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OverviewOverview

• Objectives: Materials that feature both high stiffness
and high viscoelastic damping (G tan δ)

What composite material structure can
provide both properties?

2. Experimental Approach:
• Based on past experience, indium-tin has well-

characterized stiffness/damping.
• Fabricate and test composites with “high” volume

fractions of SiC particulate reinforcement.

• Modeling Approach:
• Unit cell analysis of particulate composites at high

reinforcement volume fractions.
• Correspondence principle to predict effective stiffness

and damping.
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Essence of Unit-Cell Homogenization
(for heterogeneous, periodic media)

• On a given length scale at which the material is heterogeneous (micro
scale), apply an average stress or average deformation to a detailed
model (unit cell)

• For each loading, compute detailed, equilibrium microscale stress and
deformations fields.

• Take the spatial average of the “microscale” stress and deformation
fields, to get their “macroscopic” correspondent.

• Develop/calibrate a constitutive model that adequately relates the
macroscale stresses and deformations.

• When performing analysis of the system on the “macroscale” use the
“homogenized” constitutive model to represent the medium.
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Micro-/Macro-scale Notation

• Periodic medium and unit cell

• Microscale stress/deformation

• Averaging stress/deformation to find macroscale correspondents
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PROCESS: Deformation-Controlled Loading of Unit-CellPROCESS: Deformation-Controlled Loading of Unit-Cell

• Specify an average state of deformation ΦΦΦΦ for the unit cell.

• Apply a consistent “homogeneous” displacement field u = ΦΦΦΦ·X to unit cell.

• To achieve stress-field equilibrium on microscale, solve for the additive,

periodic, heterogeneous displacement field u*(X).

• Resulting equilibrium displacement field: u(X) = ΦΦΦΦ·X + u*(X)

• For each macroscopic state of deformation ΦΦΦΦ, compute the

corresponding macroscopic state of stress ΣΣΣΣ.

• Consider the ΣΣΣΣ versus ΦΦΦΦ behavior of the unit cell model.

• Provide and calibrate a macro-scale constitutive model ΣΣΣΣ = ΣΣΣΣ(ΦΦΦΦ).
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Symmetric, Conjugate, Macro Stress/Strain MeasuresSymmetric, Conjugate, Macro Stress/Strain Measures

• Using conjugate macroscopic stress/strain measures ensures energy
conservation between micro- and macro-scales.

• Nemat-Nassar (2000) demonstated/used conjugacy between macroscale
deformation gradient ΦΦΦΦ and the macroscale nominal stress <P>.

• It is preferred to develop constitutive models in terms of symmetric,
macroscopic stress and deformation measures. Here, we use:

• These symmetric measures satisfy the following conjugacy relationship:
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Elastic moduli of composite constituents

0.357.5 GPa20.2 GPaInSn

0.14175 GPa400 GPaSiC

ννννGE

Elastic Constants

To realize high G tan δδδδ, must achieve high
volume fractions of particulates

• consider multiple sizes of spherical particles

• consider cubical particles

• past experience with Sn matrix shows that it
does not “wet” SiC
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Typical Unit-Cell Mesh forTypical Unit-Cell Mesh for

Particulate CompositeParticulate Composite

(a) Unit-cell (b) Reinforcement only
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Framework for discussing elastic

anisotropy
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Anisotropy of E and G for spherical

reinforcement, 50% volume fraction.
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Variation of homogenized elastic constants with
orientation for different particulate-reinforced
composites with 50% SiC particle volume fraction.

35.018.684.049.2
BCC/One-sized cubical particl

es

23.421.759.856.1FCC/Two-sized particles

24.421.062.454.4
FCC/one-sized spherical particl

es

maxminmaxmin

Shear modulusYoung’s modulus

Arrangement/ Particles
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9.98499.98499.98492.7890BCC One-sized cubicles, Lower limit

4.5840.3644.5847.172BCC One-sized cubicles, Upper limit

5.2235.2235.2232.522FCC Two-sized spheres, Lower limit

5.3395.3395.3393.185FCC Two-sized spheres, Upper limit

5.3405.3405.3402.452FCC Single-sized spheres, Lower limi
t

4.5274.5274.5272.698FCC Single-sized spheres, Upper limi
t

A4A3A2A1
Type of composite

Coefficients used to fit shear modulus versus volume fraction
results.
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Summary of Results
• With polymer matrix composites best performance is

G tan δδδδ ˜ 0.23 GPa.

• With cubical SiC inclusions in InSn matrix, best
G tan δ δ δ δ ̃ 2.7 GPa

• With single-sized spherical SiC inclusions in InSn
matrix, best G tan δδδδ ˜ 1.6 GPa

• With two-sized spherical SiC inclusions in InSn
matrix, best G tan δδδδ ˜ 1.7 GPa


