Viscoelastic Damping Characteristics of Indium-Tin/SiC Particulate Composites

HyungJoo Kim, Colby C. Swan Ctr. for Computer-Aided Design, Univ. of Iowa

Roderic Lakes Engineering Physics, Univ. of Wisconsin

> 43rd AIAA SDM Conference Denver, CO 24 April 2002

<u>Overview</u>

 Objectives: Materials that feature both high stiffness and high viscoelastic damping (G tan δ)

What composite material structure can provide both properties?

2. Experimental Approach:

- Based on past experience, indium-tin has wellcharacterized stiffness/damping.
- Fabricate and test composites with "high" volume fractions of SiC particulate reinforcement.
- Modeling Approach:
- Unit cell analysis of particulate composites at high reinforcement volume fractions.
- Correspondence principle to predict effective stiffness and damping.

Essence of Unit-Cell Homogenization (for heterogeneous, periodic media)

- On a given length scale at which the material is heterogeneous (micro scale), apply an average stress or average deformation to a detailed model (unit cell)
- For each loading, compute detailed, equilibrium microscale stress and deformations fields.
- Take the spatial average of the "microscale" stress and deformation fields, to get their "macroscopic" correspondent.
- Develop/calibrate a constitutive model that adequately relates the macroscale stresses and deformations.
- When performing analysis of the system on the "macroscale" use the "homogenized" constitutive model to represent the medium.

Micro-/Macro-scale Notation

- Periodic medium and unit cell
- Microscale stress/deformation

$$\boldsymbol{\sigma}(\mathbf{X}) = \boldsymbol{\Sigma} + \boldsymbol{\sigma}^*(\mathbf{X});$$

$$\mathbf{F}(\mathbf{X}) = \mathbf{\Phi} + \mathbf{F}^*(\mathbf{X});$$

$$< \sigma^{*}(\mathbf{X}) > = 0;$$

$$< \mathbf{F}^{*}(\mathbf{X}) > = \mathbf{0};$$

 $\mathbf{F}(\mathbf{X} + n\lambda_i \mathbf{e}_i) = \mathbf{F}(\mathbf{X})$; periodicity of microscale deformation

 $\sigma(\mathbf{X} + n\lambda_i \mathbf{e}_i) = \sigma(\mathbf{X})$; periodicity of microscale stress

• Averaging stress/deformation to find macroscale correspondents

$$\Sigma = \langle \mathbf{\sigma} \rangle = \frac{1}{V} \int_{\Omega_s} \mathbf{\sigma} \, d\Omega_s;$$
$$\mathbf{\Phi} = \langle \mathbf{F} \rangle = \frac{1}{V} \int_{\Omega_s} \mathbf{F} \, d\Omega_s;$$

PROCESS: Deformation-Controlled Loading of Unit-Cell

- Specify an average state of deformation Φ for the unit cell.
- Apply a consistent "homogeneous" displacement field $\mathbf{u} = \mathbf{\Phi} \cdot \mathbf{X}$ to unit cell.
- To achieve stress-field equilibrium on microscale, solve for the additive, periodic, heterogeneous displacement field u*(X).
- Resulting equilibrium displacement field: $u(X) = \Phi \cdot X + u^*(X)$
- For each macroscopic state of deformation Φ , compute the corresponding macroscopic state of stress Σ .
- \bullet Consider the Σ versus Φ behavior of the unit cell model.
- Provide and calibrate a macro-scale constitutive model $\Sigma = \Sigma(\Phi)$.

Symmetric, Conjugate, Macro Stress/Strain Measures

• Using conjugate macroscopic stress/strain measures ensures energy conservation between micro- and macro-scales.

• Nemat-Nassar (2000) demonstated/used conjugacy between macroscale deformation gradient Φ and the macroscale nominal stress <**P**>.

$$\left\langle \mathbf{P}:\dot{\mathbf{F}}\right\rangle = \left\langle \mathbf{P}\right\rangle:\left\langle \dot{\mathbf{\Phi}}\right\rangle$$

• It is preferred to develop constitutive models in terms of symmetric, macroscopic stress and deformation measures. Here, we use:

$$\hat{\boldsymbol{\Sigma}} = \langle \mathbf{P} \rangle \boldsymbol{\Phi}^{-\mathrm{T}};$$
$$\hat{\mathbf{E}} = \frac{1}{2} [\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} - \mathbf{I}];$$

• These symmetric measures satisfy the following conjugacy relationship:

$$\hat{\boldsymbol{\Sigma}}:\dot{\hat{\mathbf{E}}}=\left\langle \mathbf{P}:\dot{\mathbf{F}}\right\rangle =\left\langle \mathbf{S}:\dot{\mathbf{E}}\right\rangle$$

Elastic moduli of composite constituents

Elastic Constants							
	E	G	ν				
SiC	400 GPa	175 GPa	0.14				
InSn	20.2 GPa	7.5 GPa	0.35				

To realize high G tan δ , must achieve high volume fractions of particulates

- consider multiple sizes of spherical particles
- consider cubical particles
- past experience with Sn matrix shows that it does not "wet" SiC

Typical Unit-Cell Mesh for Particulate Composite

(a) Unit-cell

(b) Reinforcement only

Framework for discussing elastic

Anisotropy of E and G for spherical reinforcement, 50% volume fraction.

Youngs Modulus w.r.t normal direction, 50% One-Sized Particulate Composite

Min Shear Modulus w.r.t normal direction, 50% One-Sized Particulate Composite

Variation of homogenized elastic constants with orientation for different particulate-reinforced composites with 50% SiC particle volume fraction.

	Young's modulus		Shear modulus	
Arrangement/ Particles	min	max	min	max
FCC/one-sized spherical particl es	54.4	62.4	21.0	24.4
FCC/Two-sized particles	56.1	59.8	21.7	23.4
BCC/One-sized cubical particl es	49.2	84.0	18.6	35.0

$$G = G_0(1 + A_1(\phi - \phi^{A_2}) - \phi^{A_3}) + G_1\phi^{A_4}$$

Coefficients used to fit shear modulus versus volume fraction results.

Type of composite	\mathbf{A}_{1}	\mathbf{A}_2	\mathbf{A}_{3}	$\mathbf{A_4}$
FCC Single-sized spheres, Upper limi t	2.698	4.527	4.527	4.527
FCC Single-sized spheres, Lower limi t	2.452	5.340	5.340	5.340
FCC Two-sized spheres, Upper limit	3.185	5.339	5.339	5.339
FCC Two-sized spheres, Lower limit	2.522	5.223	5.223	5.223
BCC One-sized cubicles, Upper limit	7.172	4.584	0.364	4.584
BCC One-sized cubicles, Lower limit	2.7890	9.9849	9.9849	9.9849

Summary of Results

- With polymer matrix composites best performance is G tan δ ~ 0.23 GPa.
- With cubical SiC inclusions in InSn matrix, best G tan $\delta^{\,\sim}\,$ 2.7 GPa
- With single-sized spherical SiC inclusions in InSn matrix, best G tan δ ~ 1.6 GPa
- With two-sized spherical SiC inclusions in InSn matrix, best G tan $\delta^{\,\sim}\,$ 1.7 GPa

