Period #16: Soil Compressibility and Consolidation (II)

A. Review and Motivation

(1) Review:

- In most soils, changes in *total* volume are associated with reductions in *void* volume. The volume change of the soil grains is negligible.
- Changes in soil volume are produced by *effective* stresses.
- When loads are applied to soils, the increased compressive stresses can initially be taken up by the pore fluid.
- With time, though, the pore fluid pressure dissipates, and the increased compressive stresses are transferred to the soil skeleton.
 - As this *gradually* occurs, the soil will compress.

(2) Motivation:

- The important question that remains to be answered, is how long can this take?
- To better understand this, a common engineering consolidation model is presented here.

- B. Rate of Consolidation in One–Dimension
 - To begin, consider a very small element of soil being subjected to onedimensional consolidation in the z-direction.

- Rate of fluid mass outflow = $\rho_w \Delta A \{ v_z + [\partial(v_z)/\partial z] \Delta z \}$
- Rate of fluid mass inflow $= \rho_{w}^{"} \Delta A v_{z}$
- Net rate of fluid mass outflow = outflow inflow

=
$$\rho_{\rm w} \Delta A \ [\partial(v_z)/\partial z] \Delta z = \rho_{\rm w} \Delta V \ \partial(v_z)/\partial z$$

:. fluid mass conservation can be re–written as:

$$\partial (-k_z \partial h/\partial z)/\partial z = - (1+e_0)^{-1} \partial e/\partial t$$

 $k_z \partial^2 h/\partial z^2 = (1+e_0)^{-1} \partial e/\partial t$

Note the assumption that k_z is constant in the z-direction.:

• This expression needs to be re-written in terms of pore pressure.

 $h = h_z + (p_w/\gamma_w) = h_z + (p_{hyd} + u) / \gamma_w$

• Note: In the above expression, the fluid pressure p_w has been expressed as $p_w = p_{hyd} + u$, where: p_{hyd} is the equilibrium hydrostatic pore-pressure in the soil before a load was applied, and is the excessore pore-pressure in the soil due to the application of a load.

• Since both h_z and p_{hyd} are linear functions of z, $\partial^2 h/\partial z^2 = (1/\gamma_w) \partial^2 u/\partial z^2$.

$$\therefore (k_z/\gamma_w) \partial^2 u/\partial z^2 = (1+e_0)^{-1} \partial e/\partial t$$

• The remaining task is to relate the void ratio e to excess pore pressure u.

•This is done in two steps:

a) Note that when a *constant* and *uniform* load is applied to a soil deposit and consolidation is occuring, the vertical stress in the soil is constant.

$$0 = \frac{\partial(\sigma_v)}{\partial t} = \frac{\partial(\sigma'_v)}{\partial t} + \frac{\partial(p_w)}{\partial t}$$

Thus, $\partial(\sigma'_v)/\partial t = -\partial(p_w)/\partial t$ = $-\partial u/\partial t$ That is, an *increase* in vertical effective stress σ'_v is achieved by a *reduction* of excess pore pressure u.

b) Now to relate σ'_{v} to the void ratio e, the e vs. σ'_{v} behavior of the soil is used.

• From the figure shown, by *linearizing* the soil behavior over a given range of σ'_{v} and e:

$$\Delta e = -a_v \Delta \sigma$$

• From the preceding relation between σ'_{v} and u, it follows that:

$$\Delta e = a_v \Delta u$$

• Expressing this in rate form, $\partial e/\partial t = a_v \partial u/\partial t$.

• Putting it all together, the final statement of fluid mass conservation is: $(k_z/\gamma_w) \partial^2 u/\partial z^2 = [a_v/(1+e_0)] \partial u/\partial t$

or

 $c_v \partial^2 u / \partial z^2 = \partial u / \partial t$: One-dimensional consolidation equation

where $c_v = k_z(1+e_0) / (a_v \gamma_w)$:

consolidation coefficient (units are L^2/T)

C. Solutions of the Consolidation Equation

Initial conditions for excess pore-pressure in the low-permeability soil layer: $u = u_0 = \Delta q$ for $z \in (0,2H)$ at t=0

Boundary conditions for excess pore-pressure in the low-permeability soil layer:

> u = 0 at z = 0 for $t \in [0, \infty)$ u = 0 at z = 2H for $t \in [0, \infty)$

•The solution to the 1–D consolidation equation for these boundary conditions and initial conditions is: $u(z,t) = \sum \left\{ (2u_0/M) \sin(Mz/H) \right\} \exp\{-M^2 T_v \}$ m=0 M =($\pi/2$)(2m+1) and where: $T_v = c_v t / H^2$: non-dimensional time factor : maximum drainage distance in the soil layer Η z=0 "Excess" pore 2Hpressure u(z,t)z=2H u_0 0 t→∞

- The next task is to relate the excess pore-pressure u(z,t) to the actual compression of the soil layer.
- •At a given time t, and a given location z in the soil layer, define the local degree of consolidation as:

$$U_{z}(z,t) = [u_{0} - u(z,t)] / u_{0} = 1 - [u(z,t) / u_{0}]$$

Observations:

- when $u(z,t) = u_0$, then $U_z(z,t) = 0$, which means that the soil at (z,t) has not yet begun to consolidate; and
- when u(z,t) = 0, then $U_z(z,t) = 1$, which means that the soil at (z,t) has fully consolidated.
- Now define the average degree of consolidation U for the whole soil layer at a given time t as:

2H

$$U(t) = (1/2H) \int_{0}^{\infty} U_{z}(z,t) dz = (1/2H) \int_{0}^{\infty} [1 - u(z,t)/u_{0}] dz$$

$$= 1 - \sum_{m=0}^{\infty} (2/M^{2}) \exp\{-M^{2}T_{v}\}$$
U vs. T_v is plotted in Figure 10.24 and tabulated in Table 10.5 of the textbook.

D. Applications

Example 16.1: A 3m thick double-drained layer of saturated clay soil was subjected to a surcharge loading and achieved 90% primary consolidation in 75 days. Find the coefficient of consolidation c_v .

Solution:

- •The dimensionless time factor for soils is: $T_v = (c_v t) / H^2$.
- : $T_{90} = (c_v t_{90}) / H^2 = [c_v * 75 days] / (1.5m)^2$
- From the U vs. T_v plot on page 288 of the text, $T_{90} = 0.85$
- Solving for c_v gives, $c_v = 0.0255 \text{m}^2/\text{day} = 2.95\text{E}-7\text{m}^2/\text{sec.}$

- Example 16.2: Consider the soil profile shown. The phreatic surface now coincides with the ground surface, but a long time ago it used to be at a depth of 5 feet below the found surface. Asume that a uniform pressure of 400 psf is to be applied over a large area.
 - a) Use the location of the phreatic surface a long time ago to compute the pre-consolidation vertical effective stress in the clay layer;
 - b) Estimate the ultimate settlement of the ground surface due only to primary consolidation of the clay layer; and
 - c) How long will it take to achieve 50% and 90% consolidation of the clay layer under the imposed loading?

Solution:

a) First, compute the vertical effective stress at the center of the clay layer before the uniform pressure is applied.

 $(\sigma'_V)_0 = 5'*(130-62.4)\text{pcf} + 10'*(115-62.4)\text{pcf}$ = 864 psf

A long time ago, the phreatic surface was at the clay–sand interface. At that time, the vertical effective stress was:

$$(\sigma'_V) = 5'*(110)\text{pcf} + 10'*(115-62.4)\text{pcf}$$

= 1076 psf

Since the vertical effective stress a long time ago was greater than what the current vertical effective stress is, the clay soil is over-consolidated, and the pre-consolidation stress $(\sigma'_v)_c = 1076 \text{psf.}$

b) Estimate the ultimate settlement due to application of the load:

$$\Delta H = H_0 \Delta e / (1 + e_0)$$

= (20ft/2.1)*[-C_slog[(σ'_v)_c /(σ'_v)₀] - C_clog[(σ'_v)_f /(σ'_v)_c]]
= 9.524ft * [-0.05 log(1076/864) - 0.6 log(1264/1076)]
= 9.524ft * [-.0048 - .0420]

 Δ H =- 0.445 ft = -5.34in = ultimate settlement.

c) Solution: The dimensionless time factor for soils is: $T_v = (c_v t) / H^2$.

From the plot of U vs. T_v on page 292 of the text: $T_{50} = 0.18$ and $T_{90} = 0.85$

Thus, $t_{50} = (T_{50}H^2)/c_v = 0.18 * (20ft)^2/(0.05ft^2/day)$

= 1440 days (or about 4 years!)

In a similar way, $t_{90} = (T_{90}H^2)/c_v = 0.85 * (20ft)^2/(0.05ft^2/day)$

= 6800 days (or about 18.6 years!)

- E. Summary:
 - From this second example, we see that the times over which consolidation actually occurs can be over *many years and even decades*.
 - •The important factors that determine how long it will take for consolidation settlements to occur are:
 - 1) **the consolidation coefficient** c_v which is proportional to a soil's permeability k. The smaller c_v (and the smaller k) the longer it will take for a soil to consolidate.
 - 2) the maximum drainage distance H. From the above examples, note that consolidation times are proportional to H^2 .