53:030 SOIL MECHANICS

Department of Civil & Environmental Engineering The University of Iowa Fall Semester 2001

Midterm Exam #1, 1 hour 4 questions, 100 points

Question #1: (15 points)

A moist soil packed into a volume of 0.1m^3 has a dry mass of 150 kg and a water content of 10%. The average specific gravity of the grains comprising the soil is 2.60. Compute:

- a. The dry density of the soil;
- b. The moist density of the soil;
- c. The void ratio;
- d. The porosity;
- e. The degree of saturation; and
- f. The volume occupied by the water in the soil.

Question #2: (15 points)

A loose ($D_r = 15\%$) layer of sandy soil has a thickness of approximately 10m. After being subjected to dynamic in-situ compaction, the relative density D_r of the soil has been increased to 75%. Calculate the change in thickness of the soil layer. [For the soil, $e_{min} = 0.50$ and $e_{max} = 1.0$].

Question #3: (20 points)

- a. In a few sentences, discuss the significance of the three Atterberg Limits of fine-grained soils;
- b. In a few sentences, explain the basic principles underlying measurement of soil grain-size distributions using hydrometers.

Question #4: (50 points)

Consider seepage occurring around the flow-retaining structure shown below. For the soil: e = 0.8; $G_s = 2.7$; and $k = 10^{-6}$ m/second. The retaining structure is embedded 2.5m into the soil. Given the flownet, and the dimensions provided, compute the following:

- a) The volumetric flow rate beneath the structure per unit width in the out-ofplane direction;
- b) The factor of safety against heaving in the critical region;
- c) The fluid pressure at point M along the base of the structure;
- d) The vertical effective stress at point C; and
- e) The approximate magnitude and direction of the seepage forces per unit volume at the tip of the sheetpile.

To receive full credit, remember to show all of your work.

