

Corrosion Protection

Basic corrosion theory and protection methods

Author: Dr. Thomas J. Langill © 2006 American Galvanizers Association

Corrosion & Corrosion Control

What is Corrosion How/Why Does Corrosion Occur Corrosion Costs Forms of Corrosion Corrosion Control Methods Hot-dip Galvanizing (HDG) Process Coating Characteristics Performance in Corrosive Environments Galvanized Steel in Action

What is Corrosion

Corrosion (n)

 The chemical or electrochemical reaction between a material and its environments that produces a deterioration of the material and its properties.

The Galvanic Series

CORRODED END Anodic or less nobel

Magnesium

Aluminum Cadmium Steel Lead Tin Nickel Brass Bronzes Copper Nickel-Copper Alloys Stainless Steels (passive) Silver Gold Platinum PROTECTED END Cathodic or most nobel ZINC - Anode

STEEL - Cathode

This arrangement of metals determines what metal will be the anode and cathode when the two are put in a electrolytic cell (arrangement dependent on salt water as electrolyte).

University Tool Kit

Bimetallic Couple

Bare Steel Corrosion

 Microscopic anodic and cathodic areas exist on a single piece of steel.
 As anodic areas corrode, new material of different composition is exposed and thus has a different electrical potential

Forms of Corrosion

🗣 General

 Identified by uniform formation of corrosion products that causes a even thinning of the substrate steel

Localized

Caused by difference in chemical or physical conditions between adjoining sites

🍤 Bacterial

 Caused by the formation of bacteria with an affinity for metals on the surface of the steel

Galvanic/Dissimilar Metal

• Caused when dissimilar metals come in contact, the difference in electrical potential sets up a corrosion cell or a bimetallic couple

Corrosion Costs

Direct Costs

 NACE, CC Technologies, & FHWA jointly produced a report in 2001 detailing the costs of corrosion

- \$276 billion USD annually
- 3.1% of US GDP (1998)

Indirect Costs

Catastrophe

 Public safety, property damage, environmental contamination

Natural Resources

- Waste production, increased energy consumption
- Public Outcry
 - Traffic, inconvenience

Methods of Corrosion Control

Barrier Protection

 Provided by a protective coating that acts as a barrier between corrosive elements and the metal substrate

Cathodic Protection

University Tool Kit

 Employs protecting one metal by connecting it to another metal that is more anodic, according to the galvanic series

Corrosion Resistant Materials

Materials inherently resistant to corrosion in certain environments

Barrier Protection

Paint
 Powder Coatings
 Galvanizing

- Impressed Current
 Galvanic Sacrificial Anode
 Galvanic Zinc Application
 - Zinc Metallizing
 - Zinc-rich Paints
 - Hot-dip Galvanizing

Impressed Current

- External source of direct current power is connected (or impressed) between the structure to be protected and the ground bed (anode)
- Ideal impressed current systems use ground bed material that can discharge large amounts of current and yet still have a long life expectancy.

Galvanic Sacrificial Anode

- Pieces of an active metal such as magnesium or zinc are placed in contact with the corrosive environment and are electrically connected to the structure to be protected
- Example: Docked Naval Ships

Galvanic Zinc Application

Zinc Metallizing (plating)

 Feeding zinc into a heated gun, where it is melted and sprayed on a structure or part using combustion gases and/or auxiliary compressed air

Zinc-rich Paints

 Zinc-rich paints contain various amounts of metallic zinc dust and are applied by brush or spray to properly prepared steel

Hot-dip Galvanizing

Complete immersion of steel into a kettle/vessel of molten zinc

Galvanic Zinc Applications

Zinc Metallizing

Zinc-rich Paints

Hot-dip Galvanizing Process

Surface Preparation
 Galvanizing
 Inspection

Surface Preparation

Zinc-iron metallurgical bond only occurs on clean steel

Degreasing

Removes dirt, oils, organic residue

Pickling

Removes mill scale and oxides

Fluxing

 Mild cleaning, provides protective layer

Degreasing/Caustic cleaning

Galvanizing

- Steel articles are immersed in a bath of molten zinc (≈ 830 F)
- > 98% pure zinc, minor elements added for coating properties (Al, Bi, Ni)
- Zinc reacts with iron in the steel to form galvanized coating.

Zinc bath removal

Inspection

- Steel articles are inspected after galvanizing to verify conformance to appropriate specs.
- Surface defects easily identified through visual inspection.
- Coating thickness verified through magnetic thickness gauge readings.

Metallurgical Bond

Eta (100% Zn) 70 DPN Hardness Zeta (94% Zn 6% Fe) 179 DPN Hardness

Delta (90% Zn 10% Fe) 244 DPN Hardness

Gamma (75% Zn 25% Fe) 250 DPN Hardness

Base Steel 159 DPN Hardness

Edge Protection

Micrograph of galvanized edge

Influencers of Coating Development

Steel Surface ConditionsSteel Chemistry

- Silicon
- Phosphorous

The Sandelin Curve

Coating Appearance

Newly Galvanized No Spangle

Newly Galvanized Dull Coating

Newly Galvanized Highly Spangle

Newly Installed Shiny & Dull Coating

The Zinc Patina

- Forms as zinc reacts with the environment
- Consists of zinc oxide, zinc hydroxide, and zinc carbonate
- Protects the galvanized coating by providing an additional layer of corrosion resistance

Passivation Cycle

Environmental Performance

Atmospheric
Liquid (Chemicals, Fresh H₂O, Salt H₂O)
Soil
High Temperature
Low Temperature
Concrete

Atmospheric: Service Life of HDG

*Service life is defined as the time to 5% rusting of the steel surface. $1 \text{ mil} = 25.4 \mu\text{m} = 0.56 \text{oz/ft}^2$

Liquid: Effect of pH on HDG steel

Performance in Soil

> 200 different soil types
Complex corrosion kinetics in soil
Variables include:

- Porosity
- Resistivity
- Organic material
- Moisture content
- pH
- Temperature

Performance in Various Temps

High Temperature < 392 F (200 C) Low Temperature

• > -75 F (-60 C)

Concrete: Rebar Corrosion

Staining

Complete Failure

Concrete: Galvanized Rebar

Unprotected Rebar

Galvanized Rebar

Zinc is Natural

Features of HDG Coatings

Zinc-iron intermetallic layers Harder than the substrate steel Zinc patina Barrier protection Cathodic protection Metallurgical bond to the substrate steel **Paintable** Edge and corner protection Zinc is a natural and healthy metal

Benefits of HDG Coatings

- Maintenance-free for 50 100 years in most atmospheric environments
- Long term performance in soils, water, and chemical environments
- No touch-up required
- High & Low temperature performance
- Application independent of weather
- 100% recyclable

University Tool Kit

Dry Bridge Road Bridge

Date Galvanized 1999

Sector Bridge & Highway

Environment Rural

Location Alexander, NY

Harrisburg Airport Transportation Facility

Date Galvanized 2004

Sector Building & Architecture

Environment Urban

Location Harrisburg, PA

AES-PR Total Energy Power Plant

Date Galvanized 2002

Sector Electrical, Utility & Communication

Environment Industrial

Location San Juan, Puerto Rico

Leprino Foods

Date Galvanized 2002

Sector Food & Agriculture

Environment Rural

Location Waverly , NY

Aspinwall Water Treatment Plant

AGA

Date Galvanized 2001

Sector Water & Marine

Environment Industrial

Location Pittsburgh, PA

