53:030 SOIL MECHANICS Civil & Environmental Engineering The University of Iowa FALL SEMESTER, 2001

Homework Assignment # 7, Due Wednesday, 31 October 2001.

- 1) Consider the flow beneath the retaining structure shown in Figure 1. If the soil's permeabilitity is isotropic such that $k_x = k_z = 10^{-7}$ m/sec, draw a flownet for this problem and compute the flow rate beneath the structure per unit width in the out-of-plane direction.
- 2) Now considering that $k_x = 16 \cdot 10^{-7}$ m/sec, $k_z = 10^{-7}$ m/sec, draw a modified flownet for this problem and compute the flow rate beneath the structure per unit width in the out-of-plane direction.

Impermeable bedrock layer

Figure 1. Setup for flow beneath a retaining structure.

Vertical effective stress	Void ratio, e
(kPa)	
24	1.112
48	1.105
96	1.080
192	0.985
384	0.850
768	0.731

3) The results of a laboratory consolidation test on a clay sample are as follows:

- a) Draw an e versus $\log(\sigma_v)$ plot.
- b) Estimate the preconsolidation stress $\sigma_{v'c}$
- c) Estimate the compression index C_c.
- 4) Consider the soil deposit shown below. Currently, the phreatic surface coincides with the ground surface, but during a different geological era, the surface coincided with the top of the clay layer.
 - a) Compute the pre-consolidation stress in the clay layer due to the location of the phreatic surface a long time ago.
 - b) If a uniform load of 400 psf is applied to the site, compute the settlement due to primary consolidation of the clay layer.

Coarse, dense sand. $\gamma_d = 110 \text{ pcf}$ $\gamma_{sat} = 130 \text{ pcf}$	5 feet
Saturated clay soil $e_0 = 1.10$ $\gamma_{sat} = 115 \text{ pcf}$ $C_c = 0.60$ $C_s = 0.06$	10 feet