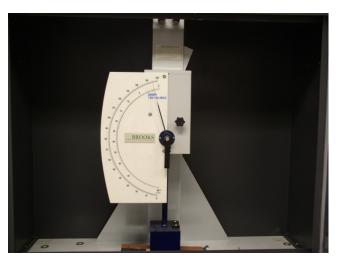


Figure 1.3.1. Charpy impact testing machine.

Experimental Procedure

- 1. Place specimens into the available temperature media:
 - Dry ice (-78.5°C)
 - Ice bath ($\sim 0^{\circ}$ C)
 - Ambient room temperature (~20°C)
 - Boiling water(100°C)
 - Oven (~300°C)
- 2. Setup Charpy machine by lifting the pendulum up to and securing it into the notch. Place the safety catch into the keyhole until ready to test.
- 3. Remove the desired specimen its temperature medium using the tongs and place it onto the anvil on the Charpy impact machine as quickly as possible.
- 4. When ready to test, **carefully** remove the safety catch and close the doors. Pull the two levers at the top of the machine apart to release the pendulum. (*The time it takes to remove the specimen from its temperature medium and complete the test should be ~5 seconds.*)
- 5. Record the energy required to fracture the specimen by reading the gauge mark. *[See worksheet at the end of this lab.]*
- 6. Observe and note the fracture surface appearance. [A digital camera would be a great idea!]
- 7. Measure the lateral expansion of the specimen using a caliper. *[See worksheet at the end of this lab.]*

- For each type of material, plot the fracture energy versus the temperature. (All data)
- For each type of material, plot the lateral expansion versus the temperature. (All data)
- If possible, discuss the ductile-to-brittle transition temperature.
- Describe the fracture surface appearance for each type of specimen and for each temperature.
- What is the effect of temperature on the fracture of metal?

Charpy Worksheet

Group:_____ Date:_____

1018 CR Steel

\mathbf{Group}^\dagger	Fracture Energy, J				
	$T_1 = -78.5 \circ C$	$T_2 = 0 \circ C$	$T_3 = 21.5 \circ C$	$T_4 = 100^{\circ}C$	$T_5 = 300^{\circ}C$

Crown [†]	Lateral Expansion, mm				
Group	$T_1 = -78.5^{\circ}C$	$T_2 = 0 \circ C$	$T_3 = 21.5 \circ C$	$\mathbf{T}_4 = 100^\circ \mathbf{C}$	$T_5 = 300^{\circ}C$

6061-T6 Aluminum

\mathbf{Group}^\dagger	Fracture Energy, J				
Group	$T_1 = -78.5 \circ C$	$T_2 = 0 \circ C$	$T_3 = 21.5 \circ C$	$T_4 = 100^{\circ}C$	$T_5 = 300^{\circ}C$

\mathbf{Group}^{\dagger}	Lateral Expansion, mm				
	$T_1 = -78.5^{\circ}C$	$T_2 = 0 \circ C$	$T_3 = 21.5 \circ C$	$T_4 = 100^{\circ}C$	$T_5 = 300^{\circ}C$

17