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SUMMARY

Unit cell homogenization techniques together with the �nite element method are very e�ective for
computing equivalent mechanical properties of composites and heterogeneous materials systems. For
systems with very complicated material arrangements, traditional, manual mesh generation can be a
considerable obstacle to usage of these techniques. This problem is addressed here by developing
automated meshing techniques that start from a hierarchical quad-tree (in 2D) or oc-tree (in 3D) mesh
of pixel or voxel elements. From the pixel=voxel mesh, algorithms are presented for successive element
splitting and nodal shifting to arrive at �nal meshes that accurately capture both material arrangements
and constituent volume fractions, and the material-scale stress and strain �elds within the composite
under di�erent modalities of loading. The performance and associated convergence behaviour of the
proposed techniques are demonstrated on both densely packed �bre and particulate composites, and on
3D textile-reinforced composites. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. The challenge

Unit cell computational homogenization methods for heterogeneous periodic media typically
involve constructing a continuum model of a composite’s heterogeneous material structure
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Figure 1. Traditional structured mesh �nite element unit cell model of
plain-weave textile with orthogonal inserts.

(Figure 1), and then applying loads to the model with imposed periodic boundary conditions
[1–3]. The same basic methods apply equally well to aperiodic heterogeneous media, with
the exception that one must generally work with stochastic realizations of the representative
volume element (r.v.e.) rather than a well-de�ned unit cell (see, for example, Reference
[4]). While these types of computational homogenization methods for composites are proving
increasingly e�ective there remain many very practical challenges to be addressed. One is that
the model of a composite’s unit cell (or r.v.e.) must adequately capture material arrangements
and constituent volume fractions as well as the local stress=strain �elds in the unit cell or
r.v.e. under a variety of loading conditions. Errors in both resolution of material volume
fractions and material-scale stress and strain �elds can lead to appreciable error in computing
the e�ective properties of composites (see, for example, Reference [5]) which means that both
types of errors require due consideration.
These requirements give rise to two inherent challenges associated with �nite element-based

computational homogenization:

• The computational cost (both required memory and the number of CPU operations)
when dealing with three-dimensional composite material systems can be considerable,
thus requiring usage of rapid and e�cient computing techniques and solvers [6];

• The development of suitable material-scale �nite element models that capture material
arrangements, interface conditions, and stress=strain �elds can be painstaking to create,
and can require considerable amounts of the analyst’s time whenever a new material
arrangement or �bre volume fraction is to be considered.

The objective of this paper is to deal with second issue in a way that facilitates extending the
realm of material systems to which computational homogenization can be readily and easily
applied. In a preceding work [7], the authors extended the works of Kikuchi and Hollister
[8–10] and Tareda et al. [11] developing and testing hierarchical pixel=voxel-based meshing
techniques and applying them to textile composites. Here the hierarchical pixel=voxel meshing
framework for periodic composites is further extended to achieve unit cell models of quadratic
triangles (2D) or tetrahedra (3D) using combinations of element splitting and nodal shifting.
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Since the proposed element splitting techniques are here presented in the context of unit
cell analysis of periodic media, the speci�c meshing concerns associated with application of
periodic boundary conditions to the unit cell model are addressed. The essential meshing and
model development methods apply equally well, however, to aperiodic media as well.
Two of the most signi�cant and challenging aspects of constructing meshes for general

unit cell analysis of periodic composites are those associated with achieving full compatibility
between the matrix and reinforcement phases (the two-way meshing problem), and that of
applying periodic boundary conditions to the unit cell (the external face-matching problem).
To highlight the general two-way meshing problem, it is helpful to consider the plane weave
composite [12] with orthogonal inserts whose unit cell is shown in Figure 1. Meshing of
the individual yarns in this unit cell model is actually quite simple, starting with a circular
cylinder for each yarn and then applying a sequence of distortion, translation, and rotation
transformations. Here this (Figure 1(b)) is called the a priori meshing of the individual
yarns. On the other hand, meshing of the polymer matrix phase between the individual yarns
in a way that achieves elements with favourable aspect ratios and yields full displacement
compatibility between the yarn and matrix phases is much more challenging. While a number
of ad-hoc and speci�c meshing algorithms can be developed to construct the polymer in�ll
for speci�c textile patterns, such algorithms typically need to be re-developed (at considerable
time cost) each time a new textile pattern is considered. Unstructured meshing techniques like
Delaunay triangulation with advancing front techniques could be used to mesh the domain
external to a given yarn, using the surface discretization of that yarn. However, as the front
begins to approach other yarns or objects, the resulting �ne mesh of nodes and elements will
not match up with the a priori surface discretization of the yarns resulting in incompatibility
of the displacement �eld at the yarn–matrix interface. The problem is that advancing front
techniques only mesh one side of a given surface, whereas for composite materials, it is
necessary that both sides of the surface be meshed in a way that achieves full compatibility.
In this sense, two-sided meshing techniques are needed.
Within the context of a standard FEM framework, attention is devoted here to solving

the two-way meshing problem for unit cell or r.v.e. models containing internal surfaces of
discontinuity. It is worth noting brie�y that recent and alternative approaches to the same
problem have treated it less as a meshing issue by focusing primarily on enrichment of the
FEM basis functions in the vicinity of the discontinuities. A few speci�c examples are those
of Strouboulis et al. [13] who developed a generalized �nite element method (GFEM) and
the works of Belytschko et al. [14–16] who developed an extended �nite element method
(XFEM) for treating general discontinuities. In these approaches, the approximation functions
in the FEM model are enriched using partition of unity concepts to incorporate local analytical
solution characteristics in the vicinity of inclusions or discontinuities. While the meshing
methods developed herein can be considered local ‘h’ re�nement methods, those just cited
correspond more closely to local ‘p’ re�nement methods.
In unit cell analysis of periodic media, the shape of the unit cell domain is typically a

parallelepiped with three pairs of external matching faces [3]. Since the unit cell repeats
itself inde�nitely to form the periodic medium, each unit cell will have six neighbouring
unit cells with which it shares common faces. In the most general of cases, one of the
most straightforward ways to achieve both periodicity and continuity of the displacement �eld
between adjacent unit cells is to require that the mesh of the unit cell have identical surface
discretizations for both surfaces of each surface pair. This insures a one-to-one correspondence

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1683–1711



1686 H. J. KIM AND C. C. SWAN

of all nodes lying on the external surfaces with the nodes on the matching pair surface. The
issues associated with achieving mesh discretizations that satisfy these criteria are those related
to the so-called external face-matching problem.

1.2. Prior works on automated meshing

A variety of what are now somewhat conventional approaches to capturing material boundaries
with triangular (2D) and tetrahedral (3D) elements have been successfully developed and used
over the past decade [17]. The classes of methods being reviewed here can be separated into
two categories, those based on (1) structured meshes and (2) non-structured meshes. Creation
of structured meshes based on transformations and mappings usually proceeds by creating a
mesh with regular polygons (2D) or regular polyhedra (3D), and then mapping the meshed
object into one of the same topology, but a di�erent shape [18, 19]. Creation of the individual
yarns of the textile composite unit cell in Figure 1(b) is an example of using mappings and
transformations on a number of di�erent objects.
In another structured approach, regular grids of nodes and cells are constructed in space,

and the object to be meshed is inserted into the same space. Those elements lying completely
outside of the space occupied by the object to be meshed are removed, while those cells
containing boundaries of the object are truncated in a manner that captures the boundary.
The recognized characteristics of the grid-base approach are that: (1) they are one-sided;
(2) the �ner the grid, the better the resulting mesh will be, since the proportion of internal
elements that are well-shaped will be higher; and (3) object features small compared to the
grid spacing size ‘h’ are lost in the meshing process. To facilitate meshing of objects with
�ne features, hierarchical grids using quadtree and octree multi-resolution approaches [20]
have been developed as extensions of grid-based approaches. The hierarchical voxel–pixel-
based meshing techniques proposed and developed in Reference [7] are two-sided hierarchical
structured grid techniques.
In unstructured meshing, so-called Advancing Front Techniques [21, 22] based on Delaunay

Triangulation [23, 24] are quite common. The �rst problem to be addressed with advancing
front techniques is constructing a description of the meshing domain’s boundary in terms of
discrete data segments such as line segments (2D) or triangles (3D). In the data segments,
the nodal sequence must be carefully chosen to distinguish between the interior and exte-
rior of the meshing domain. Starting from the exterior boundaries and working inward, the
advancing front techniques then �ll the interior domain with triangles or tetrahedrons using
Delaunay triangulation. In such approaches, the domain being meshed is typically de�ned by
its boundaries, and only the domain on one-side of the boundary is actually meshed. Since
both sides of material boundaries must typically be meshed for micro-mechanical analysis of
composite materials, the one-sided methods cited above do not appear well suited for analysis
of composite materials.
A major issue with triangulation techniques is ensuring that individual elements have quality

shapes. Tests on Jacobian determinants have been essential to identify poorly performing
elements, but when dealing with higher order displacement �elds, the numerical performance
of the mesh is also very sensitive to obtuse angles as shown in Reference [25]. Common
quality indicators based on element geometry, and frequently used in pre- and post-processing
mesh improvement schemes have thus been developed [24, 26]. Despite the good properties of
triangulation techniques, they still require much user preprocessing both to determine material
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boundaries and to adjust the mesh size. Attempts to extend triangulation techniques to 3D
modelling are still ongoing with one of the major issues being the degeneration of element
shapes and aspect ratios under repetitive local mesh re�nements [27–29].

1.3. Proposed new methods

Owing to the concerns raised above with existing automated meshing techniques, voxel-based-
meshing techniques were considered [7] due to their many attractive characteristics, including
two-sidedness and the ability to achieve matching discretizations of external faces. Despite
these positive attributes, voxel-based techniques, since they are non-conforming and two-sided,
necessarily use elements that generally contain more than one material to resolve material
interfaces. Owing to the uncertainty on how to prescribe material properties for these het-
erogeneous elements containing more than one material, the convergence characteristics of
voxel-based meshes are somewhat slower than might be achieved with conforming meshes
that employ only homogeneous elements, with each containing only a single material. In this
work, we therefore attempt to combine the positive attributes of voxel-based meshing with
the positive attributes of conforming meshes.
The proposed methods make usage of appropriate material domain identi�cation functions

(MIDFs). Once such functions are developed, a hierarchical pixel or voxel mesh of any
desired resolution can be developed using the techniques described in Reference [7]. Since
the pixels or voxels in the vicinity of material interfaces will contain a mixture of materials,
it is desirable to subdivide them into homogeneous triangles or tetrahedra. This is done in
two stages. In the �rst, all pixels or voxels are subdivided into triangles or tetrahedra and the
resulting mesh is called the base triangle mesh or the base tetrahedral mesh. The pre�x base-
is used to indicate that base-triangles or tetrahedra cannot necessarily be used in the �nal mesh
since each could contain more than one material. In the second stage, those base triangles or
tetrahedra that are heterogeneous are modi�ed using both nodal shifting and element splitting
techniques to achieve a mesh of homogeneous triangles or tetrahedra.
The rationale behind using a background mesh of hierarchical pixels or voxels is that such

geometric objects can be successively re�ned any number of times without any degradation
of their shapes or aspect ratios. Though there are several well-known ways to subdivide
triangles and tetrahedrons into �ner ones while preserving the original favourable shape and
aspect ratio, the reliance on and successive re�nement of a background mesh of hierarchical
pixels or voxels is used to accommodate data hierarchy. Consequently, instead of re�ning
the triangular or tetrahedral mesh directly, the background pixel or voxel mesh is re�ned
using hierarchical quad-tree or oc-tree data structures and then the re�ned pixels or voxels
are subdivided again into triangles or tetrahedra. Note that this approach and the resulting data
hierarchy facilitate the realization of unit cell meshes with external face-matching properties.
In the proposed meshing techniques, the concept of MDIFs play a central role in process

automation, since they hold all the information describing the arrangement of materials in
the composite. Without MDIFs, most unstructured meshing techniques require discrete data
segments [such as least-quali�ed elements with Delaunay triangulation; exterior meshes with
advancing front methods] to characterize the material boundaries. Such discrete data segments
must be updated and augmented as mesh re�nement proceeds. An additional bene�t of MDIFs
is that they enable resolution of position-dependent anisotropy. For example, in the case of
textile composites, the yarns are essentially uni-directionally aligned �bre–matrix composites
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Figure 2. De�nition of MDIFs.

that feature strong transverse isotropy with much higher sti�ness and strength in the longitu-
dinal direction than in transverse directions. Moreover, since individual yarns are warped to
create an interwoven reinforcement structure, the axis of transverse isotropy changes smoothly
with distance along a given yarn, which makes anisotropy position-dependent. Note that when
the MDIF is of analytic form it can provide the axial-direction of transverse anisotropy at
any point in yarn’s domain.
In this work, �nal meshes are generated using bi-quadratic triangular elements and tri-

quadratic tetrahedral elements. There are numerous advantages to using such elements over
linear triangles and tetrahedra. First the numerical performance of such elements is superior to
that of linear elements, since they are less prone to mesh-locking phenomena [30]. Secondly,
quadratic elements can potentially facilitate the resolution of highly curved material interfaces,
thus resulting in reduced meshing errors associated with volume fraction truncation.

2. DESCRIPTION OF NEW MESHING TECHNIQUES

2.1. The material domain identi�cation function

Most composites are typically fabricated with continuous and=or discrete reinforcing �bres or
particles embedded in a continuous matrix material. In a three-dimensional spatial domain,
the material region occupied by the R-th reinforcing �bre or particle can be described math-
ematically either with a single function FR(X) :�s �→�, or a set of di�erent functions as
follows:

�R= {X∈�S |FR(X)¡0} (1)

These mathematical representations permit one to test whether any given material point lies
inside of a speci�c reinforcing object R (Figure 2) or outside of that object. Speci�cally, a
material point X lies inside of the R-th reinforcing object when FR(X)¡0 and either outside
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of the yarn or on the boundary otherwise. Furthermore, at least one material interface always
lies between two points that have function values of di�erent sign.
In general, a composite material’s unit cell will contain a �nite number of NR di�erent

reinforcing objects. Mathematically, the functions FR describing each of these objects can
be combined to yield a function that takes material points in the unit cell as arguments and
returns the value of the reinforcing object in which that point lies. Such functions are here
called MDIFs, and have the following typical form.

M (X)=

{
J i� FJ (X)¡0 and J ∈{1; 2; 3; : : : ; NR}
0 i� FJ (X)¿0 ∀J ∈{1; 2; 3; : : : ; NR}

(2)

In this way, whenever the MDIF returns a value of zero, the argument point is taken to lie in
the matrix phase, and when the MDIF returns a positive value, it lies in one of the composite’s
reinforcing objects. An underlying assumption here is that the material description functions
of Equation (1) do not intersect.
Although in the current work it is assumed that analytical expressions for the MDIFs are

available, there are cases where analytical MDIFs are not available but rather must be derived
from CT-scans of the heterogeneous domains to be meshed. In such cases, the MDIFs would
need to be derived from material density values provided at discrete grid points [9–11] that
are independent of the model to be developed. If the material density � throughout the domain
were interpolated using suitable basis functions associated with the grid points, then material
interfaces could be identi�ed as those surfaces across which material density crosses de�ned
threshold values. Accordingly, a given spatial point X in the model domain could be identi�ed
with a speci�c material J if the density at X corresponds to that of material J . That is,

M ((X)=

{
J if �(X)∈ [�J − 1

2�J ; �J +
1
2�J ) and J ∈{1; 2; : : : ; NR}

0 otherwise
(3)

where �J denotes the mean density of the J -th material in the domain, and �J denotes a range
of density centred about �J to be associated with material J .
In the mesh of a unit cell model, the fraction of each element that is occupied by a given

reinforcing object can be determined to any desired level of precision by sampling material
points from that element either randomly and evaluating Equation (1). Thus for each �nite
element comprising the composite’s unit cell, one can readily determine a volume fraction
associated with the reinforcing object of interest. In the limit of in�nite mesh resolution of the
unit cell (N→∞) the reinforcing object volume fraction associated with each element tends
to discrete values of 0 and 1. However, for practical mesh resolutions, many of the elements
will typically contain intermediate reinforcement volume fractions in the range �R ∈ (0; 1).
Another important issue when analysing certain classes of materials such as textile com-

posites is that of material hierarchy. A composite material is made of one or more distinct
materials, and one or more of these materials can themselves be composites whose e�ective
properties are anisotropic. In the speci�c case of textile composites, the yarns are essentially
uni-directionally aligned �bre–matrix composites that feature strong transverse isotropy with
much higher sti�ness and strength in the longitudinal direction than in transverse directions.
Moreover, since individual yarns are warped to create an interwoven reinforcement structure,
the axis of transverse isotropy changes smoothly with distance along a given yarn. When an
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anisotropic material phase occupies a given element e, the orientation of the material phase
m in that element is sampled at the centroid �Xe of the element. The director d( �Xe) for
axisymmetry of a transversely isotropic material at centroid �Xe is a unit vector aligned with
that material’s local axial direction.
The textile composite unit cell model (Figure 1) is composed of four woven yarns and

nine orthogonal inserts. It is here assumed that each yarn was initially a straight cylinder with
an elliptical cross-section, but then deformed so that the centreline curve is sinusoidal and
so that cross-sections remain orthogonal to the original axis of the cylinder (Figure 3). In
addition, the centreline curve of the yarn lies on a user-de�ned, ��—plane de�ned by three
points A; B and C. Points A and B are the two end points of the yarn’s centreline axis and C
is an auxiliary point that determines the plane. The mathematical description of each woven
yarn in local co-ordinates can be written as

�R = {X |FR(X)¡0}
= |^|F̂R(^)¡0} (4a)

where

F̂R(^)=
(
�− CL(�)

r�

)2
+

(
�
r�

)2
and centreline CL(�)= l� sin

(
2��
l�

)
(4b)

In the preceding, r�; r� are radii of the yarn’s elliptical cross-section in local directions �; &,
respectively, and l�; l� are the amplitude and wavelength of the sinusoidal curve CL(�) that
de�nes the centreline of woven yarn object in local co-ordinates �− � (Figure 3).
For each yarn, the transformation matrix Q between XYZ-co-ordinates and ���-co-ordinates

is

^=Q · (X −XA) (5)

Since yarns are assumed to have transversely isotropic material properties, only the material
director in the �bre direction, speci�ed with respect to the local ��� co-ordinate system, is
needed. The �bre director is assumed parallel to the yarn’s centreline curve and is constant
over each elliptic cross-section perpendicular to the �-axis. Accordingly, the material director
of a sample point (�; �; �) in ���-co-ordinates can be expressed as

d̂(^)= 1√
1 +

((
2�l�
l�

)
cos

(
2��
l�

))2 ·
(
1;
(
2�l�
l�

)
cos

(
2��
l�

)
; 0
)

(6)

The material director is then transformed into the XYZ-co-ordinate system as follows:

d(X)=QT · d̂(^) (7)

2.2. Construction of the background pixel=voxel mesh

In this work, it is assumed that a given unit cell model can initially be meshed with hierarchi-
cal pixel (in 2D) or voxel (in 3D) meshing techniques such as those described in Reference
[7]. The hierarchy of the mesh is assumed to be described in an appropriate tree structure
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Figure 3. Description of a speci�c MDIF for warped textile yarns.

where each element has either children or parents, or both. If it is assumed that NR distinct re-
inforcing objects with appropriate MIDFs comprise the unit cell model, then each pixel=voxel
in the model will have NR independent volume fraction values. If, for a given element, all
of these values are either zero or unity, and their cumulative sum is also zero or unity, then
that element will be said to be homogeneous in the sense that it is completely occupied by a
single reinforcing object. Elements not satisfying this criterion are said to be heterogeneous.
The pixel=voxel mesh can be successively re�ned uniformly using bisection techniques, until
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hanging 
node 

transition 
element 

center node 

(a) (b)

Figure 4. Splitting patterns for a pixel mesh into a base-triangle mesh: (a) pixel
mesh; and (b) base-triangle mesh. Pixels with hanging nodes are called transition-pixels

(shaded) and are given additional centre nodes to facilitate splitting.

most all pixels=voxels are su�ciently homogeneous. Alternatively, the mesh can be selectively
re�ned, where only the heterogeneous elements and perhaps their neighbours, are succes-
sively bisected until a su�cient degree of interface resolution (and element homogeneity) is
achieved.
With non-conforming pixel=voxel meshing techniques, the number of re�nement cycles (in

which some or all pixels=voxels are bisected) needed to clearly de�ned material interfaces can
be very signi�cant, resulting in FEM models that are very large. Alternatively, after a few
cycles of re�nement, it may be possible to split each pixel=voxel into triangles and tetrahedra
that with a bit of additional manipulation can be made materially homogeneous.

2.3. Construction of base-triangular=tetrahedral elements

The fundamental idea at this stage of meshing is to split all pixels into triangles and all
voxels into tetrahedra without regard to the location of material interfaces. In two dimensions,
individual four-noded pixels without hanging nodes can simply be diagonally bisected with
no additional concerns about displacement �eld continuity between adjoining triangles, and
if the original pixels are square, then the triangles resulting from splitting will have aspect
ratios of

√
2, where here aspect ratio is de�ned as the ratio of maximum to minimum edge

length. When the pixels have hanging nodes (Figure 4), however, then it necessary to add
a new central node. Triangular elements are then constructed out of the new centre node
and all edge segments comprising the pixel’s boundary. The essential techniques used in
subdivision of pixels into triangles generalize directly to three-dimensions where voxels and
their quadrilateral faces are split into tetrahedra.
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Figure 5. Patterns for splitting a voxel into base-tetrahedra without introducing
any new nodes: (a) Hex5-even; (b) Hex5-odd; and (c) Hex6.

In three-dimensions, achieving compatibility of the displacement �eld or matching of face
nodes between elements requires some caution. As shown in Figure 5 there are at least
three techniques for splitting a voxel into tetrahedra without introducing any new nodes.
The splitting pattern called HEX6 has the good property of nodal face-matching between
neighbouring elements in that cutting edges of the faces on opposing faces of the voxel
are always the aligned. The HEX5-even and HEX5-odd splitting patterns are alternatively
applied such that the diagonal edges cutting opposing faces of the voxel are never aligned,
producing possible mis-matching of nodes and displacement �elds between two elements
descending from two adjacent voxels. Alternatively, if an alternating HEX5 even–odd splitting
scheme is used, then the problem of face-matching can be solved. In the present work,
HEX5 even–odd is employed as the basic splitting pattern for creating base-tetrahedral from
voxels.
When cube-shaped voxels are split into tetrahedra using HEX5, the maximum aspect ratio

of the tetrahedra is
√
2 whereas the maximum aspect ratio with HEX6 is

√
3. Furthermore,

the alternative diagonal cutting directions with HEX5 accommodate face-matching within the
mesh when voxels with hanging nodes are subdivided into tetrahedra.
When a voxel element with a hanging node on any of its faces or edges is to be subdivided

into tetrahedra, then a body-centred node is �rst added to that voxel (Figure 6). The new
central node and the six faces of the voxel then form six pyramidal polyhedra. The subdivision
of the faces of the voxel (or the bases of each pyramid) then proceeds just as the subdivision
of pixels above. Those faces with hanging nodes along any of their edges have a face-centred
node added, and are then subdivided into triangles. The triangles of each voxel face, and
the body-centred node of the voxel are then grouped to divide the voxel into a number of
tetrahedra.
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Figure 6. Splitting patterns for transition voxels with hanging nodes: (a) voxel mesh with
a transition element having hanging nodes; (b) addition of a body-centred node; and

(c) splitting of transition voxel into tetrahedral.

It is worth mentioning that once the base triangles and base tetrahedra are formed, the
meshing data structure employed records the parent pixel or voxel from which each has
descended. Consequently, if it is subsequently determined that the mesh of base triangles or
tetrahedra is still not su�ciently re�ned to capture the �ner details of material arrangements,
the meshing algorithm resorts back to further re�nement of the background pixel=voxel mesh.
In this case, information from speci�c triangles and=or tetrahedra can be sent back to their
parent pixels or voxels for selective mesh re�nement of the background mesh.

2.4. Node-shifting and splitting of base triangles and tetrahedra

2.4.1. Nodal proximity regions and shifting criteria. For those base triangles or tetrahedra
that are heterogeneous, it would be most favourable if their existing nodal points could simply
be translated or shifted to coincide with their closest point projection onto the nearest mate-
rial interface. In this way, a �nal homogeneous, conforming mesh could be achieved without
adding any new nodes or elements, but simply by modifying nodal co-ordinates (conformal
mapping). Note that nodal shifting without considering the shape of element domain joining
the node could easily result in severe element distortion and bad element aspect ratios. There-
fore, nodal shifting must be coupled together with the further splitting of base triangles and
tetrahedra to achieve materially homogeneous elements.
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Figure 7. Schematic of proximity radii and proximity regions. Nodes belonging only to smaller elements
have smaller proximity radii and regions.

The criteria on when to simply shift nodes, when to split the elements, and when to
do both makes usage of a proximity radius, which is simply the maximum distance that
a given node can be shifted to lie along a material interface (Figure 7). The area around
each node swept out by its proximity radius is called its proximity region. The proxim-
ity radius for each node is speci�ed heuristically as some fraction of the minimum edge
length of the elements to which it belongs. In this way, nodes that serve as vertices of only
large elements will have large proximity radii and regions, while nodes serving as vertices
for small elements will have small proximity radii and regions. There is some �exibility
in choosing the size of the proximity radius. Selection of the radii too large can result in
degeneration of the base triangles or tetrahedra into those having undesirably large aspect
ratios. On the other hand, selection of the proximity radii too small can result in unneces-
sary splitting of the base triangles or tetrahedral into those with very large aspect ratios as
is shown in Figure 8. In this work, the proximity radius for each node has been success-
fully taken as one-third the minimum edge length of all the base elements to which the node
belongs.
Once the base-mesh and nodal proximity regions have been established, a multi-dimensional

search process is undertaken for each node in the mesh to determine whether or not a material
interface passes within that node’s proximity region. To facilitate the search of each node’s
proximity region, eight discrete search directions are used in two dimensions, and 27 are
used in three dimensions (Figure 9). These numbers of search directions are selected only
for implementational convenience and the need to have them evenly distributed over a plane
(in 2D) or space (in 3D). Larger values that provide uniform directional coverage could also
be considered, although the ability of these algorithms to resolve object boundaries is less
dependent on the number of search directions than the size of base-elements around that
object’s material interface. Generally, as the curvature of a material interface increases, the
size of elements around it will decrease considerably.
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Figure 8. Example showing how proximity radius too small leads to high aspect ratio element after
element splitting: (a) with interface node A having an adequate proximity radius no splitting of BAC
is needed but with node shifting BAC⇒BQP with small aspect ratio; and (b) with interface node
A having a proximity radius too small, edge-cut E is introduced close to node A to capture material
interface. The original element, triangle BAC⇒BEP ∪ EAP with EAP having a large aspect ratio.

Figure 9. Nodal point and its proximity region in two-dimensions. Eight search directions are de�ned,
and bisection searches are used to �nd interface points within the proximity region.

For each search direction, the point at the periphery of the proximity region is tested to
see if it lies in the same material as the node under consideration. If the periphery point
lies in a di�erent material, a conventional bisection search is performed using the discrete-
valued MDIFs that return the value of the reinforcing material object in which a test spatial
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point resides. Points lying in the search direction and on a material interface are found by
determination of the points at which the MDIFs change value. Since the search is performed
in a number of di�erent directions, a multitude of interface points can potentially be found
for each node. In this case, the search direction with the minimum distance to a material
interface is considered and the others are discarded. When a node has a single material
interface passing through its proximity region, that node is then designated as an interface
node. The co-ordinates of interface nodes are then changed to those of the nearest interface
point found in the search, and the two materials associated with the interface are recorded in
a nodal data structure. For non-interface nodes, the co-ordinates remain unchanged, but the
material in which the node resides is recorded in the nodal data structure.
When the search of a node’s proximity region �nds more than one material interface, it

is clear that the vicinity around that node needs a higher degree of mesh resolution than
exists. Accordingly, the node is marked as a multi-interface node. If after the searching of
all nodes’ proximity regions there exist any multi-interface nodes, the meshing process then
reverts back to the preceding voxel-based mesh, and those voxels to which the multi-interface
nodes belong are further subdivided. The meshing process then returns once again to the voxel-
splitting process to form the base tetrahedra. This cyclic process can continue as long as is
necessary to achieve a base tetrahedral mesh with no multi-interface nodes.

2.4.2. Element splitting techniques. A homogeneous base-triangle or tetrahedron is one in
which all vertex nodes lie either in the same material or on the material interface, whereas a
heterogeneous element is one in which not all vertex modes lie in the same material. When a
base triangle or tetrahedron is heterogeneous, it is necessary to determine where the material
interface(s) passes through the element. For heterogeneous elements, a bisection search, again
using the MDIF, is thus performed along all edges connecting vertex nodes residing in di�erent
materials.
Whenever a heterogeneous element has a material interface intersecting one of its edges at

a point not residing in either of the end-node’s proximity regions, then it may be necessary to
split or subdivide that element into sub-triangles or sub-tetrahedra. In the current framework,
two very simple rules are used to guide the splitting of triangles and tetrahedra:

1. Cuts are never introduced along edges connecting end-nodes, where one or both of the
nodes is an interface node; and

2. Triangles, in both two and three dimensions, are only split using one or three edge-cuts,
but never two cuts [28].

The �rst rule precludes the creation of extremely slender elements with high aspect ratios,
and the second rule precludes tetrahedral face-mismatching in three-dimensions (Figure 10).
Although there are generally ten ways to split tetrahedra using edge-cuts (Figure 11), only four
of these splitting patterns are actually permitted under the second rule cited above. Whenever
a triangular element or face has two edges with interface points, an additional point must be
added to the third edge to facilitate the auxiliary edge-cut. In three-dimensions, the addition
of an auxiliary edge-cut to one face of a tetrahedron can create a total of two edge-cuts on
another of its faces. In that case, an additional edge-cut would be required on that triangular
face. This iterative process should be continued until no faces of the tetrahedron in question
have two edge-cuts.
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1 edge–cut 2 edge–cut 3 edge–cut

interface with face–matchinginterface without face–matching

(a)

(b)

Figure 10. General splitting patterns for triangles: (a) one, two, and three edge-cuts; and (b) illustration
of how two-edge cuts can lead to face mis-matching between adjacent tetrahedra in three-dimensions.

(a) 1:2 (b) 1:4 (c) 1:3 (d) 1:4

(e) 1:4 (f) 1:4 (g) 1:5 (h) 1:6

(i) 1:6 (j) 1:8

Figure 11. Ten general patterns for splitting a tetrahedron into sub-tetrahedra using edge bisection. Of
the ten general patterns, only four (a, b, d, and j) are permissible due to the requirement on triangle

splitting with either one or three edge-cuts.
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Figure 12. Schematic of adjacent unit cells for a periodic medium, with: (a) virtual pairs
of nodes at the unit cell’s eight vertices; (b) virtual pairs of nodes along edges; and

(c) virtual pairs on exterior faces.

2.5. Periodic boundary condition considerations

In unit cell computations, periodic boundary conditions are generally applied to those nodes
on the exterior faces of the model. This creates a need for displacement compatibility on
opposing exterior faces of the unit cell (Figure 12).1 For example in three dimensions, since
all eight nodes at the vertices of the unit cell model occupy the same relative location within
the unit cell (Figure 12(a)), they must all experience the same periodic displacement u∗ [3].
These eight nodes can be associated with each other using data structures here denoted as
virtual pairs [7]. Each vertex node of the unit cell is a member of seven virtual pairs, and thus
each has seven virtual twins. Nodes along unit cell edges are members of three virtual pairs,
and thus have three virtual twins (Figure 12(b)) while nodes lying on the interior of exterior
surfaces of the unit cell are members of only one virtual pair and thus have only a single
virtual twin (Figure 12(c)). When nodes are members of virtual pairs, they are enslaved to
each other and their degrees of freedom u∗ are identical. E�ectively this is achieved simply
by giving the twin nodes’ degrees of freedom identical equation numbers in the system of
discrete �nite element equations.
Beyond using virtual pairs, it is also necessary that the mesh discretizations of corresponding

external faces be identical. This is facilitated from the outset by choosing the initial number
of voxels in the principal co-ordinate directions of the initial mesh to be even. When the
voxels are then split into tetrahedra using the alternating HEX5-even and HEX5-odd meth-
ods, the base meshing of the unit cell exterior faces will be compatible. Figure 13 shows a

1In the event that aperiodic media are being considered and periodic boundary conditions will not be imposed,
model development can proceed straightforwardly neglecting all of the issues pertaining to periodicity raised in
Section 2.5.
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Figure 13. Schematic demonstrating inability to achieve displacement �eld periodicity on opposing
exterior faces of the unit cell domain �s when the faces have di�erent mesh discretizations.

simple example where corresponding external faces of a unit cell are meshed incompatibly.
In this example, even if the virtual node pairs (A–A′, B–B′, C–C′ and D–D′) are all properly
enslaved, the displacements u∗ of interior virtual pair points P and P′ will not necessarily
be equal since they are each functionally dependent on di�erent sets of nodes that are not
corresponding virtual pairs.
In the current framework, the mesh of the unit cell is constructed in three stages: (1) creation

of the background pixel=voxel mesh; (2) splitting of pixels=voxels into triangles=tetrahedra to
form the base-triangular or tetrahedral mesh; and (3) additional node-shifting and element
splitting to achieve the �nal triangular=tetrahedral mesh. It is implicitly assumed that the
background pixel=voxel mesh has already been established using the techniques described
at length in Reference [7] and that this background mesh has produced identical discretiza-
tions of exterior faces of the unit cell, and that all nodes on the exterior faces are members
of between one and seven virtual pair groups. From this point, the creation of the base-
triangular=tetrahedral mesh, and the �nal mesh proceed as described above, with the caveat
that the following considerations must be heeded to facilitate enforcement of periodicity on
the unit cell response:

1. Whenever a new node is introduced to an exterior face of the model the corresponding
virtual pair nodes must also be added on opposing faces.

2. The shifting (if any) for two nodes that are members of the same virtual pair should be
identical.

The �rst consideration above assures that each node on the exterior faces of the unit cell will
have at least one virtual twin. The second permits exterior faces of the unit cell to undergo
compatible distortion during the node-shifting process. Figure 14 illustrates the identical node-
shifting of virtual twins N and N′. Although this could conceivably be achieved by considering
virtual replicas of all reinforcing objects in the unit cell, it is much simpler to make virtual
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Figure 14. Identical node-shifting of virtual twins on exterior boundary of unit-cell.

Figure 15. Nodes N and N ′ are designated as multi-interface nodes, since two material interfaces pass
through their proximity region.

twins share the same node attributes (i.e. the designation as interface nodes with the same
position shift).
When a node has more than one material interface passing through its proximity region, it

is designated a multi-interface node, and the base voxels to which it belongs must undergo
further re�nement (Section 2.4.1). For nodes lying on the external faces of the unit cell the
detection of multiple interfaces passing through the nodal proximity region can be a challenge
(Figure 15). Strictly speaking when searching the proximity region of a node on the unit cell
boundary, one should consider not only all of the reinforcing objects in the unit cell, but also
their virtual replicas in adjoining unit cells. In the example shown in Figure 15, node N and
its virtual twin N ′ would be designated multi-interface nodes and the mesh would be re�ned
until this was no longer the case.

2.6. Symmetry reductions of unit cell models

Unit cells of periodic media will often feature one or more planes of symmetry that can be
exploited to achieve considerable e�ciency in unit cell analysis, since only a fractional portion
of the complete unit cell �s needs to be meshed and modeled. When developing a reduced
unit cell model that exploits symmetry, the fact that heterogeneous periodic displacements u∗
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mirror image

Ω1

Ω2

P

N Ω2’

P’

symmetry axis or symmetry plane

left half of unit cell 

Ω1

Figure 16. Symmetric unit cell of which only half needs to be modelled. During meshing, nodes along
the symmetry plane can be shifted only within the plane.

vanish on the symmetry planes means that the opposing exterior surfaces of the model need
not have identical mesh discretizations. In such cases, many of the periodicity considerations
in the preceding subsection can be neglected. Nevertheless, in meshing the reduced unit cell
model, when nodes lying on any of the symmetry plane(s) are found to be interface nodes,
they can only be shifted to a new position within the symmetry plane. As the example of
Figure 16 shows, when the position shift of an interface node on a symmetry boundary would
move it o� of that boundary, then the mesh in the vicinity of that node requires further
re�nement to resolve the relevant material interfaces.

2.7. Positioning of intermediate nodes in quadratic elements

In all of the preceeding discussion, the positioning of nodes and the description of elements
has been entirely in terms of the nodes at the vertices of triangular and tetrahedral elements.
As stated at the outset, six-noded quadratic triangular elements (in 2D) and 10-noded quadratic
tetrahedral elements (in 3D) have been used in this e�ort since they have superior numerical
performance characteristics with respect to mesh-locking phenomena. The positioning of the
intermediate nodes along all edges of triangular or tetrahedral elements remains to be speci�ed.
Clearly, the simplest way to position the intermediate nodes on element edges is to place
them at the mid-point of the line segment formed by the end nodes. In the case of elements
with edges whose ends are interface nodes, however, a better approach might be to position
the intermediate nodes so as to lie along the same material interface as the end nodes. In
doing so, the mesh of the unit cell model would achieve piecewise quadratic, as opposed
to piecewise linear, resolution of material interfaces. In principle this would reduce the error
associated with truncation of reinforcement phase volume fractions when their interfaces are
represented in piecewise linear or piecewise planar approximations. This issue is not as simple
as it appears to be on its face, however, since direct pursuit of such an approach often leads
to quadratic elements with negative Jacobian determinants [31]. Accordingly, in all of the
example problems solved below, the intermediate nodes were simply placed at the midpoints
of the line segments connecting the two vertex nodes.
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Figure 17. Quarter unit cell aligned �bre-composite mesh with two �bre sizes and two mesh-re�nement
options in 2D: (a) the minimum re�nement needed to resolve the gap between adjacent �bres is used;

and (b) re�nement exceeds the minimum needed to resolve spacing between �bres.

3. DEMONSTRATIVE RESULTS

To demonstrate the robustness and e�cacy of proposed meshing techniques, three di�erent
types of composite unit-cells are modelled here: (1) an aligned �bre composite at very high
�bre volume fraction, achieved using multiple �bre diameters; (2) a particulate composite at
moderately high volume fraction of reinforcement; and (3) a three-dimensional continuous
textile-reinforced composite material. The adequacy of the proposed meshing techniques is
explored by considering the convergence behaviour of the computed e�ective elastic constants
from the unit cell models. For the composites considered here, the geometrical complexity
of the reinforcing material objects is not a major di�culty since spheres, cylinders, and
warped yarns with elliptical cross-sections are fairly simple and straight-forward to describe
with MDIFs. In the examples presented, a more immediate concern is that caused when
the reinforcing objects are packed very tightly with minimal spacing between them, as this
typically requires high degrees of mesh resolution simply to capture the material interfaces.

3.1. Densely packed aligned �bre composite

In this example, the material system is a composite of aligned silicon–carbide �bres (Si–C)
and an indium–tin matrix (In–Sn). Such composites are of interest because of the high sti�-
ness of the �bres and the high viscoelastic damping characteristics of the matrix [32]. To
achieve both high sti�ness and high mechanical damping behaviours, composites with high
�bre volume fractions are considered. One way to achieve this is to employ aligned �bres
with di�erent diameters to enhance their packing in the transverse plane. Using two di�erent
diameters, a �bre volume fraction of 92% is obtained with the unit cell model whose meshes
are shown in Figure 17. Since the unit cell features two planes of symmetry, unit cell analysis
can be performed on 1=4 unit cell models. Since the �bres are extremely close together in
this model, a moderately high degree of mesh re�nement is required to resolve the spacing
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Table I. Computed e�ective moduli of aligned-�bre composite with
two �bre diameters and a 92% �bre volume fraction.

Properties of SiC=InSn �bre composite

E � (Poisson’s ratio)

Fiber (silicon-carbide) 400 GPa 0.14
Matrix (indium-tin) 20:3 GPa 0.35

Computed e�ective material properties
(values are identical to three �gures with both meshing options)

C11 (GPa) C12 (GPa) C66 (GPa)
253 65.7 94.9

Mesh speci�cations with di�erent mesh re�nement options

Number Number
of elements of nodes

Minimum re�nement 2921 1424
Additional re�nement 12329 6124

between �bres. The computed e�ective elastic moduli of Table I indicate that the mesh that
is just su�ciently re�ned to resolve the gap between �bres is also adequate to provide elastic
moduli to three digits of precision.

3.2. Particulate composites

In this example, the methods are applied in three-dimensions to create the unit cell of a
particulate composite of silicon–carbide (Si–C) and indium–tin (In–Sn). The inclusions are
assumed to be spherical, of uniform size, and arranged in a face-centred cubic (FCC) pattern,
which gives up to about 70% volume fraction when uniform particles are closely packed.
Although the e�ective material constants of such a composite feature cubic symmetry, they
are not isotropic. Owing to cubic symmetry, the e�ective elastic constants are identical in
each of the composite’s principal planes of material symmetry. The three e�ective elastic
constants computed for the medium are the principal Young’s modulus E(=E1 =E2 =E3),
the Poisson’s ratio in the principal planes �(= �12 = �23 = �31) and the shear modulus in the
principal planes G(=G23 =G13 =G12). These �rst two constants can be determined using
1=8 unit cell models, whereas the shear modulus can be computed using 1=4 of the unit
cell as shown in Figure 18. These meshes for these partial unit cell models are shown in
Figure 19.
The convergence behaviour of the computed elastic constants in Figure 20 shows that the

e�ective sti�ness moduli increase with increasing mesh re�nement. This potentially surprising
behaviour is due to the fact that intermediates nodes of the quadratic tetrahedral elements were
positioned midway along element edges, leading to truncation of the SiC volume fraction at
low mesh resolutions.
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Figure 18. (a) Face-centred cubic arrangement of spherical SiC particles in the composite; (b) 1=8 unit
cell model and boundary conditions used to compute extensional moduli; (c) extensional loading on

rotated unit cell to obtain shear moduli; and (d) dimensions of the reduced unit cell model.
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Figure 19. FE meshes for particulate SiC-InSn composite (50% particle volume fraction): (a) isometric
view of model used in unit cell analysis to compute extensional moduli of particulate composite; and

(b) isometric view of model used to compute shear moduli of the same particulate composite.

3.3. Textile composite

As a �nal example, the proposed meshing techniques are applied to unit cell analysis of
the textile composite whose unit cell was originally shown in Figure 1. Here the linear
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Figure 20. Convergence of computed characteristics of particulate SiC-InSn composite with mesh re�ne-
ment (50% particle volume fraction): (a) principal Youngs’s modulus E; (b) principal shear modulus

G; (c) Poisson’s ratio �; and (d) actual particulate reinforcing volume fraction.

elastic moduli of the textile are computed, and in other forthcoming works, the geometrically
non-linear response characteristics of the composite are also computed with the same unit
cell model. The dimensions and geometrical descriptions of yarns and the unit cell model
accompany Figure 3 and are presented in Table II. The yarns are modelled as transversely
isotropic aligned-�bre composites with 70 and 30% volume fractions of E-glass and cast epoxy
matrix, respectively. In the unit cell model, the local �bre orientation in the yarns is taken
into account as described in Section 2.2. Since the material arrangement within the unit cell
shows orthotropy with identical properties in the 1- and 2-directions, six constants, E1 =E2,
E3, G13 =G23, G12, �13 = �23, and �12 are necessary to describe the e�ective elastic constants
of this composite. The unit cell mesh used in this analysis is shown in Figure 21, and the
computed e�ective elastic constants are presented in Table III.
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Table II. Dimensions of textile composite with 41% yarn volume fraction (cf. Figure 3).

Overall dimensions

Lx Ly Lz
40 40 15

Yarn reinforcements

Yarn Auxiliary points de�ning local Characteristic measures
index ���-co-ordinates for woven yarns

A B C l� l� r� r�

1 (−20; 10; 0) (20; 10; 0) (−20;−10; 1) 4 40 2.5 4.7
2 (−20;−10; 0) (20;−10; 0) (−20;−10;−1) 4 40 2.5 4.7
3 (10;−20; 0) (10; 20; 0) (10;−20; 1) 4 40 2.5 4.7
4 (−10;−20; 0) (−10; 20; 0) (−10;−20;−1) 4 40 2.5 4.7
5 (−20;−20;−7:5) (−20;−20; 7:5) (−20; 0;−7:5) 0 15 4.7 4.7
6 (−20; 20;−7:5) (−20; 20; 7:5) (−20; 0;−7:5) 0 15 4.7 4.7
7 (20;−20;−7:5) (20;−20; 7:5) (20; 0;−7:5) 0 15 4.7 4.7
8 (20; 20;−7:5) (20; 20; 7:5) (20; 0;−7:5) 0 15 4.7 4.7
9 (−20; 0;−7:5) (−20; 0; 7:5) (0; 0;−7:5) 0 15 4.7 4.7
10 (20; 0;−7:5) (20; 0; 7:5) (0; 0;−7:5) 0 15 4.7 4.7
11 (0;−20;−7:5) (0;−20; 7:5) (0; 0;−7:5) 0 15 4.7 4.7
12 (0; 20;−7:5) (0; 20; 7:5) (0; 0;−7:5) 0 15 4.7 4.7
13 (0; 0;−7:5) (0; 0; 7:5) (−20; 0;−7:5) 0 15 4.7 4.7

4. DISCUSSION

The methods that have been described and developed here are a direct extension of the
hierarchical voxel=pixel techniques described in Reference [7]. In the preceding work, discrete
resolution of material interfaces within composites could generally be achieved only in the
limit of in�nite mesh re�nement. Here, the background mesh of pixels and voxels can undergo
fewer cycles of re�nement, following which background hierarchical mesh of pixels=voxels
is transformed into a mesh of quadratic triangles or tetrahedra using element splitting and
nodal shifting to fall on material interfaces. Once a description of the material arrangements
in a composite is generated through the so-called MDIFs, the complete mesh generation
process can be fully automated, and need not require graphical interaction on the part of the
user.
The two-sided meshing algorithm presented here has been developed and tested in the

context of periodic, multi-material composite material systems. While it is certainly appropriate
for this application, it applies to a variety of other less specialized applications where multiple
regions of a domain must be meshed in a two-sided way that preserves the conformity between
the regions. For example, meshes for �uid–structure interaction applications could be achieved
with these techniques.
In this work, attention has been con�ned primarily to meshing with the objective of achiev-

ing high geometric �delity of material arrangements as described by the so-called MDIFs.
Though not developed and applied here, the underlying meshing data structures and rules
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Figure 21. FE mesh for unit-cell model of textile composite, isometric view;
(a) complete unit-cell; (b) matrix only; and (c) yarns only.

can be straightforwardly applied to adaptive analysis in which regions of the mesh with high
local error estimates are re�ned either progressively, or a posteriori. The attractive aspect of
the current meshing framework, however, is that as the mesh is adaptively re�ned to reduce
solution errors, it would also be re�ned in a manner that leads to enhanced resolution of the
underlying material arrangements.
If the proposed framework were to be used in adaptive mesh re�nement, speci�c triangular=

tetrahedral elements in the mesh would be tagged for re�nement in a posteriori error analysis.
The tagging for re�nement would be passed back to the parent pixels or voxels in the hier-
archical background mesh, and the background mesh would then undergo an additional cycle
of selective re�nement in which only the tagged pixels or voxels and their neighbours would
be re�ned. The re�ned background pixel=voxel mesh would then undergo transformation to a
mesh of discrete triangles and tetrahedra for further analysis.
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Table III. Computed e�ective material properties of textile composite with 41% yarn volume fraction.

Properties of E-glass �bre and epoxy matrix

E � (Poisson’s ratio)

Fiber (glass �bre) 72.4 GPa 0.20

Matrix (epoxy) 2.76 GPa 0.35

Properties of yarn (70% Fiber volume fraction)

E1(=E2) E3 G13(=G23) G12 �13(= �23) �12

Yarn 17.3 GPa 51.8 GPa 6.48 GPa 6.48 GPa 0.330 0.076

Computed moduli of textile composite

Composite 7.99 GPa 12.4 GPa 2.11 GPa 2.11 GPa 0.173 0.326

Mesh speci�cation for textile composite

Volume fraction Number of nodes Number of elements

40.7% 199 201 140 016

Some of the demonstrative examples presented above show that coarse meshes tend to
underestimate the volume fractions of convex reinforcing objects, since their boundaries are
approximated here as piecewise linear or piecewise planar. If the intermediate nodes of edges
could be positioned to fall on material interfaces, as opposed to merely the midpoint of the
segment connecting end nodes, then the quadratic elements used in this study would achieve
piecewise quadratic approximation of material interfaces. Such an approach requires some
caution, though, since if not carefully applied, it can result in triangular elements and tetrahedra
featuring negative jacobian determinants. As a future extension of this work, algorithms for
positioning the mid-nodes of 6-noded triangles and 10-noded tetrahedra so that they fall on
the same material interface as their end nodes without causing degeneration of the element
characteristics could be addressed.
One of the novel aspects of the proposed meshing algorithms presented here is the usage

of analytical material domain identi�cation functions to describe material arrangements. For
many types of composite materials, it could conceivably be quite challenging to obtain the
analytical functions to describe material arrangements. Consequently, this is a subject that
may require further investigation or development.

5. CONCLUSIONS

The proposed meshing and analysis techniques presented here are based on a novel approach
in which the material arrangements in composites are described through collections of an-
alytical functions. Since the analytical material descriptions are independent of the mesh
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resolution, the meshes can be iteratively re�ned to achieve the described material arrange-
ments with progressively increasing �delity. Good element quality is achieved in this approach
by using a background mesh of pixels=voxels that can be selectively re�ned any number of
times using edge bisection while maintaining the initial element shape and aspect ratios of
the original mesh. The excellent performance of the proposed meshing techniques has been
demonstrated on examples involving development of unit cell models for composite materi-
als with non-trivial material arrangements, and in computing the e�ective elastic constants of
these composites using �nite element analysis.
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