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Abstract
New computational methods are proposed for robust design optimization (RDO) of complex engineering systems subject to
input random variables with arbitrary, dependent probability distributions. The methods are built on a generalized polynomial
chaos expansion (GPCE) for determining the second-moment statistics of a general output function of dependent input
random variables, an innovative coupling between GPCE and score functions for calculating the second-moment sensitivities
with respect to the design variables, and a standard gradient-based optimization algorithm, establishing direct GPCE, single-
step GPCE, and multi-point single-step GPCE design processes. New analytical formulae are unveiled for design sensitivity
analysis that is synchronously performed with statistical moment analysis. Numerical results confirm that the proposed
methods yield not only accurate but also computationally efficient optimal solutions of several mathematical and simple
RDO problems. Finally, the success of conducting stochastic shape optimization of a steering knuckle demonstrates the
power of the multi-point single-step GPCE method in solving industrial-scale engineering problems.
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1 Introduction

Robust design optimization, commonly referred to as RDO,
is a prime exemplar for engineering design in the presence
of uncertainty (Taguchi 1993). Unlike a conservative design
optimization using heuristically derived safety factors, RDO
manages risks explicitly by propagating input uncertainties
to the objective and constraint functions, eventually leading
to insensitive designs. The success of RDO is well
documented in many real-world applications, such as those
found in the design of aerospace, automotive, civil, and
electronic structures, systems, or devices (Chen et al. 1996;
Du and Chen 2000; Mourelatos and Liang 2006; Zaman
et al. 2011; Park et al. 2006; Yao et al. 2011; Ren and
Rahman 2013; Chatterjee et al. 2019).
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In practical applications, the objective or constraint
functions are often described algorithmically via finite-
element analysis (FEA), which is generally expensive.
Therefore, numerous surrogate methods for RDO, encom-
passing Taylor series or perturbation expansion (Sundaresan
et al. 1995), the point estimate method (Huang and Du
2007), polynomial chaos expansion (PCE) (Shen and Braatz
2016), the tensor-product quadrature rule (Lee et al. 2009),
dimension-reduction methods (Lee et al. 2009), the poly-
nomial dimensional decomposition (PDD) method (Ren
and Rahman 2013), Kriging (Jin et al. 2003), and artifi-
cial neural network (Chatterjee et al. 2019) have appeared.
Unfortunately, the foregoing methods, including many oth-
ers not listed here for brevity, are largely predicated on
the independence assumption of input random variables.
In reality, there may exist significant correlation or depen-
dence among input variables, hindering or invalidating most
existing RDO methods available today. Indeed, ignoring
these correlations or dependencies, whether emanating from
loads, material properties, or manufacturing variables, may
produce inaccurate or inadequate designs (Noh et al. 2009).
The authors rule out Rosenblatt transformation (Rosenblatt
1952) or Nataf transformation (Nataf 1962), commonly
used for mapping dependent to independent variables, as
they may induce overly large nonlinearity to a stochastic
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response, potentially degrading the convergence proper-
ties of probabilistic solutions (Rahman 2009a). Therefore,
the existing methods must be generalized or new methods
should be developed from scratch for uncertainty quantifi-
cation (UQ) analysis and subsequent design optimization
when dealing with dependent or correlated input random
variables.

A few additional studies on design optimization under
uncertainty using a copula-based approach for dependent
variables have been reported (Noh et al. 2009; Lee et al.
2011). In particular, Noh et al. (2009) selected the Gaussian
copula to describe the dependence between random
variables. While such copula and other available variants
facilitate a practical way to deal with correlated variables,
finding the right copula when the joint distribution of
random variables is arbitrary but unknown is highly
nontrivial. More often than not, a gradient-based method,
such as sequential quadratic programming, is used to
solve the underlying optimization problem. This is mainly
because it provides fast convergence and an efficient
way to integrate optimization and stochastic simulation.
However, there are multiple choices for optimization, such
as evolutionary algorithms (Cramer et al. 2008) and swarm
algorithms (Ono et al. 2009), to name a few.

Recently, the authors introduced a practical version of
the generalized polynomial chaos expansion (GPCE) for
UQ analysis under arbitrary, dependent probability distribu-
tion of input random variables (Lee and Rahman 2020).1 A
remarkable feature of this work, in contrast to the prequel
(Rahman 2018), is that the multivariate orthonormal poly-
nomial basis functions consistent with any non-product-
type probability measure of input random variables can
be generated without the need for a Rodrigues-type for-
mula. However, the aforementioned GPCE is limited to
forward UQ analysis only. As a result, there remain three
important challenges for GPCE to address RDO problems:
(1) how to simultaneously determine design sensitivities
with statistical moments of output functions for a given
design with no added computational cost, (2) how to sidestep
repetitive calculations of statistical moments and design
sensitivities to the extent possible during design iterations,
and (3) how to markedly reduce the number of function eval-
uations or FEA in conjunction with standard gradient-based
optimization algorithms for problems with large design
spaces. Only by tackling these challenges successfully will
the GPCE method be further strengthened to effectively
solve RDO problems subject to dependent input variables.

The overarching goal of this work is to build a solid
theoretical foundation, accompanied by robust numerical

1In contrast to the existing GPCE (Xiu and Karniadakis 2002), which
accounts for only independent random variables, the authors’ GPCE
can handle dependent as well as independent random variables with
arbitrary probability distributions.

algorithms, for UQ analysis and design optimization of
complex systems subject to random input following an
arbitrary dependent probability measure. In the context of
RDO, three new design methods, aimed at solving simple
to complex problems, are proposed to meet the goal. They
are premised on (1) a GPCE for determining the second-
moment statistics of a general output function of dependent
input random variables; (2) an innovative coupling between
GPCE and score functions for calculating the second-
moment sensitivities with respect to the design variables;
and (3) a standard gradient-based optimization algorithm,
encompassing direct GPCE, single-step GPCE, and multi-
point single-step GPCE design processes.

The paper is organized as follows. In Section 2, a general
RDO problem is formally defined with associated mathe-
matical statements. In Section 3, a brief exposition of GPCE
is provided, including a three-step algorithm to construct
arbitrary measure-consistent multivariate orthonormal poly-
nomial basis and two regression techniques to estimate the
expansion coefficients. In Section 4, score functions are
defined and new closed-form formulae for design sensi-
tivities of statistical moments are disclosed. In Section 5,
three new design methods, integrating the stochastic and
sensitivity analyses and using a standard gradient-based
optimization, are introduced. In Section 6, four numerical
examples, ranging from simple mathematical functions to
an industrial-scale engineering problem, are dealt with to
investigate the accuracy, convergence properties, and com-
putational efforts of all three methods. In Section 7, the
novelty of this work and the efficiency and relevance of pro-
posed design methods are discussed. Finally, in Section 8,
the conclusions are drawn.

2 Robust design optimization

Let N, N0, R, and R
`
0 be the sets of positive integer, non-

negative integer, real number, and non-negative real number,
respectively. For a positive integer N P N, denote byRN the
N-dimensional real vector space. Finally, denote by A

N Ď

R
N and ĀN Ď R

N two bounded or unbounded domains.
Consider a measurable space pΩd,Fdq, where Ωd is

a sample space and Fd is a σ -field on Ωd. Defined
over pΩd,Fdq, let tPd : Fd Ñ r0, 1su be a family of
probability measures where, for M P N and N P N,
d “ pd1, ¨ ¨ ¨ , dMqT P D is an M-dimensional design
vector with non-empty closed set D Ă R

M . Here, X :“
pX1, ¨ ¨ ¨ , XN qT : pΩd,Fdq Ñ pAN,BN q is an A

N -
valued input random vector with BN representing the Borel
σ -field on A

N , describing the statistical uncertainties in
loads, material properties, and geometry of a complex
mechanical system. The probability law of X is completely
defined by a family of the joint probability density functions
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�

fXpx;dq : x P R
N, d P D

(

that are associated with
probability measures tPd : d P Du, so that the probability
triple pΩd,Fd,Pdq of X depends on d. In theory, a design
variable dk can be any distribution parameter or a statistic;
however, here, dk is limited to the mean of random variable
Xk . Indeed, the design parameters as mean values are
commonly used in almost all engineering problems.

2.1 Problem definition

Let ylpXq :“ ylpX1, . . . , XN q, l “ 0, 1, . . . , K , represent
a collection of K ` 1 real-valued, square-integrable,
measurable transformations on pΩd,Fdq, describing output
functions of a complex system. They are commonly referred
to as response or performance functions in applications.
It is assumed that yl : pAN,BN q Ñ pR,Bq is not
an explicit function of d, although yl implicitly depends
on d via the probability law of X. This is not a major
limitation, as most, if not all, RDO problems involve means
of random variables as design variables. In addition, let
D “ ˆM

k“1rdk,L, dk,Rs be a closed rectangular subdomain
of RM . From a fundamental standpoint, RDO is performed
by minimizing the mean and standard deviation of the
performance individually. It generally leads to a bi-objective
optimization problem, demanding one to

min
dPDĎRM

tEdry0pXqs,
a

vardry0pXqsu,

subject to αl

a

vardrylpXqs ´ EdrylpXqs ď 0,

l “ 1, . . . , K, 1 ď K ă 8

dk,L ď dk ď dk,U , k “ 1, . . . , M,

where

EdrylpXqs :“
ż

AN

ylpxqfXpx;dqdx

is the mean of ylpXq and

vardrylpxqs :“ Ed rylpXq ´ EdrylpXqss
2

is the variance of ylpXq. Here, Ed and vard are the
expectation and variance operators, respectively, with
respect to the probability measure Pd or fXpx;dqdx; αl P

R
`
0 , l “ 1, . . . , K , are non-negative, real-valued constants

associated with the probabilities of constraint satisfaction;
and dk,L and dk,U are the lower and upper bounds of the kth
design variable dk .

In many realistic cases, the bi-objective optimization
problem may require to make optimal decisions in the
presence of trade-offs between two conflicting objective
functions Ed ry0pXqs and

a

vard ry0pXqs. In that case, there

exist an infinite number of optimal solutions, typically
called Pareto optimal solutions, where none of the objective
function values can be amended without deteriorating the
other. To find either multiple Pareto optimal solutions
or a single solution that meets the preferences of a
decision-maker, the commonly used scalarization approach
transforms the bi-objective optimization problem into
a single-objective optimization problem. Representative
scalarization approaches include weighted-sum approach
(Marler and Arora 2010), ε-constraint approach (Bashiri
et al. 2020), weighted-Tchebycheff approach (Chen et al.
1999; Shin and Cho 2008), goal programming (Nha et al.
2013), and lexicographic approach (Bhushan et al. 2008),
and others (Miettinen 2012). In this study, any choice
of scalarization approaches is applicable to solve the bi-
objective optimization problem.

2.2 Proposed formulations

Two mathematical formulations of RDO—one expressed
with respect to the original input random variables and the
other described with respect to transformed input random
variables—are presented in the remainder of this section.
The formulations are equivalent, that is, they yield identical
solutions to a design optimization problem. However,
the latter is more beneficial than the former in light of
GPCE approximations, as will be discussed in forthcoming
sections.

2.2.1 Original formulation

The mathematical formulation for RDO in most engineering
applications involving an objective function c0 : D Ñ R

and constraint functions cl : D Ñ R, where l “ 1, . . . , K
and 1 ď K ă 8, requires one to (Chen et al. 1996; Du and
Chen 2000; Ren and Rahman 2013)

min
dPDĎRM

c0pdq :“G

´

Edry0pXqs,
a

vardry0pXqs

¯

,

subject to clpdq :“αl

a

vardrylpXqs ´ EdrylpXqsď0,

l “ 1, . . . , K,

dk,L ď dk ď dk,U , k “ 1, . . . , M,

(1)

where Gp¨, ¨q is an arbitrary function determined by the
choice of scalarization. Two commonly used variants of the
scalarized objective function are illustrated as follows.

For the first example, the weighted sum approach
presents a linear aggregation of the objectives, yielding

G

´

Edry0pXqs,
a

vardry0pXqs

¯

:“ w1
Edry0pXqs

μ˚
0

` w2

?
vardry0pXqs

σ˚
0

,
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where w1 P R
`
0 and w2 P R

`
0 are two non-negative, real-

valued weights such that w1 ` w2 “ 1; μ˚
0 P Rzt0u and

σ˚
0 P R

`
0 zt0u are two non-zero, real-valued scaling factors.

For the second example, the weighted Tchebycheff
approach requires a reference point

pμ˚
f :“ Ed1˚ ry0pXqs, σ˚

f :“
b

vard2˚ ry0pXqsq

where d˚
1 “ argmind Edry0pXqs subject to clpdq ď 0 from

(1) and d˚
2 “ argmind

a

vardry0pXqs subject to clpdq ď 0
from (1). Then

G

´

Edry0pXqs,
a

vardry0pXqs

¯

:“ max

˜

w1
Edry0pXqs´μ˚

f

μ˚
0

, w2

?
vardry0pXqs´σ˚

f

σ˚
0

¸

.

In both scalarization choices, equal weights are usually
chosen, but they can be distinct and biased, depending
on the objective set forth by a designer. By contrast, the
scaling factors are relatively arbitrary and chosen to better
condition, such as normalize, the objective function.

2.2.2 Alternative formulation

Since the design variables are the means of some or all input
random variables, a linear transformation, such as shifting
or scaling of random variables, provides an alternative
formulation of RDO. To do so, let pXi1 , . . . , XiM qᵀ be an
M-dimensional sub-vector of X :“ pX1, . . . , XN qᵀ, 1 ď

i1 ď ¨ ¨ ¨ ď iM ď N , M ď N , such that the means
of its components are M design variables. In other words,
EdrXik s “ dk , k “ 1, . . . , M .

Shifting Let Z :“ pZ1, . . . , ZN qᵀ be an N-dimensional
vector of new random variables obtained by shifting X as

Z “ X ` r, (2)

where r :“ pr1, . . . , rN qᵀ is an N-dimensional vector of
deterministic variables. Define gi :“ EdrZis as the mean
of the ith component of Z. Denote by pZi1 , . . . , ZiM qᵀ a
subvector of Z, where the ikth new random variable Zik

corresponds to the ikth original random variable Xik . From
the shifting transformation, the mean of Zik is

EdrZik s “ dk ` rik “ gk

and the PDF of Z is

fZpz; gq “ |J|fXpx;dq “ fXpx;dq “ fXpz ´ r;dq,

supported on Ā
N Ď R

N (say). Here, the absolute value of
the determinant of the Jacobian matrix is |J| “ |detrBx{Bzs|

“ 1 and the M-dimensional vector g :“ pg1, . . . , gMqᵀ has
its kth component gk “ EdrZik s, k “ 1, . . . , M .

Scaling Let Z :“ pZ1, . . . , ZN qᵀ be an N-dimensional
vector of new random variables obtained by scaling X as

Z “ diagrr1, . . . , rN sX, (3)

where r :“ pr1, . . . , rN qᵀ is an N-dimensional vector of
deterministic variables. Define gi :“ EdrZis as the mean
of the ith component of Z. Denote by pZi1 , . . . , ZiM qᵀ a
subvector of Z, where the ikth new random variable Zik

corresponds to the ikth original random variable Xik . From
the scaling transformation, the mean of Zik is

EdrZik s “ dkrik “ gk

and the PDF of Z is

fZpz; gq “ |J| fXpx;dq “

ˇ

ˇ

ˇ

ˇ

1

r1 . . . rN

ˇ

ˇ

ˇ

ˇ

fXpx;dq

“

ˇ

ˇ

ˇ

ˇ

1

r1 . . . rN

ˇ

ˇ

ˇ

ˇ

fXpdiagr1{r1, . . . , 1{rN sz;dq,

supported on Ā
N Ď R

N (say). Here, the absolute value
of the determinant of the Jacobian matrix is |J| “

|detrBx{Bzs| “ |1{pr1 . . . rN q| and the M-dimensional
vector g :“ pg1, . . . , gMqᵀ has its kth component gk “

EdrZik s, k “ 1, . . . , M .
For each l “ 1, 2, . . . , K , define hlpZ; rq :“ ylpXq to

be the generic output function of the new random variables
Z, where the relation between Z and X is obtained by either
shifting transformation in (2) or scaling transformation in
(3). In both cases, the RDO formulation requires one to

min
dPDĎRM

c0pdq :“ G

ˆ

Egpdqrh0pZ; rqs,

b

vargpdqrh0pZ; rqs

˙

,

subject to clpdq :“ αl

b

vargpdqrhlpZ; rqs

´ EgpdqrhlpZ; rqs ď 0,

l “ 1, . . . , K,

dk,L ď dk ď dk,U , k “ 1, . . . ,M,

(4)

where

EgpdqrhlpZ; rqs :“
ż

ĀN

hlpz; rqfZpz; gqdz

is the mean of hlpZ; rq and

vargpdqrhlpZ; rqs :“ Egpdq

”

hlpZ; rq ´ EgpdqrhlpZ; rqs

ı2

is the variance of hlpZ; rq. Here, Egpdq and vargpdq are
the expectation and variance operators, respectively, with
respect to the probability measure fZpz; gqdz, which depends
on d. For brevity, the subscript “gpdq” of the expectation
operator will be denoted by “g” in the rest of the paper.

The alternative formulation in (4) is simply a rephrasing
of (1), but it is now expressed in terms of the transformed

2428



Robust design optimization under dependent random variables by a generalized polynomial chaos expansion

input random variables Z. In doing so, the probability mea-
sure of Z is fixed during design iterations, thus avoiding
the need to recalculate measure-associated quantities. For
the rest of the paper, the solution of an RDO problem will
be described with respect to the alternative formulation. In
addition, X or Z and yl or hl will be referred to, inter-
changeably, as input random vector and output function,
respectively.

2.2.3 Construction of sub-problems

A gradient-based solution to the RDO problem in (4)
mandates adequate smoothness in objective and constraint
functions. Therefore, both functions are assumed to be dif-
ferentiable with respect to design variables. Moreover, as
these functions are generally nonlinear, iterative approxima-
tions of (4), resulting in a sequence of RDO sub-problems,
are required.

Let q “ 1, 2, . . . , Q, Q P N, be a design iteration
count describing the qth RDO sub-problem for (4). Given
q, denote by dtqu, gtqu, and rtqu the qth iterative versions
of d, g, and r, respectively. Then, the qth RDO sub-problem
asks to

min
dtquPDĎRM

c
tqu

0 pdtquq :“ T

«

G

ˆ

Egtqurh0pZ; rtquqs,

b

vargtqu rh0pZ; rtquqs

˙

ff

,

subject to c
tqu

l pdtquq :“ T

”

αl

b

vargtqurhlpZ; rtquqs

´ EgtqurhlpZ; rtquqs

ı

ď 0,

l “ 1, . . . , K,

dk,L ďd
tqu

k ďdk,U , k “1, . . . , M,

(5)

where c
tqu

0 and c
tqu

l are the qth objective and the qth con-
straint functions, respectively. They are obtained iteratively
from first- or higher-order Taylor series expansions T of c0

and cl at d
tqu

0 “ pd
tqu

1,0 , . . . , d
tqu

M,0qᵀ. The solution of (5),

denoted by dtqu
˚ “ pd

tqu

1,˚ , . . . , d
tqu

M,˚q, is traditionally pro-
duced using a suitable programming method, such as the
well-known sequential linear and quadratic programming

methods. Then, the qth RDO sub-problem solution dtqu
˚ is

used as the initial design for the pq`1qth RDO sub-problem

by setting dtq`1u

0 “ dtqu
˚ . This process is repeated from a

chosen initial design d0 “ dt1u

0 to the final optimal design

d˚ “ dtQu
˚ during all Q P N iterations to reach conver-

gence. In this paper, the iterations with respect to q are
referred to as design iterations.

3 Statistical moment analysis

Given an input random vector X :“ pX1, . . . , XN qᵀ or
its transformed version Z :“ pZ1, . . . , ZN qᵀ with known
PDF fXpx;dq or fZpz; gq, let hpZ; rq represent any one
of the random output functions hlpZ; rq, l “ 1, . . . , K ,
introduced in Section 2. Here, hpZ; rq is assumed to belong
to a reasonably large class of random variables, such as the
Hilbert space

L2
pΩd,Fd,Pdq :“

"

h : Ωd Ñ R :
ż

Ωd

h2pZ; rqdPd ă8

*

.

This is tantamount to saying that the real-valued function
hpz; rq lives in the equivalent Hilbert space
"

h : ĀN
Ñ R :

ż

ĀN

h2pz; rqfZpz; gqdz ă 8

*

.

The assumption guarantees existence of the first two
moments of hpZ; rq, facilitating a solution of the RDO
problem in (4).

3.1 Measure-consistent multivariate orthonormal
polynomials

When Z “ pZ1, . . . , ZN qᵀ comprises statistically depen-
dent random variables, the resultant probability measure, in
general, is not a product-type, meaning that the joint dis-
tribution of Z cannot be obtained strictly from its marginal
distributions. Consequently, measure-consistent multivari-
ate orthonormal polynomials in z “ pz1, . . . , zN qᵀ can-
not be built from an N-dimensional tensor product of
measure-consistent univariate orthonormal polynomials. In
this section, a three-step algorithm founded on a whitening
transformation of the monomial basis is briefly summarized
to generate multivariate orthonormal polynomials that are
consistent with an arbitrary, non-product-type probability
measure fZpz; gqdz of Z. Readers interested in additional
details should review the prior work of the authors (Lee and
Rahman 2020).

Let j :“ pj1, . . . , jN q P N
N
0 be an N-dimensional multi-

index. For z “ pz1, . . . , zN qᵀ P Ā
N Ď R

N , a monomial in
the real variables z1, . . . , zN is the product zj “ z

j1
1 . . . z

jN

N

and has a total degree |j| “ j1 ` ¨ ¨ ¨ ` jN . A linear
combination of zj, where |j| “ l, l P N0, is a homogeneous
polynomial of degree l. Consider for each m P N0 the
elements of the multi-index set tj P N

N
0 : |j| ď mu, which

is arranged as jp1q, . . . , jpLN,mq, jp1q “ 0, according to a
monomial order of choice. The set has cardinality

LN,m :“
m

ÿ

l“0

ˆ

N ` l ´ 1

l

˙

“

ˆ

N ` m

m

˙

.
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Denote by

�mpz; gq “ p�1pz; gq, . . . , �LN,m
pz; gqq

ᵀ,

an LN,m-dimensional vector of multivariate orthonormal
polynomials that is consistent with the probability measure
fZpz; gqdz of Z. It is determined as follows.

(1) Given m P N0, create an LN,m-dimensional column
vector

Pmpzq “ pzj
p1q

, . . . , zj
pLN,mq

q
ᵀ,

of monomials whose elements are the monomials zj

for |j| ď m arranged in the aforementioned order.
It is referred to as the monomial vector in z “

pz1, . . . , zN qᵀ of degree at most m.
(2) Construct an LN,m ˆ LN,m monomial moment matrix

of PmpZq, defined as

Gm :“ EgrPmpZqPᵀ
mpZqs

:“
ż

ĀN

PmpzqPᵀ
mpzqfZpz; gqdz.

For an arbitrary PDF fZpz; gq, Gm cannot be
determined exactly, but it can be estimated with good
accuracy by numerical integration and/or sampling
methods (Lee and Rahman 2020).

(3) Select the LN,m ˆ LN,m whitening matrix Wm from
the Cholesky decomposition of the monomial moment
matrix Gm such that

Wᵀ
mWm “ G´1

m orW´1
m W´ᵀ

m “ Gm.

Then, employ the whitening transformation to gener-
ate multivariate orthonormal polynomials from

�mpz; gq “ WmPmpzq.

The effectiveness of the three-step algorithm is depen-
dent on reliable construction of a well-conditioned mono-
mial moment matrix, facilitating Cholesky factorization by
standard techniques of linear algebra. From past experience,
the authors obtained good estimates ofGm if m is not overly
large (Lee and Rahman 2020).

For an ith element �ipZ; gq of the polynomial vector
�mpZ; gq “ p�1pZ; gq, . . . , �LN,m

pZ; gqqᵀ, the first- and
second-order moments are (Lee and Rahman 2020)

Eg r�ipZ; gqs “

#

1, if i “ 1,

0, if i ‰ 1,
(6)

and

Eg
“

�ipZ; gq�j pZ; gq
‰

“

#

1, i “ j,

0, i ‰ j,
(7)

respectively. These properties are essential to GPCE, to be
invoked in a forthcoming section.

Note that the above three-step algorithm is described in
terms of orthonormal polynomials in z, not x. This is mainly
because g and hence �mpz; gq are desired to be invariant

when updating the design vector d during design iterations.
To explain this further, consider the qth RDO sub-problem
in (5), where the shifting and scaling transformations for the
kth initial design variable yield

Edtqu rZik s “ g
tqu

k “

#

d
tqu

k ` r
tqu

ik
, shifting,

d
tqu

k r
tqu

ik
, scaling.

(8)

Here, one is free to choose the value of g
tqu

k with respect to

d
tqu

k,0 in (8). For instance, when setting d
tqu

k to d
tqu

k,0 at initial

design, update g
tqu

k to be zero and one in shifting and scaling

transformations, respectively. Then, r
tqu

ik
is determined to

be ´d
tqu

k,0 and 1{d
tqu

k,0 , respectively, from (8). Solving the

qth RDO sub-problem with the initial design dtqu

0 yields

dtqu
˚ ; thereby g

tqu

k becomes d
tqu

k,˚ ´ d
tqu

k,0 and d
tqu

k,˚ {d
tqu

k,0 in
shifting or scaling transformations, respectively. In fact, it

doesn’t matter what value of g
tqu

k is set with respect to

d
tqu

k,0 to solve the RDO problem. However, in the updating
process from qth to pq ` 1qth design iterations, choosing

the same values of g
tqu

k for q “ 1, 2, . . . ,Q contributes to
only one sequence of calculation of the measure-consistent
orthonormal polynomials �mpz; gq throughout all design
iterations.

3.2 Generalized polynomial chaos expansion

According to (6) and (7), any two distinct elements �ipz; gq

and �j pz; gq, i, j “ 1, . . . , LN,m, of the polynomial vector
�mpz; gq are mutually orthonormal with respect to the
probability measure of Z. Therefore, the set t�ipz; gq, 1 ď

i ď LN,mu, constructed from the elements of �mpz; gq,
is linearly independent. Moreover, the set has cardinality
LN,m, which matches the dimension of the polynomial
space of degree at most m. As m Ñ 8, LN,m Ñ 8 as
well. In this case, the resulting set t�ipz; gq, 1 ď i ă

8u comprises an infinite number of basis functions. If
the PDF of random input Z is compactly supported or
is exponentially integrable (Rahman 2018), as assumed
here, then the set of random orthonormal polynomials
t�ipZ; gq, 1 ď i ă 8u forms an orthonormal basis
of L2pΩd,Fd,Pdq. Consequently, any random variable
hpZ; rq P L2pΩd,Fd,Pdq can be expanded as a Fourier
series comprising multivariate orthonormal polynomials in
Z, referred to as the GPCE of2

hpZ; rq „

8
ÿ

i“1

Ciprq�ipZ; gq, (9)

2Here, the symbol „ represents equality in a weaker sense, such as
equality in mean-square, but not necessarily pointwise, nor almost
everywhere.
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where the expansion coefficients Ci P R, i “ 1, . . . , 8, are
defined as

Ciprq :“ Eg rhpZ; rq�ipZ; gqs

:“
ż

ĀN

hpz; rq�ipz; gqfZpz; gqdz.
(10)

According to Lee and Rahman (2020), the GPCE of
hpZ; rq P L2pΩd,Fd,Pdq converges in mean-square, in
probability, and in distribution.

The GPCE contains an infinite number of orthonormal
polynomials or coefficients. In a practical setting, the
number must be finite, meaning that the GPCE must be
truncated. However, there are multiple ways to perform a
truncation, such as those involving tensor-product, total-
degree, and hyperbolic-cross index sets. In this work,
the truncation stemming from the total-degree index set
is adopted, which entails retaining polynomial expansion
orders less than or equal to m P N0. The result is an
mth-order GPCE approximation

hmpZ; rq “

LN,m
ÿ

i“1

Ciprq�ipZ; gq (11)

of hpZ; rq, which contains LN,m expansion coefficients
defined by (10).

The GPCE in (9) and (10) should not be mixed up with
that of Xiu and Karniadakis (2002). The GPCE presented
here is meant for an arbitrary dependent probability
distribution of random input. In contrast, the existing PCE,
whether classical (Wiener 1938) or generalized (Xiu and
Karniadakis 2002), still needs independence of random
input.

3.3 Statistical moments

The mth-order GPCE approximation hmpZ; rq can be
viewed as an inexpensive surrogate of an expensive-to-
calculate function hpZ; rq. Therefore, relevant statistical
properties of the latter, such as its first two moments, can be
estimated from those of the former.

Applying the expectation operator on hmpZ; rq in (11)
and recognizing (6), its mean

EgrhmpZ; rqs “ C1prq “ Eg rhpZ; rqs

matches the exact mean of hpZ; rq for any m P N0.
Enforcing the expectation operator again, this time on
phmpZ; rq ´ EgpdqrhmpZ; rqsq2, and using (7) results in the
variance

vargrhmpZ; rqs “

LN,m
ÿ

i“1

C2
i prq ´ C2

1prq

“

LN,m
ÿ

i“2

C2
i prq ď varg rhpZ; rqs

of hmpZ; rq, where the equality before the last term operates
when m Ñ 8. Therefore, the second-moment statistics
of a GPCE approximation are solely determined by an
appropriately truncated set of expansion coefficients.

3.4 Expansion coefficients

The expansion coefficients of an mth-order GPCE approx-
imation hmpZ; rq involve various N-dimensional integra-
tions. For an arbitrary function h and an arbitrary proba-
bility distribution of random input Z, their exact evalua-
tions from the definition alone are impossible. Numerical
integration involving a multivariate, tensor-product Gauss-
type quadrature rule is computationally prohibitive for
high-dimensional (N ě 10, say) UQ/RDO problems. To
surmount this hurdle, two regression methods, namely,
standard least-squares (SLS) and diffeomorphic modula-
tion under observable response preserving homotopy (D-
MORPH), were employed to obtain associated estimates of
the coefficients. Here, only a brief summary of SLS and
D-MORPH regression is given for the paper to be self-
contained. For additional details, readers are advised to
consult related works of Li and Rabitz (2010) and Lee and
Rahman (2020).

3.4.1 Standard least-squares regression

From the known distribution of random input Z and an
output function h : ĀN Ñ R, consider an input-output data
set tzplq, hpzplq; rquL

l“1 of size L P N, where r is decided
from the knowledge of d and g, as discussed earlier. The
data set, often referred to as the experimental design, is
generated by calculating the function h at each input data
zplq. Various sampling methods, namely, standard Monte
Carlo simulation (MCS), quasi MCS (QMCS), and Latin
hypercube sampling, can be used to build the experimental
design. Using the experimental design, the approximate
GPCE coefficients C̃ipdq, i “ 1, . . . , LN,m, satisfy the
linear system

Ac “ b,

where

A :“
»

—

–

�̃1pzp1q; gq ¨ ¨ ¨ �̃LN,m
pzp1q; gq

...
. . .

...
�̃1pzpLq; gq ¨ ¨ ¨ �̃LN,m

pzpLq; gq

fi

ffi

fl
,

b :“ phpzp1q; rq, . . . , hpzpLq; rqqᵀ, and
c :“ pC̃1prq, . . . , C̃LN,m

prqqᵀ.

Here, �̃ipzplq; gq represents an estimate of �ipzplq; rq due
to approximations involved in constructing the monomial
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matrix (Lee and Rahman 2020). According to SLS, the expan-
sion coefficients of GPCE are estimated by minimizing the
residual

êm :“ 1

L

L
ÿ

l“1

»

–hpzplq; rq ´

LN,m
ÿ

i“1

C̃i�̃ipzplq; gq

fi

fl

2

.

As such, the SLS solution Ĉi , i “ 1, . . . , LN,m, is obtained
from

AᵀAĉ “ Aᵀb,

where ĉ :“ pĈ1prq, . . . , ĈLN,m
prqqᵀ and the LN,m ˆ LN,m

matrix AᵀA is referred to as the information or data matrix.
The inversion of the data matrix, if it is positive-definite,
yields the best estimate

ĉ “ pAᵀAq
´1Aᵀb

of the approximate GPCE coefficients. A necessary
condition for the inversion is L ą LN,m, often referred to
as an overdetermined system. Even when the condition is
satisfied, the experimental design must be wisely selected,
so that the matrix AᵀA is well-conditioned.

3.4.2 Partitioned D-MORPH regression

In an overdetermined system (L ą LN,m), if L is not
sufficiently larger than LN,m, then there may not be enough
information, rendering SLS regression inaccurate for esti-
mating the coefficients. Moreover, in an underdetermined
system (L ă LN,m), SLS becomes invalid because the data
matrix is no longer invertible. In either case, an alterna-
tive regression method, such as the partitioned D-MORPH,
was employed to obtain reliable and efficient estimates of
the GPCE coefficients. A more detailed theory of the par-
titioned D-MORPH is available in the prior work (Lee and
Rahman 2020). Here, it is summarized, including the final
solutions, and evaluated later in Example 3.

For an overdetermined pL ą LN,mq or underdetermined
pL ă LN,mq system, consider dividing the GPCE basis
functions into two groups: (1) a primary group consisting
of Lp ď LN,m basis functions and (2) a secondary group
comprising the remaining LN,m ´ Lp basis functions. In
many real-life problems, the low-order basis functions of
GPCE contribute to a function value more significantly than
the high-order basis functions of GPCE. In such a case, the
low-order basis functions form the primary group, while
the rest are lumped into the secondary group. One can
then utilize specific criteria, introduced by Lee and Rahman
(2020), to group the primary and secondary basis functions.

According to Lee and Rahman (2020), two types of
the partitioned D-MORPH, namely, the direct approach
and extended approach, are available. The direct approach,

which entails a straightforward version of the partitioned
D-MORPH, is explained in Appendix 1. The extended
approach describes an iterated variant of the partitioned D-
MORPH, revising the approximate expansion coefficients
estimated by the direct approach. In this section, the final
solution of the extended approach is concisely presented.
Readers interested in additional details should consult the
original work (Lee and Rahman 2020).

In the extended approach, the best estimate of the
expansion coefficients is obtained from the following two
principal steps: (1) the GPCE coefficients using the direct
approach of the partitioned D-MORPH are calculated,
obtaining č P R

LN,m from (A1.2) in Appendix 1;
(2) using the coefficients from the direct approach, a
revised initial solution c1

0 “ pČ1pdq, . . . , ČLp pdq, C1
0,Lp`1

pdq, . . . , C1
0,LN,m

pdqqᵀ P R
LN,m of the GPCE coefficients

is defined, where |C1
0,i | ď |ČLp | for i “ Lp`1, . . . , LN,m

by one of weighting methods presented by Lee and
Rahman (2020). Then, the final solution of the GPCE
coefficients by the extended approach, denoted by c1 “

pC1
1pdq, . . . , C1

LN,m
pdqqᵀ, is

c1
“ F̄1

LN,m´rpĒ1ᵀ
LN,m´r F̄

1
LN,m´rq

´1Ē1ᵀ
LN,m´r Ā

`b̄

`F̄1
rpĒ1ᵀ

r F̄1
rq

´1T̄1´1
r Ē1ᵀ

r �̄c1
0,

where Ē1
r and Ē1

LN,m´r , F̄
1
r and F̄1

LN,m´r are constructed
from the first r and the last LN,m ´ r columns of matrices
Ē1 and F̄1, respectively; they are generated from the singular
value decomposition of �̄ as

�̄ “ Ē1

„

T̄1
r 0
0 0

j

F̄1ᵀ,

where the LN,m ˆ LN,m matrix �̄ is presented in (A1.3) of
Appendix 1.

The extended version of the partitioned D-MORPH
regression will be employed for estimating the GPCE
coefficients in Example 4.

4 Proposedmethods for design sensitivity
analysis

When solving an RDO problem with a typical gradient-
based optimization algorithm, such as linear and sequential
quadratic programming, at least the first-order derivatives
of the first- and second-order moments of hlpZ; rq, l “

0, 1, . . . , K , with respect to each design variable dk , k “

1, . . . ,M , are necessary. In this section, an analytical
formulation for design sensitivity analysis is unveiled by
combining GPCE coefficients with score functions for
dependent input random variables. For such sensitivity
analysis, the following regularity conditions are required:
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1. The probability density function fZpz; gq of Z is contin-
uous. In addition, the partial derivative BfZpz; gq{Bgk ,
k “ 1, . . . , M , exists and is finite for all possible val-
ues of z and gk . Furthermore, the statistical moments of
hpZ; rq are differentiable functions of g.

2. There exists a Lebesgue integrable dominating function
tpzq such that

ˇ

ˇ

ˇ

ˇ

hr
pz; rq

BfZpz; gq

Bdk

ˇ

ˇ

ˇ

ˇ

ď tpzq, r “ 1, 2; k “ 1, . . . ,M .

The proposed formulation is novel when compared with
the existing sensitivity analysis restricted to independent
random variables only (Ren and Rahman 2013; Rahman and
Ren 2014).

4.1 Score functions

Suppose the first-order derivatives of the first two moments,
EgrhrpZ; rqs, r “ 1, 2, of a generic output function hpZ; rq

with respect to a design variable dk are wanted to solve
the qth RDO sub-problem in (5). During the sub-iteration
process of the qth design iteration, gtqu changes, but rtqu

remains constant locally. For brevity, the iteration count q

is omitted from dtqu, gtqu, and rtqu in the remainder of this
section.

Applying the partial derivative of these moments with
respect to dk and then invoking the chain rule and Lebesgue
dominated convergence theorem (Browder 1996), which
permits the differential and integral operators to be inter-
changed, yields the sensitivities

BEg rhrpZ; rqs

Bdk

“
B

Bdk

ż

ĀN

hrpz; rqfZpz; gqdz

“
Bgk

Bdk

B

Bgk

ż

ĀN

hr
pz; rqfZpz; gqdz

“
Bgk

Bdk

ż

ĀN

hr
pz; rq B ln fZpz; gq

Bgk

fZpz; gqdz,

r “ 1, 2; k “ 1, . . . ,M, (12)

provided that fZpz; gq ą 0 on ĀN . Here, Bgk{Bdk is 1 or rik
for shifting or scaling transformations, respectively. Define
by

skpZ; gq :“ B ln fZpZ; gq

Bgk

(13)

the first-order score function (Rubinstein and Shapiro 1993;
Rahman 2009b) for the variable gk . In many cases, the score
functions can be determined numerically or analytically—
for instance, when Z follows classical probability distri-
butions, such as those obtained for multivariate Gaussian

and lognormal density functions in Table 1. Thereafter, the
sensitivities in (12) can also be expressed by

BEgrhrpZ; rqs

Bgk

“
Bgk

Bdk

ż

ĀN

hr
pz; rqskpz; gqfZpz; gqdz

“
Bgk

Bdk

Eg rhr
pZ; rqskpZ; gqs . (14)

According to (14), the moments and their sensitivities
have both been formulated as expectations of stochastic
quantities with respect to the same probability measure,
making their concurrent evaluations possible in a single
stochastic simulation or analysis.

4.2 Exact sensitivities

Given the input random vector Z with PDF fZpz; gq,
consider the full GPCE of the kth score function

skpZ; gq “

8
ÿ

i“2

Dk,ipgq�ipZ; gq, (15)

with its own GPCE coefficients

Dk,ipgq “

ż

ĀN

skpz; gq�ipz; gqfZpz; gqdz, i “ 2, 3, . . . , 8.

Note that the lowest orthonormal polynomial function or
coefficient of the GPCE in (15) starts from i “ 2, not i “ 1.
This is because

Dk,1pgq “

ż

ĀN

skpz; gqfZpz; gqdz

“: Eg rskpZ; gqs “ 0,

Table 1 Derivatives of log-density functions for two types of multi-
variate distributions

Type Score function for design variables g “ pg1, . . . , gMq.

Gaussian density on p´8, 8qN

1 skpz; gqpaq “
řN

j“1 pik,j pzj ´ μj q,

μik “ gk , k “ 1, . . . , M , 1 ď i1 ă ¨ ¨ ¨ ă iM ď N ,

rpi,j s “ �
´1
Z P R

NˆN , �Z “ rρij σiσj s,

0 ă σi ă 8, ´1 ă ρij ă 1, i, j “ 1, . . . , N .

Lognormal density on r0, 8qN

2 skpz; gqpaq “ lk
řN

j“1 p̃ik ,j pln zj ´ μ̃j qpbq,

μ̃i “ lnrμ2
i { σis ´ 1 { 2, σ̃i “

b

ln
“

σ 2
i { μ2

i

‰

` 1,

μik “ gk , k “ 1, . . . , M , 1 ď i1 ă ¨ ¨ ¨ ă iM ď N ,

rp̃i,j s “ �̄
´1
lnZ P R

NˆN , �̄lnZ “ rρ̃ij σ̃i σ̃j s,

ρ̃ij “ ln
“

ρij { pμiμj q ` 1
‰

{ pσ̃i σ̃j q,

0 ă σi ă 8, ´1 ă ρij ă 1, i, j “ 1, . . . , N .

a.skpz; gq “ B ln fZpz; gq { Bgk

b.lk “ r1 ` 2pσik {gkq2s { rgkt1 ` pσik {gkq2us
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according to Appendix 2. Then, combining (9) and (15),
(14) produces the sensitivity of rth-order moment of
hpZ; rq with respect to kth design variable dk as

BEgrhrpZ; rqs

Bdk

“
Bgk

Bdk

Eg

«˜

8
ÿ

i“1

Ciprq�ipZ; gq

¸r

ˆ

˜

8
ÿ

j“2

Dk,j pgq�j pZ; gq

¸ff

. (16)

On the right side of (16), the expectation operator contains
expansions of response and score functions with respect
to the same multivariate orthonormal polynomial basis,
consistent with the same probability measure fZpz; gqdz.
Thereafter, using the second-moment properties in (6) and
(7), the sensitivities of the first-order (r “ 1) and second-
order (r “ 2) moments with respect to dk are finally
derived as

BEgrhpZ; rqs

Bdk

“
Bgk

Bdk

8
ÿ

i“2

CiprqDk,ipgq (17)

and

BEgrh2pZ; rqs

Bdk

“
Bgk

Bdk

8
ÿ

i1“1

8
ÿ

i2“1

8
ÿ

i3“2

Ci1prqCi2prqDk,i3pgq

ˆEg

«

3
ź

p“1

�ip pZ; gq

ff

, (18)

respectively.
The closed-form expressions of the moment sensitivities

in (17) and (18) mainly consist of GPCE coefficients for
hpZ; rq and skpZ; gq. Therefore, these sensitivity equations
are exact because GPCE is mean-square convergent for any
square-integrable function.

4.3 Approximate sensitivities

The full GPCE solution for the sensitivities of response
moments comprises an infinite number of basis functions
or coefficients. Therefore, in practice, the solution must be
truncated. Two options are suggested as follows.
Option 1. Given two non-negative integers m P N0 and
m1 P N0, consider replacing hpZ; rq and skpZ; gq by
their mth-order and m1th-order truncations or approxima-
tions, respectively. The resultant first- and second-moment
sensitivities then become

BEgrhmpZ; rqs

Bdk

“
Bgk

Bdk

Lmin
ÿ

i“2

CiprqDk,ipgq, (19)

and

BEgrh2mpZ; rqs

Bdk

“
Bgk

Bdk

LN,m
ÿ

i1“1

LN,m
ÿ

i2“1

LN,m1
ÿ

i3“2

Ci1prqCi2prq

ˆDk,i3pgqEg

«

3
ź

p“1

�ip pZ; gq

ff

, (20)

respectively, where Lmin :“ minpLN,m, LN,m1q. The
approximate sensitivities in (19) and (20) converge to
BEgrhpZ; rqs { Bdk and BEgrh2pZ; rqs { Bdk , respectively,
when m Ñ 8 and m1 Ñ 8.

Since the score function is solely described by the PDF
of input random variables, the order m1 for its GPCE
approximation is generally different than the order m

employed for GPCE approximations of output functions.
Moreover, the size L1 (say) of the input-output data set is
also different when estimating the coefficients Dk,i , i “

2, 3, . . . , LN,m1 .
In (20), the expectations of products of three distinct

multivariate orthonormal polynomials need to be calculated
LN,mˆLN,mˆpLN,m1 ´1q times. For an arbitrary dependent
random vector Z, such expectations or integrals cannot
be calculated exactly. This is in contrast to independent
variables where exact solutions exist for a few classical
distributions (Busbridge 1948; Rahman and Ren 2014).
Therefore, for dependent variables, they must be estimated,
say, by numerical integration or sampling methods. If the
dimension is too high, then the sampling methods, such as
MCS, QMCS, or Latin hypercube sampling, can be used to
estimate these integrals in two steps:

1. Consistent with the probability measure fZpz; gqdz,
generate an input data set tzplquL2

l“1 of size L2 P N by a
sampling method of choice.

2. Estimate the expectation of triple product as an arith-
metic mean, producing

Eg

«

3
ź

p“1

�ip pZ; gq

ff

«

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1
L2

L2
ÿ

l“1

3
ź

p“1

�ip pzplq; gq,

if i1 ‰ 1, i2 ‰ 1,

1,

if i1 “ 1, i2 ‰ 1, i2 “ i3;
i2 “ 1, i1 ‰ 1, i1 “ i3,

0,

if i1 “ i2 “ 1;
i1 “ 1, i2 ‰ 1, i2 ‰ i3;
i2 “ 1, i1 ‰ 1, i1 ‰ i3.

(21)

Note that some of these expectations are either one or zero,
depending on the polynomial indices. Also, the various
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triple products of orthonormal polynomials inside the
expectation operator in (21) are repetitive, meaning that
the total number of the expectations can be reduced. Fur-
thermore, in a design process, the expectations of products
of these polynomials need not be recalculated since the
orthonormal polynomials are preserved during design itera-
tions.

Since the score function and measure-consistent orthonor-
mal polynomials are not associated with any output func-
tion, the response moments and their design sensitivities
are estimated from GPCE coefficients simultaneously in a
single stochastic analysis. Therefore, a significant cost sav-
ings is anticipated when FEA-generated output functions
are involved in practical applications.
Option 2. For high-dimensional RDO problems, the three-
dimensional sums in (20) mandate numerous expectations
of triple products of orthonormal polynomials. As a result,
the computational expense of Option 1, even when the
expectations are calculated only once, can be high. This is
despite the fact that no output functions, which are generally
expensive to evaluate, are involved. In such a case, Option 2
provides a more economical route to the sensitivity analysis
by performing an m̄th-order (say) GPCE approximation of
the product term inside the expectation of (14), yielding

hr
pZ; rqskpZ; gq «

LN,m̄
ÿ

i“1

H
prq

k,i prq�ipZ; gq, (22)

where

H
prq

k,i prq “

ż

ĀN

hr
pz; rqskpz; gq�ipz; gqfZpz; rqdz,

i “ 1, . . . , LN,m̄, (23)

represent the affiliated expansion coefficients. Hereafter,
combining (14) and (22) and invoking the property in (6),
the sensitivities of first- and second-order moments are
approximated by

BEgrhmpZ; rqs

Bdk

«
Bgk

Bdk

Eg

„ LN,m̄
ÿ

i“1

H
p1q

k,i prq�ipZ; gq

j

,

“
Bgk

Bdk

H
p1q

k,1 prq (24)

and

BEgrh2mpZ; rqs

Bdk

«
Bgk

Bdk

Eg

„ LN,m̄
ÿ

i“1

H
p2q

k,i prq�ipZ; gq

j

,

“
Bgk

Bdk

H
p2q

k,1 prq. (25)

As (24) and (25) sidestep the need for calculating the
expectations of products of three orthonormal polynomi-
als, a hefty computational savings is anticipated in Option
2 when the expectations are expensive to evaluate. Hav-
ing said this, as the product term in (22) becomes a

non-polynomial function, higher-order GPCE approxima-
tions with larger order (m̄) may be required to warrant a
satisfactory approximation quality. Additionally, even when
m̄ “ m, a data set of larger size (L̄ ą L) may be needed for
estimating the respective coefficients. Nonetheless, Option
2 is worth trying and will be featured in relevant numer-
ical examples where output functions are inexpensive to
evaluate.

5 Proposedmethods for robust design
optimization

The GPCE approximations described in the foregoing
sections are intended to evaluate the objective and constraint
functions, including their design sensitivities, from a
single stochastic analysis. An integration of statistical
moment analysis, design sensitivity analysis, and a suitable
optimization algorithm is expected to deliver a convergent
solution of a generic RDO problem defined in (4). However,
such an integration depends on the complexity of the RDO
problem at hand, pointing to a need for multiple design
methods. The following sections describe three distinct
approaches to the integration, resulting in three design
optimization methods: (1) the direct GPCE method, (2) the
single-step GPCE method, and (3) the multi-point single-
step GPCE method.

5.1 Direct GPCE

The direct GPCE method entails a plain vanilla incorpo-
ration of the GPCE-based stochastic and design sensitivity
analyses with a chosen gradient-based optimization algo-
rithm. Given a design vector at the current iteration and
the corresponding values of the objective and constraint
functions and their sensitivities, the design vector at the
next iteration is calculated from the optimization algorithm.
However, new statistical moment analysis and new sensitiv-
ity analysis, requiring recalculations of the GPCE expansion
coefficients from additional output function evaluations, are
required at every design iteration.

For a more elaborate explanation, consider a change of
design variables from an old design d to a new design
d1 during the design iteration process. Then, the probabil-
ity measure of X varies from fXpx;dqdx to fXpx;d1qdx,
corresponding to old and new designs, respectively. Anal-
ogously, the old deterministic vector r evolves to its newer
version r1 under shifting or scaling transformations of X, as
described in Section 2. However, the probability measure
fZpz; gqdz of Z remains unaltered as g remains constant at
all design iterations from either transformation. Nonethe-
less, a new set of output data is called for when the design
changes.
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Let the input-output data sets generated independently
for the old and new designs be tzplq, hpzplq; rquL

l“1 and

tzplq, hpzplq; r1quL
l“1, respectively. In these two sets, the

input data are the same, but the output data are different
as r and r1 are different. Denote by Ciprq and Cipr1q

the expansion coefficients for the old and new designs,
respectively. Then, the coefficients for both designs are
obtained by minimizing the associated residuals

êm :“ 1

L

L
ÿ

l“1

»

–hpzplq; rq ´

LN,m
ÿ

i“1

Ciprq�ipzplq; gq

fi

fl

2

(26)

and

ê1
m :“ 1

L

L
ÿ

l“1

»

–hpzplq; r1
q ´

LN,m
ÿ

i“1

Cipr1
q�ipzplq; gq

fi

fl

2

, (27)

respectively, using either SLS or D-MORPH regression
explained in Section 3. According to (26) and (27), there
is no need to regenerate the input data and recalculate
the multivariate orthonormal polynomials, but, still, new
output data sets are mandated at all design iterations. In
consequence, the direct GPCE method can be expensive,
depending on the cost of evaluating the objective and
constraint functions and the requisite number of design
iterations to attain convergence.

5.2 Single-step GPCE

The single-step GPCE method is intended to solve the
entire RDO problem from a single stochastic analysis by
circumventing the need to recalculate the GPCE expan-
sion coefficients from new input-output data sets at every
design iteration. However, it is predicated on two impor-
tant assumptions: (1) an mth-order GPCE approximation
hmpZ; rq of hpZ; rq at the initial design is adequate for
all possible designs and (2) the GPCE coefficients for a
new design, derived by recycling those generated for an old
design, are accurate.

Under the above two assumptions, consider again the
vectors r and r1 associated with the old and new designs,
respectively. Assume that the GPCE coefficients Ciprq, i “

1, . . . , LN,m, for the old design have been calculated from
the input-output data tzplq, hpzplq; rquL

l“1 already. Then,
the GPCE coefficients Cipr1q, i “ 1, . . . , LN,m, for the
new design are estimated by modifying the old input data
tzplquL

l“1 to the new input data tz1plquL
l“1, depending on the

scaling or shifting transformations, as follows.

z1plq
“

$

&

%

zplq ´ r1 ` r shifting,

diag
´

r1
r1
1
, . . . ,

rN
r1
N

¯

zplq, scaling.

To explain these modifications, first consider the shifting
transformation. In this case, the lth sample of the output
function is

hpzplq; r1q :“ ypzplq ´ r1q “ ypzplq ´ r1 ` r ´ rq

“ ypz1plq ´ rq “: hpz1plq; rq,

where z1plq :“ zplq ´ r1 ` r is the modified lth input sample.
Second, for the scaling transformation, the lth sample of the
output function is

hpzplq; r1
q :“ y

ˆ

diag

„

1

r 1
1
, . . . ,

1

r 1
N

j

zplq

˙

“ y

ˆ

diag

„

1

r1
, . . . ,

1

rN

j

ˆ diag

„

r1

r 1
1
, . . . ,

rN

r 1
N

j

zplq

˙

“ y

ˆ

diag

„

1

r1
, . . . ,

1

rN

j

z1plq

˙

“: hpz1plq; rq,

where z1plq :“ diagrr1{r 1
1, . . . , rN {r 1

N szplq is the modified
lth input sample. These modifications are intended to evalu-
ate the output function at the new design to be approximated
by the output function at the old design, that is,

hpzplq; r1
q “ hpz1plq; rq «

LN,m
ÿ

i“1

Ciprq�ipz1plq; gq, (28)

where the last term reflectsmth-order GPCE approximation.
Applying (28) to (27) yields yet another residual

ê2
m :“ 1

L

L
ÿ

l“1

«

LN,m
ÿ

i“1

Ciprq�ipz1plq; gq

´

LN,m
ÿ

i“1

Cipr1
q�ipzplq; gq

ff2

, (29)

the minimization of which by SLS or D-MORPH regression
produces GPCE coefficients for the new design. Compared
with the minimization of ê1

m in (27), no new output data
obtained from the original function, that is, hpzplq; r1q,
are required. Instead, the output data involved in (29)
are generated reusing the old coefficients and invoking
the GPCE approximation. Subsequently, new statistical
moment and design sensitivity analyses, all employing an
mth-order GPCE approximation at the initial design, are
conducted with little extra cost during all design iterations.
Therefore, the single-step GPCE method holds the potential
to substantially curtail the computational effort in solving
an RDO problem.

5.3 Multi-point single-step GPCE

The direct and single-step methods described in the
former sections are grounded on GPCE approximations of
stochastic responses, supplying surrogates of objective and
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constraint functions for the entire design space. Therefore,
these methods are globally formulated and may not be
practical when the order of GPCE approximation is required
to be overly large to capture highly nonlinear response
characteristics. Furthermore, a global method using a
truncated GPCE, obtained by retaining only low-order
terms, may not even find a true optimal solution. An
appealing substitute, referred to as the multi-point single-
step GPCE method, asks for local implementations of
the GPCE approximation that are built on subregions of
the entire design space. According to this latter method,
the original RDO problem is swapped for a series of
local RDO problems, where the objective and constraint
functions in each local RDO problem represent their multi-
point approximations (Toropov et al. 1993). The design
solution of an individual local RDO problem, obtained by
the single-step GPCE method, constitutes the initial design
for the next local RDO problem. Then, the move limits are
updated, and the optimization is repeated iteratively until
the optimal solution is acquired. Due to the local approach,
the multi-point single-step GPCE method is anticipated to
solve practical engineering problems using low-order GPCE
approximations.

For the rectangular design space

D “ ˆ
k“M
k“1 rdk,L, dk,U s Ď R

M

of the RDO problem described in (4), denote by q 1 “

1, 2, . . . , Q1, Q1 P N, an index representing the q 1th

subregion of D with the initial design vector dpq1q

0 “

pd
pq1q

1,0 , . . . , d
pq1q

M,0qᵀ. Given a sizing factor 0 ă β
pq1q

k ď 1,
the domain of the q 1th subregion is expressed by

Dpq1q
“

k“M
ą

k“1

„

d
pq1q

k,0 ´ β
pq1q

k

pdk,U ´ dk,Lq

2

, d
pq1q

k,0 ` β
pq1q

k

pdk,U ´ dk,Lq

2

j

Ď D Ď R
M,

q 1
“ 1, . . . , Q1.

According to the multi-point single-step GPCE method, the
RDO problem in (4) is converted to a succession of local
RDO problems defined for Q1 subregions. For the q 1th
subregion, the local RDO problem requires one to

min
dPDpq1qĎRM

c̃
pq1q

0,m pdq :“ G

ˆ

Egrh̃
pq1q

0,m pZ; rqs,

b

vargrh̃
pq1q

0,m pZ; rqs

˙

,

subject to c̃
pq1q

l,m pdq :“ αl

b

vargrh̃
pq1q

l,m pZ; rqs

´ Egrh̃
pq1q

l,m pZ; rqs ď 0,

dk P
“

d
pq1q

k,0 ´ β
pq1q

k pdk,U ´ dk,Lq { 2, d
pq1q

k,0

`β
pq1q

k pdk,U ´ dk,Lq { 2
‰

,

l “ 1, . . . , K, k “ 1, . . . , M,

(30)

where

Eg
“

h̃
pq1q

l,m pZ; rq
‰ :“

ż

ĀN

h̃
pq1q

l,m pz; rqfZ
`

z; gpdq
˘

dz,

varg
“

h̃
pq1q

l,m pZ; rq
‰ :“ Eg

“

h̃
pq1q

l,m pZ; rq

´Egrh̃
pq1q

l,m pZ; rqs
‰2

,

and c̃
pq1q

l,m pdq, ỹ
pq1q

l,m pXq, and h̃
pq1q

l,m pZ; rq, l “ 0, 1, . . . , K ,
are mth-order GPCE approximations of clpdq, ylpXq, and
hlpZ; rq, respectively, for the q 1th subregion. Furthermore,

d
pq1q

k,0 ´ β
pq1q

k pdk,U ´ dk,Lq{2 and d
pq1q

k,0 ` β
pq1q

k pdk,U ´

dk,Lq{2, also known as the move limits, are the lower and
upper bounds, respectively, of the subregion Dpq1q. Here,
the iterations with respect to q 1 are associated with solving
local RDO problems and should not be confused with q

describing the iteration count for design iterations.
The multi-point single-step GPCE method is schemati-

cally depicted in Fig. 1. Here, dpq1q
˚ is the optimal design

Fig. 1 A schematic description
of the multi-point single-step
design process during Q1

iterations to get the final
optimum d˚
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solution obtained using the single-step GPCE method for
the q 1th local RDO problem in (30). By setting the initial

design dpq1`1q

0 equal to dpq1q
˚ at the next local RDO problem

on Dpq1`1q, the process is repeated until attaining a final,
convergent solution d˚. The flow chart of the method is pre-
sented in Figs. 2 and 3 with supplementary explanations of
each step as follows.

1. Initialize all parameters and tolerances as follows:
set termination criteria 0 ă ε1, ε2 ăă 1; set toler-
ances for sizing sub-regions 0 ă ε3, ε4, ε5, ε6, ε7 ă

1; set size parameters 0 ă β
pq1q

k ď 1, k “

1, . . . , M , of Dpq1q; set an initial design vector

dpq1q

0 “ pd
pq1q

1,0 , . . . , d
pq1q

M,0q. The initial design can
be either feasible or infeasible to the constraint
conditions.

2. Transform the random input vector X to a new
random vector Z such that EdrZik s “ gk “

0 or 1, k “ 1, . . . , M , via shifting or scaling
transformations, respectively.

3. Choose the orders m and m1 of GPCE approx-
imations for generic responses and score func-
tions, respectively. Construct an LN,m- and LN,m1-
dimensional vectors of measure consistent orthonor-
mal polynomials �mpZ; gq and �m1pZ; gq via the
three-step algorithm.

4. Update the current design vector d as follows. If
q 1 “ 1, create input samples zplq, l “ 1, . . . , L2,
where L2 ąą L and L2 ąą L1, via the QMCS
method. Use the samples to generate input-output
data sets tzplq, hpzplq; rquL

l“1 of the sample size L ą

LN,m (say, L{LN,m ě 3) and tzplq, skpzplq; gquL1

l“1
of the sample size L1 ą LN,m (say, L1{LN,m ě 3).
If q 1 ą 1, reuse the input samples to generate new
input-output data sets tzplq, hpzplq; r1quL

l“1. In each
iteration, use SLS to estimate GPCE coefficients
with respect to �mpz; gq for a generic response,
but for score functions, use SLS to estimate GPCE
coefficients with respect to �m1 pz; gq only in the
initial iteration (q 1 “ 1). If q 1 ą 1, reuse
the expansion coefficients of score functions. In
each iteration, use the second-moment properties
to approximate the objective function c̃0,m and
constraint function c̃l,m , l “ 1, . . . , K . Also, if
q 1 “ 1, calculate expectations of the multiple-
product of three orthonormal polynomials and
preserve it to reuse the values for the next iterations.

5. If q 1 “ 1, use the default values of size parameters

0 ă β
pq1q

k ď 1, k “ 1, . . . , M , in Step 1. If
q 1 ą 1 and s “ 1, determine the size parameters

from three conditions: (1) the accuracy of GPCE to
approximate the objective and constraint functions,
(2) active or inactive conditions of design to
boundaries of the subregion, and (3) converging
condition to the final optimality. The details of these
three conditions are described in the following steps
of Fig. 3. Otherwise, skip Step 5.

5-1. (First condition) For all l “ 0, 1, . . . , K , if

||c̃
pq1q

l,m pdpq1q

0 q ´ c̃
pq1´1q

l,m pdpq1q

0 q|| ď ε3, then increase

all β
pq1q

k , k “ 1, . . . , M . Otherwise, go to Step 5-2.
5-2. (First condition) For any l “ 0, 1, . . . , K , if

||c̃
pq1q

l,m pdpq1q

0 q ´ c̃
pq1´1q

l,m pdpq1q

0 q|| ą ε4, then decrease

all β
pq1q

k , k “ 1, . . . , M . Otherwise, go to Step 5-3.

5-3. (Second condition) If ||d
pq1q

k,0 ´ d
pq1´1q

k,L || ď ε5 or

||d
pq1q

k,0 ´ d
pq1´1q

k,U || ď ε5, increase β
pq1q

k . Otherwise,
go to Step 5-4.

5-4. (Third condition) If ||d
pq1q

k,0 ´ d
pq1´1q

k,0 || ď ε6,

decrease β
pq1q

k . Otherwise, go to Step 5-5.

5-5. (Move limit) If β
pq1q

k pdk,U ´dk,Lq ă ε7, set β
pq1q

k “

ε7{pdk,U ´ dk,Lq. Otherwise, increase k and repeat
the process until satisfying the loop condition k ďM .

6. If the current design is infeasible to constraint
conditions, go to Step 7. Otherwise, set the current

feasible design dpq1q

f “ d, then go to Step 8.
7. Interpolate between the current infeasible design d

and the previous feasible design dpq1´1q

f . If an ini-
tial design (at q 1 “ 1) is infeasible, interpolate with
upper or lower bounds of the design space depend-
ing on problems at hand. One can follow the golden
ratio, about 1.618, to prevent excessive withdrawal
of a solution during interpolation.

8. If a termination condition is satisfied, such that

}dpq1q

f ´ dpq1´1q

f } ď ε1 or }c̃
pq1q

0,m pdpq1q

f q ´

c̃
pq1q

0,m pdpq1´1q

f q} ď ε2, set d
pq1q

f to the final optimal
design d˚ and terminate the optimization process.
Otherwise, go to Step 9.

9. Solve the q 1th local RDO problem with the single-
step GPCE using a gradient-based algorithm (e.g.,
sequential quadratic programming), obtaining the

local optimal solution dpq1q
˚ . Increase the sub-region

or iteration count q 1. Set dpq1q

0 “ dpq1´1q
˚ and go to

Step 4.

6 Numerical examples

Five numerical examples are presented to illustrate the
proposed RDO methods as follows: the direct GPCE
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Fig. 2 A flow chart of the
multi-point single-step GPCE

method in Examples 1, 3, and 4; the single-step GPCE
method in Examples 1 and 2; and the multi-point
single-step GPCE method in Examples 3–5. To illustrate
multiple choices for scalarization, the weighted sum and
Tchebycheff approaches were employed in Example 2.
All other examples used a single objective function or
the weighted sum approach. The objective and constraint
functions in these examples are elementary mathematical
functions or derived from practical applications, from
simple truss problems to an industrial-scale steering knuckle
problem from the automotive industry. Both size and shape
design problems, in the context of RDO, were studied. In all
examples, the design variables are the statistical means of
some or all input random variables.

In all examples, each component of g is either zero
or one, depending on whether the shifting or scaling
transformation is employed. The multivariate orthonormal
polynomials consistent with the probability measure of
Z were constructed using the three-step algorithm. The
monomial moment matrix was estimated using a 13-point
Gauss quadrature in Examples 1 and 2 and QMCS with a
sample size of L2 “ 5 ˆ 106 in conjunction with the Sobol
sequence (Lee and Rahman 2020) in Examples 3–5. The
GPCE orders (m, m1, m̄) and sample sizes (L, L1, L2, L̄)
vary from example to example, depending on the objective
or constraint functions and score functions at hand. Table 2
lists the specific values used in all five examples. For
estimating the GPCE coefficients, SLS regression were used
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Fig. 3 A flow chart of sizing the
q1th sub-region in the
multi-point single-step GPCE
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Table 2 The list of parameters (Examples 1–5): GPCE orders (m, m1, m̄) and sample sizes (L, L1, L2, L̄)

Examples 1 and 2

mpaq m1 pbq Lpcq L1 pdq L2 peq

Methods y0 y1 sk y0 y1 sk –

Direct GPCE 4 1 1 45 9 30 1 ˆ 106

Single-step GPCE 4 1 1 45 9 30 1 ˆ 106

Example 3

mpaq m1 pbq m̄ pfq Lpcq L1 pdq L2 peq L̄ pgq

Methods y0, y1, y2 sk y0, y1, y2 y0, y1, y2 sk – –

Direct GPCE

Option 1 3 1 – 168 60 2 ˆ 106 –

4 1 – 378 60 2 ˆ 106 –

Option 2 – – 3 – – – 1800

– – 4 – – – 1980

Multi-point single-step GPCE 1 1 – 18 60 2 ˆ 106 –

Example 4

mpaq m1 pbq Lpcq L1 pdq L2 peq

Methods yl , l “ 0 ´ 11 sk yl , l “ 0 ´ 11 sk –

Direct GPCE

SLS 2 3 198 2860 2 ˆ 106

3 3 858 2860 2 ˆ 106

Partitioned
D-MORPH

2 3 100 2860 2 ˆ 106

3 3 200 2860 2 ˆ 106

Multi-point single-step GPCE 1 3 33 2860 2 ˆ 106

Example 5

mpaq m1 pbq Lpcq L1 pdq L2 peq

Method y0 y1, y2 sk y0 y1, y2 sk –

Multi-point single-step GPCE 1 1 3 21 33 840 2 ˆ 106

aThe degree of GPCE approximation for an output response yl, l “ 0, . . . , K, 0 ď K ă 8

bThe degree of GPCE approximation for a score function sk
cThe sample size of input-output data set for expansion coefficients of an output response yl, l “ 0, . . . , K, 0 ď K ă 8

dThe sample size of input-output data set for expansion coefficients of a score function sk
eThe sample size for expectation of multiple product of three orthonormal polynomials
fThe degree of GPCE approximation for integrand in (24) and (25)
gThe sample size of input-output data set for expansion coefficients of an integrand in (24) and (25)

in all five examples, whereas the partitioned D-MORPH
was employed only in Example 4. The input data in the
experimental design were generated using QMCS.

For the gradient-based optimization, the sequential
quadratic programming was chosen in all examples. In the
multi-point single-step GPCE, the tolerances and initial
scale parameter are as follows: ε1 “ 1 ˆ 10´6, ε2 “

1 ˆ 10´6, ε3 “ 0.01, ε4 “ 0.07, ε5 “ 0.01, ε6 “ 0.5, ε7 “

0.05, and β
p1q

k “ 0.3, k “ 1, . . . , M , in Examples 3–5.
All numerical results were generated using MATLAB

(version 2019b) (MATLAB 2019), CREO parametric
(version 4.0) (CREO 2016), and ABAQUS (version 2019)
(ABAQUS 2019) on an Intel Core i7-7700K 4.20 GHz
processor with 64 GB of RAM.
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6.1 Example 1: Optimization of amathematical
function

Consider a mathematical problem involving a two-dimen-
sional Gaussian random vector X “ pX1, X2qᵀ with depen-
dent components, which have means EdrX1s “ d1 and
EdrX2s “ d2. Given the design vector d “ pd1, d2qᵀ, the
objective of this example is to

min
dPD

c0pdq :“
?

vardry0pXqs

σ˚
0

,

subject to c1pdq :“ 3
a

vardry1pXqs ´ Edry1pXqs ď 0,

0 ď d1 ď 10, 0 ď d2 ď 10,

where

y0pXq “ pX1 ´ 4q
3

` pX1 ´ 3q
4

` pX2 ´ 5q
2

` 10, (31)

and

y1pXq “ X1 ` X2 ´ 6.45 (32)

are two random output functions of X. The initial design
vector d0 “ p5, 5qᵀ. The approximate optimal solution is
denoted by d̃˚ “ pd̃˚

1 , d̃˚
2 qᵀ.

Two distinct cases of dependent variables, demonstrating
the respective needs of the shifting (Case 1) and scaling
(Case 2) transformations, were examined:

1. The standard deviations of X1 and X2 are the same as
0.4. The correlation coefficient between X1 and X2 is
0.4. The normalizing factor σ˚

0 “ 17.
2. The standard deviations of X1 and X2 are 0.15d1

and 0.15d2, respectively. The correlation coefficient
between X1 and X2 is ´ 0.5. The normalizing factor
σ˚
0 “ 45.

Formerly studied by Lee et al. (2009) and Ren and Rahman
(2013) for independent Gaussian variables, this example
was slightly modified by defining two cases of correlated
Gaussian variables.

Table 3 presents the means and variances of y0pXq

and y1pXq, including their first-order design sensitivities,
by GPCE approximations, at the initial design d0 “

p5, 5qᵀ. For the sensitivity analysis by GPCE and score
functions, Option 1 was employed. The shifting and scaling
transformations were applied in Cases 1 and 2, respectively.
When compared with the respective exact solutions, which

Table 3 The results of second moment properties and sensitivities of y0 and y1 at d0 “ p5, 5q (Example 1)

Case 1 (shifting) Case 2 (scaling)

(1) Response function: y0pX1, X2q “ pX1 ´ 4q3 ` pX1 ´ 3q4 ` pX2 ´ 5q2 ` 10

Results GPCE approx.paq Exactpbq GPCE approx.paq Exactpbq

Edry0pXqs 31.5568 31.5568 43.6992 43.6992

vardry0pXqspcq 289.9119 289.9119 2099.8191 2099.8191

BEdry0pXqs{Bd1 39.32 39.32 50.1875 50.1875

BEdry0pXqs{Bd2 1.8754 ˆ 10´13 0 ´1.1660 ˆ 10´9 0

BEdry2
0pXqs{Bd1 3264.3591 3264.7502 8939.0636 8939.7114

BEdry2
0pXqs{Bd2 10.6860 10.0659 ´54.0485 ´56.4609

No. of y0 evaluations 45 – 45 –

(2) Response function: y1pX1, X2q “ X1 ` X2 ´ 6.45

Results GPCE approx.pdq Exactpbq GPCE approx.pdq Exactpbq

Edry1pXqs 3.5500 3.5500 3.5500 3.5500

vardry1pXqspcq 0.4480 0.4480 0.5625 0.5625

BEdry1pXqs{Bd1 1.0000 1 1.0000 1

BEdry1pXqs{Bd2 1.0000 1 1.0000 1

BEdry2
1pXqs{Bd1 7.1004 7.1 7.1000 7.1

BEdry2
1pXqs{Bd2 7.1000 7.1 7.0997 7.1

No. of y0 evaluations 9 – 9 –

aThe order (m) of GPCE is four
bThe exact closed forms of sensitivities are used
cvardrylpxqs :“ EdrylpXq ´ EdrylpXqss2, l “ 0, 1
dThe order (m) of GPCE is one
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exist for these two functions and are also reported in Table 3,
the GPCE estimates of response moments and their design
sensitivities are excellent.

Table 4 summarizes the approximate optimal solutions
for Cases 1 and 2, including the requisite numbers of design
iterations and function evaluations, by the direct GPCE and
single-step GPCE methods. For comparison, the exact solu-
tions, obtained employing the exact expressions of objective
and constraint functions and their design sensitivities, are
also included. According to Table 4, both design methods
yield identical optimal solutions in seven to nine iterations.
This is possible as the selected orders of GPCE approxima-
tions in both methods are the same. More importantly, both
design methods deliver optimization results remarkably
close to the exact optimal solutions. Hence, each method can
be used to solve this optimization problem. However, the
numbers of function evaluations required to reach optimal
solutions reduce dramatically when the single-step GPCE is
employed. This is because the chosen GPCE approximation
at the initial design is adequate for the entire design space,
facilitating accurate calculations of the GPCE coefficients

by exploiting (29) for any design. In this case, the coef-
ficients need to be calculated only once during all design
iterations.

Lastly, Table 4 also incorporates the optimization results
for both cases when the input variables are statistically
independent. The results are quite different than those when
the input variables are dependent, especially when Case 2
is considered. Therefore, dependence or correlation in input
random variables, if it exists, should be accounted for in
design optimization under uncertainty.

6.2 Example 2: Bi-objective optimization
of a mathematical function

The second example involves the bi-objective version of the
first example, requiring one to

min
dPD

tEdry0pXqs,
a

vardry0pXqsu,

subject to 3
a

vardry1pXqs ´ Edry1pXqs ď 0,

0 ď d1 ď 10, 0 ď d2 ď 10,

(33)

Table 4 Optimization results of mathematical formulations (Example 1)

Results Direct GPCE Single-step GPCE Exact pcq Exactpcq

Case 1 (shifting) Dependentpaq Independentpbq

d̃1
˚

3.3908 3.3908 3.3906 3.3577

d̃2
˚

5.0672 5.0672 5.0673 5.0000

c0pd̃˚q 0.0682 0.0682 0.0682 0.0667

c1pd̃˚q 7.7539 ˆ 10´8 7.7539 ˆ 10´8 ´6.6613 ˆ 10´15 ´0.2107
a

vard̃˚ ry0pXqs 1.1592 1.1592 1.1592 1.1338

No. of iterations 7 7 7 7

No. of y0 evaluations 585 45 – –

No. of y1 evaluations 117 9 – –

Case 2 (scaling) Dependentpdq Independentpbq

d̃1
˚

3.1964 3.1964 3.1964 3.4239

d̃2
˚

5.3978 5.3978 5.3976 6.1912

c0pd̃˚q 0.0377 0.0377 0.0377 0.0721

c1pd̃˚q ´0.0287 ´0.0287 ´0.0286 0.0186
a

vard̃˚ ry0pXqs 1.6987 1.6987 1.6987 3.2449

No. of iterations 9 9 9 7

No. of y0 evaluations 1890 45 – –

No. of y1 evaluations 378 9 – –

aX1 and X2 are mutually dependent with the correlation coefficient of 0.4
bX1 and X2 are independent
cExact closed forms of objective, constraint, and their gradient functions are used
dX1 and X2 are mutually dependent with the correlation coefficient of ´0.5
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where X “ pX1, X2qT is a dependent Gaussian vector
as before and y0 and y1 are defined in (31) and (32),
respectively. The initial design vector d0 “ p5, 5qᵀ. The
standard deviations of X1 and X2 are the same as 0.4; and
the correlation coefficient between X1 and X2 is 0.4.

The objective of this example is to evaluate the single-
step GPCE method for obtaining Pareto solutions in two
distinct scalarization approaches, comprising the weighted
sum approach and the weighted Tchebycheff approach.

6.2.1 The weighted sum approach

The bi-objective functions in (33) are linearly aggregated by
weights w1 P R

`
0 and w2 P R

`
0 , such that w1 ` w2 “ 1.

Then, the weighted sum problem demands one to

min
dPD

c0pdq :“ w1

´

Edry0pXqs

31.5568

¯

` w2

ˆ?
vardry0pXqs

17.0268

˙

,

subject to c1pdq :“3
a

vardry1pXqs´Edry1pXqsď0.

(34)

6.2.2 The weighted Tchebycheff approach

To define the weighted Tchebycheff problem, a reference
point was obtained as pμ˚

f » 4.4307, σ˚
f » 1.1592q,

where μ˚
f “ Ed̃˚

1
ry0pXqs at d̃˚

1 “ p1.5713, 6.8867q and

σ˚
f “

b

vard̃˚
2

ry0pXqs at d̃˚
2 “ p3.3934, 5.0646q. Then, the

scalarized objective function is defined as

c0pdq :“ max

«

w1

´

Edry0pXqs´4.4307
31.5568

¯

,

w2

ˆ?
vardry0pXqs´1.1592

17.0268

˙

ff

.

(35)

The so-called min-max problem in (35) was tackled
by treating the bi-objective functions as additional side
constraints whose values are bounded by a real-valued
scalar variable λ P R

`
0 and asking to

min
dPD
λPR

`
0

λ,

subject to w1
Edry0pXqs´4.4307

31.5568 ´ λ ď 0,

w2

?
vardry0pXqs´1.1592

17.0268 ´ λ ď 0,

3
a

vardry1pXqs ´ Edry1pXqs ď 0.

(36)

To solve (34) and (36), the single-step GPCE was applied
to obtain Pareto optimal solutions for nine cases of evenly
distributed combinations of weights w1 and w2.

Table 5 summarizes the results of the weighted Tcheby-
cheff approach and the weighted sum approach for the

aforementioned nine cases of w1 and w2. Comparing
Table 5a and b, the Pareto solutions d̃1

˚
and d̃2

˚
between

two scalarization approaches are noticeably different in
each case of the combination of weights. The correspond-
ing values of the mean and the standard deviation generated
from the two scalarization approaches, listed in the fifth
and sixth columns, respectively, of Table 5a and b, are also
remarkably different. However, whether using the weighted
Techebycheff approach or the weighted sum approach, the
single-step GPCE needs only a single stochastic analysis
during the design process to obtain all Pareto solutions.
Indeed, to complete all optimizations of nine cases of w1

and w2, the requisite numbers of function evaluations for y0
and y1 are still 45 and 9. Thus, the single-step GPCEmethod
is computationally expedient in estimating Pareto solu-
tions of RDO problems, regardless of the function Gp¨, ¨q

selected.
Figure 4a and b present the plots of the mean Ed̃˚ry0pXqs

versus the standard deviation
b

vard̃˚ ry0pXqs, obtained using

the weighted Tchebycheff and weighted sum approaches,
respectively. According to Fig. 4a, the weighted Tcheby-
cheff approach yields an evenly distributed trade-off rela-
tionship between the mean and standard deviation. On the
other hand, as displayed in Fig. 4b, the weighted sum
approach explores mostly two corners of the Pareto front.
This is because the weighted sum approach has a limit to
capture the Pareto solutions on non-convex portions of the
Pareto optimal curve. In that case, the weighted Tcheby-
cheff approach is clearly a better choice, and the single-step
GPCE performs effectively, requiring the same computa-
tional efforts in terms of function evaluations for both
scalarization approaches.

6.3 Example 3: Optimal sizing design of a two-bar
truss structure

The third example was created by recasting a two-bar
truss problem previously investigated by Ramakrishnan and
Rao (1996) and Ren and Rahman (2013). Depicted in
Fig. 5, there are seven random variables in this problem:
cross-sectional areas X1 and X2; half-span lengths X3

and X4; mass density X5; yield strength X6; and load
magnitude X7. The second-moment characteristics and
marginal probability distribution of each random variable
are described in Table 6.

Additionally, two random variable pairs (X1, X2) and
(X3, X4) are statistically dependent with correlation coeffi-
cients of 0.4 and ´ 0.4, respectively. There are four design
variables, as follows: d1 “ EdrX1s, d2 “ EdrX2s, d3 “

EdrX3s, and d4 “ EdrX4s. The objective is to minimize
the second-moment properties of the mass of the structure
subject to two constraints, limiting axial stresses of both
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Table 5 Bi-objective optimization results of a mathematical function (Example 2)

Weights Pareto solutions Mean Standard deviation No. of function evaluations

(a) The weighted Tchebycheff approach

w1 w2 d̃˚
1 d̃˚

2 Ed̃˚ ry0pXqs
a

vard̃˚ ry0pXqs y0 y1

0.1 0.9 3.1092 5.3488 9.2355 1.4473 45 9

0.2 0.8 2.9545 5.5035 8.8476 1.7550 ´paq ´paq

0.3 0.7 2.8076 5.6504 8.4288 2.0837 ´paq ´paq

0.4 0.6 2.6583 5.7997 7.9427 2.4225 ´paq ´paq

0.5 0.5 2.5040 5.9540 7.3773 2.7491 ´paq ´paq

0.6 0.4 2.3449 6.1131 6.7436 3.0311 ´paq ´paq

0.7 0.3 2.1829 6.2751 6.0772 3.2321 ´paq ´paq

0.8 0.2 1.4281 7.0299 4.5877 2.8772 ´paq ´paq

0.9 0.1 1.4278 7.0302 4.5884 2.8772 ´paq ´paq

(b) The weighted sum approach

w1 w2 d̃˚
1 d̃˚

2 Ed̃˚ ry0pXqs
a

vard̃˚ ry0pXqs y0 y1

0.1 0.9 3.3748 5.0832 9.8539 1.1603 45 9

0.2 0.8 3.3546 5.1034 9.8053 1.1650 ´paq ´paq

0.3 0.7 3.3278 5.1302 9.7420 1.1766 ´paq ´paq

0.4 0.6 3.2895 5.1685 9.6530 1.2029 ´paq ´paq

0.5 0.5 3.2262 5.2318 9.5075 1.2688 ´paq ´paq

0.6 0.4 2.9975 5.4605 8.9600 1.6639 ´paq ´paq

0.7 0.3 1.5214 6.9366 4.4488 2.9264 ´paq ´paq

0.8 0.2 1.5386 6.9194 4.4384 2.9432 ´paq ´paq

0.9 0.1 1.5555 6.9025 4.4325 2.9612 ´paq ´paq

aAfter obtaining GPCE coefficients for the first case pw1 “ 0.1, w2 “ 0.9q, the single-step GPCE recycled the coefficients for the remaining
eight cases, thus requiring no additional function evaluations

members at or below the yield strength of the material with
99.875% probability if yl , l “ 1, 2, are standard Gaussian.
Here, the RDO problem is devised to

min
dPDĎRM

c0pdq :“ 0.5Edry0pXqs

56.5744 ` 0.5
?

vardry0pXqs

17.0059 ,

subject to c1pdq :“ 3
a

vardry1pXqs ´ Edry1pXqs ď 0,

c2pdq :“ 3
a

vardry2pXqs ´ Edry2pXqs ď 0,

2 cm2 ď d1, d2 ď 25 cm2,

0.3 m ď d3, d4 ď 1.4 m,

where

y0pXq “ X5

ˆ

X1

b

1 ` X2
3 ` X2

b

1 ` X2
4

˙

,

and

y1pXq “ 1 ´

10
b

1 ` X2
3p1 ` 8X4qX7

?
65X1pX3 ` X4qX6

,

and

y2pXq “ 1 ´

10
b

1 ` X2
4p´1 ` 8X3qX7

?
65X2pX3 ` X4qX6

are three random response functions of X. They represent
the total mass of two bars, the axial stress on the left bar,
and the axial stress on the right bar, respectively. The design
vector d “ pd1, d2, d3, d4qᵀ with the initial value d0 “

p20 cm2, 20 cm2, 1 m, 1 mqT . The corresponding mean and
standard deviation of y0pXq at the initial design, calculated
by the QMCS method with 5 ˆ 105 samples, are 56.5744
kg and 17.0059 kg, respectively. The approximate optimal
solution is denoted by d̃˚ “ pd̃˚

1 , d̃˚
2 , d̃˚

3 , d̃˚
4 qT .

Three design methods comprising direct GPCE, multi-
point single-step GPCE, and QMCS were applied to solve
this RDO problem. In the direct GPCE method, both
Options 1 and 2 were used for obtaining design sensitivities.
Several orders of GPCE approximations were employed
in the GPCE-based methods. The QMCS method was
conducted with the motivation of providing a benchmark
solution. The sample size of QMCS is 5ˆ105 for stochastic
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Fig. 4 Pareto optimal set of
mean and standard deviation of
y0 for RDO problem (Example
2): a the weighted Tchebycheff
approach; b the weighted sum
approach

analysis, where design sensitivities were calculated from the
central finite-difference approximation. The results of all
three methods are outlined in Table 7.

According to Table 7, the optimal solutions by both
variants of the GPCE-based method and QMCS are very
close to each other, all indicating that the constraints are
active (c1 » 0, c2 » 0). The individual results of the
direct GPCE method generated for the third-order and
fourth-order GPCE approximations are practically conver-
gent, regardless of which option is selected for calculating
design sensitivities. However, when comparing the num-
bers of function evaluations, Option 2 requires more func-
tion evaluations than Option 1. This is primarily because,
although m̄ “ m was used in (22), a larger set of exper-
imental design was required to estimate the coefficients

Fig. 5 A two-bar truss structure

H
p1q

k,i prq and H
p2q

k,i prq. Conversely, though, the CPU times
in Option 2 (11–23 s) are substantially lower than those
in Option 1 (3558–19,935 s), as the computational expense
in calculating numerous expectations of the triple product
dominates the time and effort needed to evaluate the func-
tions. Therefore, Option 2 is more economical than Option
1 when the objective and constraint functions are simple
enough for rapid evaluations, as is the case in this prob-
lem. However, for more realistic RDO problems mandating
FEA-generated functions, to be illustrated in the next two
examples, the computational advantage of Option 2 may
disappear, rendering Option 1 to be more effective than the
other.

Since this problem was also tackled by the multi-point
single-step GPCE method, a few additional comments on
this method are in order. When compared with the results of
the higher-order (m “ 4) direct GPCE method and QMCS,
the first-order (m “ 1) multi-point single-step GPCE
method produces good estimates of the optimal solution as
well. Although there is some discrepancy in the values of
d̃˚
1 and d̃˚

2 calculated by the latter method, any differences

Table 6 Statistical properties of random variables of two-bar truss
(Example 3)

Random variables Mean Standard Probability

deviation distribution

Cross-sectional area (X1), cm2paq d1 0.02d1 Gaussian

Cross-sectional area (X2), cm2paq d2 0.02d2 Gaussian

Half-horizontal span (X3), mpbq d3 0.02d3 Gaussian

Half-horizontal span (X4), mpbq d4 0.02d4 Gaussian

Mass density (X5), kg/m3 10,000 3,000 Weibull

Yield strength (X6), MPa 2,050 488 Gumbel

Load magnitude (X7), kN 200 50 Gumbel

aX1 and X2 are mutually dependent with the correlation coefficient of
0.4
bX3 and X4 are mutually dependent with the correlation coefficient of
´0.4
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Table 7 Optimization results of a two-bar truss (Example 3)

Direct GPCE Multi-point

Option 1paq Option 2pbq single-step GPCEpcq

Results m “ 3 m “ 4 m “ 3 m “ 4 m “ 1 Benchmarkpdq

d̃1
˚
, cm2 15.3760 15.2294 15.2056 15.1852 15.8173 15.1853

d̃2
˚
, cm2 6.3489 6.2758 6.2700 6.2623 6.4966 6.2628

d̃3
˚
, m 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

d̃4
˚
, m 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

c0pd̃˚q 0.4009 0.3969 0.3963 0.3958 0.4111 0.3958

c1pd̃˚q 1.3874 ˆ 10´7 4.5317 ˆ 10´8 ´2.0120 ˆ 10´10 4.9160 ˆ 10´12 ´1.7285 ˆ 10´5 8.8818 ˆ 10´16

c2pd̃˚q ´2.4614 ˆ 10´7 ´3.8889 ˆ 10´7 ´6.2194 ˆ 10´6 ´1.0281 ˆ 10´6 5.5536 ˆ 10´7 ´2.8155 ˆ 10´13

Ed̃˚ ry0pXqs, kg 22.6817 22.4522 22.4214 22.3921 23.3319 22.3940
a

vard̃˚ ry0pXqs, kg 6.8176 6.7487 6.7394 6.7295 6.9706 6.7312

No. of iterations 21 19 25 17 193 18

No. of y0 evaluations 14,760 36,630 88,200 81,180 792 1.665 ˆ 108

No. of y1 evaluations 14,760 36,630 88,200 81,180 792 1.665 ˆ 108

No. of y2 evaluations 14,760 36,630 88,200 81,180 792 1.665 ˆ 108

aOption 1 is the approximate sensitivity method of the first two moments in (19) and (20)
bOption 2 is the approximate sensitivity method of the first two moments in (24) and (25)
cOption 1 of approximate sensitivities is used
dQMCS method of 5 ˆ 105 samples is employed for stochastic and sensitivity analysis based the central finite-difference method

in the objective functions at respective optima by all three
methods are negligibly small. More notably, the multi-point
single-step GPCE method delivers an acceptable design
solution, asking for a fraction of the function evaluations
required by any other methods.

6.4 Example 4: Optimal sizing design of a ten-bar
truss structure

In the fourth example, a linear-elastic ten-bar truss, studied
by Elishakoff et al. (1994) and Lee and Rahman (2020),
was redesigned to evaluate the direct GPCE and multi-point
single-step GPCE methods. As shown in Fig. 6, the truss
is simply supported at nodes 1 and 4 and is subjected to
two vertically downward concentrated forces of 100,000
lb at nodes 2 and 3 and a horizontal concentrated force
of 400,000 lb at node 3. The material is aluminium alloy,
which has Young’s modulus of 107 psi and a mass density
of 0.1 lb/in3. There are ten (N “ 10) random variables
X “ pX1, . . . , X10qᵀ, representing random cross-sectional
areas of all ten bars. Modeled as correlated lognormal
random variables, they have means EdrXis, i “ 1, . . . , 10;
standard deviations equal to 0.05EdrXis, i “ 1, . . . , 10;
and correlation coefficients ρij “ 0.3997, i, j “ 1, . . . , 10,
i ‰ j . There are ten design variables, as follows: dk “

EdrXks, k “ 1, . . . , 10. The objective is to minimize the
second-moment properties of the mass of the entire truss

structure, constrained by specifying the upper limits of the
vertical displacement (v2) at node 2 and axial stresses σi ,
i “ 1, . . . , 10, at all ten bars, such that the limits are
satisfied with 99.865% probability if the distribution of each
response ylpXq, l “ 1, . . . , 11, is standard Gaussian. More
specifically, the RDO problem is defined to

min
dPDĎRM

c0pdq :“ 0.5
Edry0pXqs

12, 589
` 0.5

a

vardry0pXqs

334
,

subject to clpdq :“ 3
b

vardrylpXqs ´ EdrylpXqs ď 0,

l “ 1, . . . , 11,

0.1 in2 ď dk ď 30 in2, k “ 1, . . . , 10,

where

y0pXq “ 0.1
10
ÿ

i“1

liXi

is the random mass of the truss with li , i “ 1, . . . , 10,
representing bar lengths and

ylpXq “

$

’

&

’

%

25, 000 ´ σlpXq, if l “ 1, . . . , 9,

75, 000 ´ σlpXq, if l “ 10,

5 ´ v2pXq, if l “ 11,

are 11 stochastic performance functions. The initial design
is d0 “ p15, . . . , 15qᵀ in2. The approximate optimal
solution is denoted by d̃˚ “ pd̃˚

1 , . . . , d̃˚
10qᵀ.
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Fig. 6 A ten-bar truss structure

Table 8 summarizes the assorted results of design opti-
mization by the direct GPCE and multi-point single-step
GPCE methods. In the second and third columns of Table 8,
the direct GPCE solutions obtained from the second-order
(m “ 2) and third-order (m “ 3) approximations with expan-
sion coefficients estimated by the SLS regression are almost
the same. Therefore, the SLS-produced second-order direct
GPCE solution is adequate and credible. However, for the
third-order GPCE approximation, the requisite number of
FEA escalates significantly, making the SLS-produced solu-
tion impractical. This is because the SLS regression, depend-
ing on the number of GPCE coefficients, requires a large data
set; for instance, when m “3, the data size is L “858, incur-
ring over one hundred thousand FEA to complete all design
iterations. To mitigate such high computational demand, the
extended version of the partitioned D-MORPH regression
was utilized to estimate the GPCE coefficients for two differ-
ent data sizes (L “ 100, 200), and the same RDO problem
was re-solved. The solutions are tabulated in the fourth and
fifth columns for m “ 2 and m “ 3, respectively. The direct
GPCE method, obtained using the D-MORPH regression,
yields nearly matching optimal solutions of SLS regression,
especially when the data size is larger. However, the associ-
ated computational expense is now significantly lower than
before. For example, when m “ 3, a data size of L “ 200
is satisfactory for the D-MORPH regression, shrinking the
number of FEA by more than a factor of four.

While the direct GPCE method, in conjunction with the
D-MORPH regression, has greatly reduced the computa-
tional cost, the absolute numbers of FEA are still very high.
To alleviate the cost even further, the first-order multi-point
single-step GPCE method with SLS-estimated coefficients
was tested, the results of which are shown in the last col-
umn of Table 8. Indeed, a low-order multi-point single-step
GPCE method also produces optimal solutions very close
to those obtained by higher-order direct GPCE methods,
but sustaining less than 1,000 FEA. Therefore, the multi-
point single-step GPCE method provides a computationally
efficient solution to RDO problems, at least in this example.

6.5 Example 5: Shape optimization of a steering
knuckle

The last example establishes the efficacy of the multi-point
single-step GPCE method in designing an industrial-scale
mechanical component, known as steering knuckle. As
illustrated in Fig. 7, the steering knuckle of an automotive
suspension system is located in the spindle of a tire-wheel
assembly, attaching to the suspension and steering compo-
nents. In Fig. 7a, the knuckle connects to a strut at the top
and lower control arms through the ball joint at the bottom to
stabilize the driving motion. A steering arm of the knuckle is
connected to the steering mechanism to turn the tire-wheel
assembly. The knuckles are commonly designed to maintain
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Table 8 Optimization results of a ten-bar truss (Example 4)

Direct GPCE Multi-point

SLSpaq Partitioned D-MORPHpbq single-step GPCEpcq

m “ 2 m “ 3 m “ 2 m “ 3 m “ 1

Results L “ 198pdq L “ 858pdq L “ 100pdq L “ 200pdq L “ 33pdq

d̃1
˚
, in2 4.6435 4.6434 4.6435 4.6430 4.6295

d̃2
˚
, in2 13.9252 13.9280 14.2013 13.9236 13.9185

d̃3
˚
, in2 0.1000 0.1000 0.3935 0.1000 0.1007

d̃4
˚
, in2 0.1000 0.1000 0.3931 0.1000 0.1000

d̃5
˚
, in2 4.6427 4.6433 4.6425 4.6424 4.6419

d̃6
˚
, in2 0.1000 0.1000 0.1000 0.1000 0.1000

d̃7
˚
, in2 12.9792 12.9824 12.9771 12.9782 12.9777

d̃8
˚
, in2 4.4737 4.4740 4.1823 4.4739 4.4820

d̃9
˚
, in2 0.1385 0.1385 0.5455 0.1385 0.1387

˜d10˚
, in2 3.2952 3.2955 3.0717 3.2947 3.3161

c0pd̃˚q 1.5909 ˆ 10´1 1.5912 ˆ 10´1 1.6110 ˆ 10´1 1.5908 ˆ 10´1 1.5913 ˆ 10´1

c1pd̃˚q ´1.1999 ˆ 10´1 ´1.2006 ˆ 10´1 ´1.2032 ˆ 10´1 ´1.2003 ˆ 10´1 ´1.2244 ˆ 10´1

c2pd̃˚q 1.8118 ˆ 10´8 ´1.1053 ˆ 10´9 ´1.1850 ˆ 10´6 ´6.5266 ˆ 10´7 ´1.0283 ˆ 10´5

c3pd̃˚q ´7.9680 ˆ 10´8 6.6478 ˆ 10´9 ´3.9597 ˆ 10´8 ´1.3862 ˆ 10´7 ´4.0113 ˆ 10´6

c4pd̃˚q 2.0464 ˆ 10´7 1.3008 ˆ 10´8 9.7856 ˆ 10´6 3.7328 ˆ 10´6 ´3.2441 ˆ 10´6

c5pd̃˚q ´1.6853 ˆ 10´7 2.0698 ˆ 10´8 2.0882 ˆ 10´6 ´1.6241 ˆ 10´6 ´4.2739 ˆ 10´6

c6pd̃˚q ´1.2132 ˆ 10´7 1.3089 ˆ 10´8 ´2.1549 ˆ 10´7 ´1.4687 ˆ 10´6 ´6.4120 ˆ 10´6

c7pd̃˚q ´4.1197 ˆ 10´1 ´4.1203 ˆ 10´1 ´4.1018 ˆ 10´1 ´4.1197 ˆ 10´1 ´4.1351 ˆ 10´1

c8pd̃˚q 1.3304 ˆ 10´8 1.4487 ˆ 10´8 ´8.4815 ˆ 10´7 5.1011 ˆ 10´7 ´6.1153 ˆ 10´6

c9pd̃˚q 4.8502 ˆ 10´7 ´1.7907 ˆ 10´8 ´3.1965 ˆ 10´6 6.7594 ˆ 10´6 5.6970 ˆ 10´7

c10pd̃˚q ´1.0894 ˆ 10´8 ´7.9334 ˆ 10´10 3.0665 ˆ 10´6 3.7827 ˆ 10´7 ´5.1394 ˆ 10´6

c11pd̃˚q ´3.5549 ˆ 10´1 ´3.5548 ˆ 10´1 ´3.5502 ˆ 10´1 ´3.5556 ˆ 10´1 ´3.5571 ˆ 10´1

Ed̃˚ ry0pXqs, lb 1844.5687 1844.8778 1874.3617 1844.4106 1845.1160
a

vard̃˚ ry0pXqs, lb 57.4072 57.4179 57.9574 57.4022 57.4148

No. of iterations 55 53 57 55 428

No. of FEA 25,938 101,244 13,300 23,600 924

aThe standard least squares (SLS), used for estimating GPCE coefficients
bThe extended version of the partitioned D-MORPH, used for estimating GPCE coefficients
cThe multi-point single-step GPCE is in conjunction with the SLS
dThe sample size (L) of input-output data set

adequate fatigue durability under various driving condi-
tions, such as forward/backward accelerations, cornering,
and braking, and must sustain satisfactory performances
on uneven road conditions. However, any uncertainties in
material properties and/or manufacturing variables, if they
exist, result in the randomness of fatigue life. A tradi-
tional deterministic design optimization incorporating large
safety factors may lead to increased weight of a vehicle,
causing a loss of fuel efficiency. Therefore, incorporating
uncertainty in fatigue life, as done in RDO, under vari-
ous driving environments is essential to creating lightweight
knuckle design.

Ten input random variables were identified by modeling
the randomness in manufacturing tolerances of the knuckle
geometry and in fatigue parameters of the knuckle material.
Figure 7b depicts a computer-aided design (CAD) model of
a steering knuckle with six random manufacturing variables
X1 through X6, which are marked in the side and front
views. The variables X1 and X2 represent the widths of
two arms, while the variables X3 through X6 describe
the heights and widths of two voids introduced in two
arms to bring down the mass of the knuckle as much
as possible. The knuckle material is made of cast steel
and has the following random fatigue parameters: fatigue
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Fig. 7 A steering knuckle
(Example 5): a a photo of the
knuckle/suspension assembly; b
a CAD model of the steering
knuckle (unit: mm)

strength coefficient X7, fatigue ductility coefficient X8,
fatigue strength exponent X9, fatigue ductility exponent
X10. The statistical dependence among/between random
variables is as follows: (1) pX1, . . . , X6qᵀ is a hexavariate
lognormal vector; (2) pX7, X8qᵀ is a bivariate lognormal
vector; and (3) pX9, X10qᵀ is a bivariate Gaussian vector.
The probabilistic characteristics of all ten random variables
are fully described in Table 9.

The deterministic material properties are as follows:
mass density ρ “ 7800 kg{m3, Young’s modulus E “ 203
GPa, and Poisson’s ratio ν “ 0.3. The design variables are
the means of the first six manufacturing variables, that is,
dk “ EdrXks, k “ 1, . . . , 6.

The stochastic performance of the knuckle was deter-
mined by fatigue durability analysis under two distinct

loading conditions: a road impact condition comprising two
separate applied loads F1 and F2, as shown in Fig. 8a; and
a cornering condition entailing a single applied load F3, as
shown in Fig. 8b. In both loading conditions, the knuckle
experiences constant-amplitude cyclic loads with the maxi-
mum and minimum values of these three loads, as follows:
1.16 ď F1 ď 2.24 kN (Y-axis); 1.16 ď F2 ď 2.24 kN
(Y-axis); ´1.28 ď F3 ď 1.28 kN (Z-axis). The essential
boundary condition involves fixing the center of the spindle
of the knuckle in all three directions. The fatigue dura-
bility analysis involved (1) calculating maximum principal
strain and mean stress at a critical point; and (2) calculating
the fatigue crack-initiation life at that point from the well-
known Coffin-Manson-Morrow equation (Stephens et al.
2000). The critical point is the location where the von
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Fig. 8 An FEA of the steering
knuckle (Example 5): a road
impact load and boundary
condition; b cornering load and
boundary condition; c a
tetrahedral mesh comprising
75,271 elements

Mises stress is the largest, identified from an FEA where
all input random variables are assigned their mean values.
The objective is to minimize the mass of the knuckle by
changing the shape of the geometry such that the fatigue
crack-initiation lives N1pXq and N2pXq under the two afore-
mentioned loading conditions at the critical point exceed a
design threshold of a million loading cycles with 98.21%
probability. Mathematically, the RDO for this problem is
defined to

min
dPD

c0pdq :“ Edry0pXqs

2.2964 ,

subject to c1pdq :“ 2.1
a

vardry1pXqs ´ Edry1pXqs ď 0,

clpdq :“ 2.1
a

vardry2pXqs ´ Edry2pXqs ď 0,

10 mm ď d1 ď 25 mm,

15 mm ď d2 ď 25 mm,

2 mm ď d3 ď 16 mm,

2 mm ď d4 ď 20 mm,

2 mm ď d5 ď 10 mm,

2 mm ď d6 ď 30 mm,

where

y0pXq “ ρ

ż

D1

dD1

is the random mass of the knuckle, and

y1pXq “
N1pXq

1 ˆ 106
´ 1,

and

y2pXq “
N2pXq

1 ˆ 106
´ 1,

are two stochastic performance functions based on nor-
malized fatigue crack-initiation lives. The initial design
d0 “ p23, 23, 2, 2, 2, 2qᵀ mm. Figure 8c presents an FEA
mesh for the initial knuckle design, which comprises 75,271
tetrahedral elements. The approximate optimal solution is
denoted by d̃˚ “ pd̃˚

1 , . . . , d̃˚
6 qᵀ.

The multi-point single-step GPCE method was applied to
solve this steering knuckle design problem employing first-
order (m “ 1) GPCE approximations for second-moment
analyses of y1pXq and y2pXq. As a result, the optimal
design is at d̃˚ “ p10.0, 15.0, 16.0, 20.0, 10.0, 30.0qᵀ mm.
At the optima, the design variables d̃˚

1 and d̃˚
2 reached

the lower limits and d̃˚
3 , d̃˚

4 , d̃˚
5 and d̃˚

6 the upper limits,
satisfying inactive constraints pc1 » ´0.58, c2 » ´8.68q.
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Fig. 9 Contours of von Mises
stress under the mean road
impact load condition at mean
shapes of the steering knuckle
optimized by the multi-point
single-step GPCE (m “ 1)
method: a initial design; b final
optimal design at iteration 557;
c design history at iterations 1,
100, 200, and 557 for the
component inside the dot-lined
box in Fig. 9a

The mean optimal mass of the knuckle is 1.95 kg, which
represents about a 15% reduction from the initial mass of
2.30 kg. Correspondingly, the standard deviation of the mass
declines from 2.60 ˆ 10´2 to 1.00 ˆ 10´2 kg—a drop of
about 61%. To complete the design process, the requisite
number of FEA is 2310.

Figures 9 and 10 show the contour plots of the von
Mises stress at the initial (Figs. 9a and 10a) and optimal
(Figs. 9b and 10b) designs under road impact and cornering
conditions, respectively. They both illustrate deterministic
stresses obtained at mean shapes of these designs when
all random variables take on their respective mean values.
These two figures also include close-up views of the stress
contours at several design iterations (Figs. 9c and 10c).
At the optimal solution, there is, indeed, a considerable
reduction of the overall volume of the knuckle, but without
exceeding stresses responsible for violating the required
fatigue lives.

Figure 11 presents the iteration histories of the objective
function c0 and six design variables during the RDO process
attained by the first-order multi-point single-step GPCE

method. In Fig. 11a, the monotonic convergence is achieved
such that the value of objective function c0 is reduced
from 1.00 at the initial design to nearly 0.85 at the optimal
design, about a 15% change. According to Fig. 11b, all
design variables have undergone significant changes from
their initial values, influencing substantial modifications
of the knuckle arms and their hollow shapes and sizes.
This concluding example indicates that the RDO methods
developed—in particular, the first-order multi-point single-
step GPCE method—are capable of solving industrial-scale
engineering design problems using only a few thousand
FEA.

Finally, Table 10 outlines the percentage changes in the
mean and standard deviation of y0 from initial to optimal
designs in all four examples. The second-moment statistics
at optimal designs are averages of all GPCE solutions
described earlier. The largest reduction of the mean is
85.3%, whereas the standard deviation diminishes by at
most 96.3%. Clearly, robustness in design optimization has
played an important role in reducing the statistical moments
of objective functions.
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Fig. 10 Contours of von Mises
stress under the mean cornering
load condition at mean shapes of
the steering knuckle optimized
by the multi-point single-step
GPCE (m “ 1) method: a initial
design; b final optimal design at
iteration 557; c design history at
iterations 1, 100, 200, and 557
for the component inside of the
dot-lined box in Fig. 10a

7 Discussion

It is important to differentiate this work from related past
studies on UQ and design optimization (Ren and Rahman
paper, Lee and Rahman paper) conducted in the authors’
group. First, Lee and Rahman (2020) solved only forward
UQ problems for dependent random variables without

considering stochastic sensitivity analysis and design
optimization. Second, Ren and Rahman (2013) tackled
RDO problems, including formulating sensitivity analysis
and design optimization algorithms, but their work was
limited strictly to independent random variables. In contrast,
the current study is new in the sense that a more general
class of RDO problems, grappling with dependent input

Fig. 11 RDO iteration histories
for the knuckle: a objective
function at m “ 1; b normalized
design variables d1, d2, d3, d4,
d5, and d6 at m “ 1
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Table 10 Reductions in the mean and standard deviation of y0 from
initial to optimal designs

Example
Ed̃˚ ry0pXqs´Ed0 ry0pXqs

Ed0 ry0pXqs

?
vard̃˚ ry0pXqs´

?
vard0 ry0pXqs

?
vard0 ry0pXqs

1-1paq ´ 68.7% ´ 93.2%

1-2pbq ´ 77.2% ´ 96.3%

3pcq ´ 60.0% ´ 60.0%

4pdq ´ 85.3% ´ 82.8%

5 ´ 15.2% ´ 61.4%

aThe value of Ed̃˚ ry0pXqs and
a

vard̃˚ ry0pXqs is the average of all
corresponding GPCE results in Table 4-(1)
bThe value of Ed̃˚ ry0pXqs and

a

vard̃˚ ry0pXqs is the average of all
corresponding GPCE results in Table 4-(2)
cThe value of Ed̃˚ ry0pXqs and

a

vard̃˚ ry0pXqs is the average of all
corresponding GPCE results in Table 7
dThe value of Ed̃˚ ry0pXqs and

a

vard̃˚ ry0pXqs is the average of all
corresponding GPCE results in Table 8

random variables head-on, is addressed. There are at least
two key elements of novelty in this paper: (1) development
of new design sensitivity equations for input random
variables following an arbitrary, dependent probability
measure; (2) development of three new design optimization
algorithms tailored to solve diverse RDO problems subject
to dependent input random variables.

As multiple design methods have been proffered,
providing a brief overview of their efficiency and relevance
is in order. Table 11 presents such an overview, including a
few comments supported by the numerical examples of the
preceding section. While all three methods have their own
applications, the multi-point single-step GPCE is especially
suited to solving practical RDO problems.

Table 11 Efficiency and relevance of three GPCE methods

Method Efficiency Relevance Comments

Direct GPCE Low Inexpensive-to-evaluate, lowly or
highly nonlinear functions

Costly due to recalculation of the
expansion coefficients from new
experimental design. Not practi-
cal for complex system designs.

Single-step GPCE High Lowly nonlinear functions with
small or large design spaces

Highly efficient due to recycling
of old expansion coefficients,
but may produce premature or
inaccurate solutions for complex
system designs.

Multi-point single-step GPCE Medium Highly nonlinear functions with
large design spaces

Suitable for solving complex,
practical design problems using
low-order GPCE approximations.

8 Conclusion

Three new computational methods were created for
robust design optimization of complex engineering systems
subject to input random variables with arbitrary, dependent
probability distributions. The methods are built on a GPCE
for determining the second-moment statistics of a general
output function of dependent input random variables, an
innovative coupling between GPCE and score functions
for calculating the second-moment sensitivities with respect
to the design variables, and a standard gradient-based
optimization algorithm, establishing direct GPCE, single-
step GPCE, and multi-point single-step GPCE design
processes. When blended with score functions, all three
GPCE methods subsume analytical formulae for calculating
the design sensitivities. More importantly, the statistical
moments and their respective design sensitivities are both
determined concurrently from a single stochastic analysis or
simulation.

Among the three methods, the direct GPCE method
is most straightforward, but it mandates re-computations
of the GPCE coefficients at each design iteration. Con-
sequently, it can be expensive, depending on the cost of
evaluating the objective and constraint functions and the
required number of design iterations. The single-step GPCE
method avoids the necessity of recomputing the coefficients
by reprocessing the old coefficients, potentially bringing
down the computational cost substantially. However, it
relies heavily on the GPCE’s approximation quality and
the accuracy of the estimated coefficients during all design
iterations. However, both of these methods are globally for-
mulated on the entire design space, raising a concern about
the GPCE’s approximation quality when the design space
is too large and/or the objective and constraint functions

2455



D. Lee and S. Rahman

are overly nonlinear. The multi-point single-step GPCE
method comes to the rescue in this problem by adopting
a local enforcement of GPCE approximation, where the
original RDO problem is exchanged with a series of local
RDO problems defined on a subregion of the entire design
space. This is precisely why the latter method is capa-
ble of solving practical engineering problems using only
low-order approximations, as demonstrated by shape design
optimization of an industrial-scale steering knuckle.

Appendix 1. Direct approach of partitioned
D-MORPH regression

The partitioned D-MORPH regression involves primary and
secondary groups of the GPCE basis functions. According
to Lee and Rahman (2020), the number of primary basis
functions Lp is defined as

Lp :“ min

ˆR

LN,m

K1

V

,

R

L

K2

V˙

,

where K1, K2 ě 1 are two real-valued factors such that
Lp ă LN,m and Lp ă L. Here,

P

¨
T

is a symbol for the
ceiling function. The proper values of K1, K2 are problem
dependent, meaning that they are determined from trial
and error. Nonetheless, there are two cases for how Lp is
determined: (1) Lp “

P

LN,m{K1
T

and (2) Lp “
P

L{K2
T

.
In the direct approach, partition the L ˆ LN,m data

matrix A “ rAp,Ass into two parts, where Ap is the
L ˆ Lp matrix representing the first Lp columns of A
and As is the L ˆ pLN,m ´ Lpq matrix describing the last
LN,m ´Lp columns of A. Then, the approximation solution
of expansion coefficients is obtained from

Āĉ “ b̄, (A1.1)

where Ā :“ Aᵀ
prAp,Ass is the reduced Lp ˆ LN,m data

matrix and b̄ :“ Aᵀ
pb is the reduced Lp-dimensional

vector. As (A1.1) is an underdetermined system, the direct
approach produces partitioned D-MORPH solution č “

pČ1pdq, . . . , ČLN,m
pdqqᵀ P R

LN,m of expansion coefficients
as

č “ F̄LN,m´rpĒᵀ
LN,m´r F̄LN,m´rq

´1Ēᵀ
LN,m´r Ā

`b̄, (A1.2)

where Ā` is the Moore-Penrose inverse of Ā. Here,
ĒLN,m´r and F̄LN,m´r are constructed from the lastLN,m´r

columns of Ē and F̄, generated from the singular value
decomposition of

�̄D̄ “ Ē
„

T̄r 0
0 0

j

F̄ᵀ,

with

�̄ :“ pILN,m
´ Ā`Āq P R

LN,mˆLN,m, (A1.3)

D̄ “ diagr0, ¨ ¨ ¨ , 0
looomooon

Lp

, 1, ¨ ¨ ¨ , 1
looomooon

LN,m´Lp

s.

Appendix 2. Expectation of score function

Consider the kth first-order score function skpZ; gq in (13).
The expectation of skpZ; gq with respect to the probability
measure fZpz; gqdz is reformulated by replacing the score
function with the ratio given by the derivative of the natural
logarithm as follows:

EgrskpZ; gqs “

ż

ĀN

B ln fZpz; gq

Bgk

fZpz; gqdz

“

ż

ĀN

BfZpz; gq

Bgk

1

fZpz; gq
fZpz; gqdz

“

ż

ĀN

BfZpz; gq

Bgk

dz. (A2.1)

Then, under the regularity conditions in Section 4, inter-
changing the order of differentiation and integration in the
final equality of (A2.1) yields
ż

ĀN

BfZpz; gq

Bgk

dz “
B

Bgk

ż

ĀN

fZpz; gqdz “
B

Bgk

1 “ 0.

Therefore, the mean value of the score function is always
zero for any probability measure of Z.
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Replication of results The MATLAB code files of the Examples
1–4 are provided in the following Github repository: https://github.
com/icdsigma-lee/Robust-Design-Optimization-under-Dependent-
Random-Variables-by-a-Generalized-Polynomial-Chaos-Expans.git.
Unfortunately, the FEM or other source codes of Example 5 cannot be
shared due to the external code license. Readers further interested in
the codes are encouraged to contact the authors by e-mail.
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