53:030 SOIL MECHANICS Department of Civil & Environmental Engineering The University of Iowa Fall Semester, 2005

Instructor:

Colby C. Swan, Associate Professor 4120 Seamans Center E-mail: <u>colby-swan@uiowa.edu</u> Phone: 335-5831 Office Hours: T 10:30-noon; W 9-10:30am <u>Textbook:</u> <u>Principles of Geotechnical Engng. 5th Ed.</u>

Braja M. Das; Brooks/Cole Publishers, 2001 ISBN: 053438742X

Reference texts available on reserve in the Engineering Library

Soil Mechanics & Foundations Muni Budhu John Wiley, 2000. <u>Fundamentals of Soil Behavior</u>, 3rd Ed. James K. Mitchell, Kenichi Soga Wiley, 2005.

Teaching Assistants:

Mr. Peter Hansen, Lab instructor 1431 SC pahansen@engineering.uiowa.edu Mr. Jun Yang, Homework grader 3225 SC jyang8@engineering.uiowa.edu

Laboratory Schedule and Topics Covered

Week of:	Lab #	Topics Covered		
Aug. 29	1	Specific gravity of soil solids		
Sept. 05	2	Grain-size distribution measurements		
Sept. 12	3	Liquid and plastic limit measurements		
Sept. 19	4	Shrinkage limit measurement		
Report #1 on Labs 1-4 due September 30 th				
Sept. 26	5	Constant head permeability tests		
Oct. 03	6	Seepage computations using FEM		
Oct. 10	7	Measurement of pore pressures, seepage forces, liquefaction		
Report #2 on Labs 5-7 due October 24 th				
Oct. 17	8	1-D compression of dry sand		
Oct. 24	9	1-D consolidation of fine-grained soil		
Oct. 31	10	2-D consolidation computations using FEM		
Report #3 on Labs 8,9 due November 14 th				
Nov. 07	11	Shear strength of sand: direct shear testing		
Nov. 14	12	Shear strength of sand: triaxial compression testing		
Report #4 on Labs 11, 12 due December 5 th				
Nov. 28	13	Compaction and moisture-density studies		

Course grading guidelines:

Homework assignments:	25%
In-class quizzes	5% (Bonus points)
Lab reports	25%
Mid-term exams (2)	25%
Final exam	25%

Class period #	Date	Торіс	Related reading
1	Aug. 22	Intro. to soil mech. & geotech. engng.	Ch. 1
2	Aug. 24	Grain-size distributions	Ch. 2
	Aug. 29	No class, Labor Day	
3	Aug. 31	Particle characteristics; size effects	
4	Sept. 05	Phase-Mass-Volume Relations	Ch. 3
5	Sept. 07	Soil structure; water and consistency	
6	Sept. 12	Soil classification systems	Ch. 4
7	Sept. 14	Concepts for 1-D fluid flow in soil	Ch. 6
8	Sept. 19	Permeability and its measurement	
9	Sept. 21	Flow in parallel and series	
10	Sept. 26	Mass conservation and flownets	Ch. 7
11	Sept. 28	Applications with flownets	
12	Oct. 03	Pore pressures, effective stresses	Ch. 8
13	Oct. 05	Seepage forces and liquefaction	
14	Oct. 10	Partially saturated soil, capillarity	
15	Oct. 12	Compressibility of soils, e vs. log p	Ch. 10
16	Oct. 17	Normal- and over-consolidation	
17	Oct. 19	Consolidation model for saturated soils	
Evening, 7pm	Oct. 19	Midterm Exam #1 over Ch.1-4, 6-8	
18	Oct. 24	Applications of consolidation model	
19	Oct. 26	Interpreting results of 1-D consol. tests	
20	Oct. 31	Linear elastic stress solutions in soil.	Ch. 9
21	Nov. 02	Mohr's circle and shear stresses	
22	Nov. 07	Mohr-Coulomb shear failure criterion	Ch. 11
23	Nov. 09	Pore pressure effects & shear strength	
24	Nov. 14	Drained and un-drained soil strengths	
25	Nov. 16	Applications of shear strength models	
	Nov. 21	No class. Holiday break.	
	Nov. 23	No class. Holiday break.	
26	Nov. 28	Compaction and Soil Improvement	Ch. 5
27	Nov. 30	Moisture-densities on compacted soil	
Evening, 7pm	Nov. 30	Midterm Exam #2 over Ch. 9-11	
28	Dec. 05	Field compaction methods, techniques	
29	Dec. 07	Review for final examination	
Wednesday	9:45 am	Comprehensive final examination.	Ch. 1-11
Dec. 14 th	3505 SC		

Course Learning Objectives:

- 1. To appreciate soil as a vital construction material and soil mechanics in the engineering of civil infrastructure.
- 2. To understand relationships between physical characteristics of soils and mechanical characteristics such as conductivity; strength; compressibility.
- 3. To learn how to measure both physical and mechanical characteristics of soils through hands-on practice in the lab.
- 4. Understand the modeling techniques commonly used in soil mechanics and how to apply them. Examples here include:
 - a. Darcy's law and flownets when computing two-dimensional seepage;
 - b. Consolidation models for load-time-deformation response of soils;
 - c. Mohr-Coulomb shear strength modeling of soils.
- 5. Development of good technical reporting and data presentation skills.

Expected Outcomes:

Upon successfully completing this course, it expected that you would be able to:

- 1. Apply fundamental concepts learned previously or concurrently in mathematics, statics, mechanics of deformable bodies, and fluid mechanics to the solution of soil mechanics problems in civil and environmental engineering.
- 2. Explain the difference between different types of soils in terms of both physical and mechanical characteristics.
- 3. Perform the common tests used to measure soils' physical and mechanical properties and know how to interpret results from such tests.
- 4. Apply fundamental soil mechanics principles to common civil engineering applications including:
 - a. Compute time-dependent settlement of a soil deposit after a load is applied.
 - b. Compute the seepage of groundwater into a constructed excavation, and to assess liquefaction potential.
 - c. Compute the magnitude of loads that can be applied to a geomechanical system safely without inducing shear failure.
- 5. Write professional quality, clear concise technical reports and letters.

itome worm rissignments to remain to Due Dutes				
Assignment #	Due Date	Assignment		
1	9/07	2:1,2,3,5,6,8,9,10,11		
2	9/14	3:1,2,4,5,7,8,10,11,15,17,18,19,20,22		
3	9/21	4:1,3,4,5		
4	9/28	6:1-19, even numbered problems		
5	10/05	7:1-4 + supplemental		
6	10/12	8:2,3,6,7,8,9,10,11 + supplemental		
7	10/21	8:13-16; 10:3		
8	10/26	10:5,6,8,11,12,13		
9	11/02	10:10,14,15,16,17,18,19,20		
10	11/09	9:1-21, odd numbered problems		
11	11/16	11:1-13, odd numbered problems		
12	12/02	11:16-19,21,23,26		
13	12/07	5:1-12, even numbered problems		

Homework Assignments & Tentative Due Dates