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Abstract
This article brings forward a new computational method for reliability-based design optimization (RBDO) of complex 
mechanical systems subject to input random variables following arbitrary, dependent probability distributions. It involves 
a generalized polynomial chaos expansion (GPCE) for reliability analysis subject to dependent input random variables, a 
novel fusion of the GPCE approximation and score functions for estimating the sensitivities of the failure probability with 
respect to design variables, and standard gradient-based optimization algorithms, resulting in a multi-point single-step design 
process. The method, designated as the multi-point single-step GPCE method or simply the MPSS-GPCE method, yields 
analytical formulae for computing the failure probability and its design sensitivities concurrently from a single stochastic 
simulation or analysis. For this reason, the MPSS-GPCE method affords the ability to solve industrial-scale problems with 
large design spaces. Numerical results stemming from mathematical functions or elementary engineering problems indicate 
that the new method provides more accurate or computationally efficient design solutions than existing methods or reference 
solutions. Furthermore, the shape design optimization of a jet engine compressor blade root was successfully conducted, 
demonstrating the power of the new method in confronting practical RBDO problems.

Keywords RBDO · Reliability analysis · GPCE · Design sensitivity analysis · Score functions · Stochastic optimization

1 Introduction

Reliability-based design optimization (RBDO) is an impor-
tant paradigm for engineering design when confronted with 
uncertainties stemming from manufacturing processes and 
operating environments. (Agarwal and Renaud 2006; Chi-
ralaksanakul and Mahadevan 2004; Du and Chen 2004; 
Kuschel and Rackwitz 1997; Liang et al. 2007; Rahman and 
Wei 2008; Ren et al. 2016; Tu et al. 1999). Typically per-
formed in conjunction with probabilistic descriptions of the 
objective and/or constraint functions, RBDO of mechanical 
systems aims to achieve high reliability of an optimal design 
by satisfying the constraints at desired probability levels. On 
the other hand, robust design optimization (RDO)—another 
major archetype for design under uncertainty—strives 

to improve the product quality by minimizing the objec-
tive function considering the mean and variance of a per-
formance function, leading to an insensitive design. The 
objective function of RDO can also be integrated with the 
probabilistic constraints of RBDO, which is regarded as an 
extension of RBDO or reliability-based robust design opti-
mization. New studies concerning RBDO, the focus of this 
work, are being reported almost every year with real-world 
applications, such as those found in the design of aerospace 
(Hassan and Crossley 2008; Nannapaneni and Mahadevan 
2020), automotive (Youn et al. 2004; Gu et al. 2015), civil 
(Siavashi and Eamon 2019), and electronic structures (Kang 
et al. 2017) or devices (Li et al. 2019).

Existing RBDO algorithms in the past were heavily domi-
nated by the first-order reliability method (FORM), which 
involves estimating the failure probability by a linear approx-
imation of the performance function at the most probable 
point (MPP) (Du and Chen 2004; Kuschel and Rackwitz 
1997; Tu et al. 1999). Depending on how FORM is incor-
porated into the optimization process, the RBDO algorithms 
can be grouped into three main classes: double-loop algo-
rithms (Tu et al. 1999); single-loop algorithms (Kuschel and 
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Rackwitz 1997); and decoupled algorithms (Du and Chen 
2004). A conventional double-loop RBDO requires nested 
design and reliability iteration loops and can be performed 
in conjunction with either the reliability index or the perfor-
mance measure approaches (Tu et al. 1999). Nonetheless, it 
is expensive, because for each design (outer) iteration, a set 
of reliability (inner) iterations involving costly function eval-
uations must be generated for locating MPP. To reduce the 
high computational cost, single-loop formulations exploiting 
the Karush–Kuhn–Tucker optimality condition at MPP have 
emerged (Kuschel and Rackwitz 1997). In addition, several 
researchers have reformulated the nested RBDO problem to 
decouple reliability analysis from design optimization (Du 
and Chen 2004). However, a fundamental ingredient of all 
three classes of RBDO algorithms is FORM, which may 
not provide accurate reliability estimates in high dimensions 
and for highly nonlinear functions. Indeed, Rahman and Wei 
(Rahman and Wei 2008) reported that an RBDO solution 
using FORM and its second-order cousin, the second-order 
reliability method (SORM), may produce infeasible or inac-
curate designs. While the subsequent developments of uni-
variate decomposition (Rahman and Wei 2008) and dimen-
sion reduction (Lee et al. 2008) methods provide better 
approximations than FORM/SORM, they are still predicated 
on MPP. As a result, the two latter methods also become 
problematic or ineffective if the MPP cannot be found, as 
in a noisy function, or if there are multiple MPPs, as in an 
oscillatory function.

Numerous other studies on RBDO have been reported 
using multiple surrogate approximations, including polyno-
mial response surface (Youn and Choi 2004), polynomial 
chaos expansion (Suryawanshi and Ghosh 2016), polyno-
mial dimensional decomposition (Ren et al. 2016), support 
vector machine (Yang and Hsieh 2013), artificial neural net-
work (Lehkỳ et al. 2018), and Kriging (Zhao et al. 2011). 
However, the foregoing methods, as well as many others 
not listed here for brevity, are largely predicated on the 
assumption that input variables follow independent prob-
ability distributions. Usually, in reality, there exists sig-
nificant correlation or dependence among input variables 
(Noh et al. 2009; Lee and Rahman 2020). Indeed, neglecting 
these correlations or dependencies, whether emanating from 
loads, material properties, or manufacturing variables, may 
produce inaccurate or unknowingly risky designs. Only a 
few studies, such as those rooted in copula-based approaches 
(Noh et al. 2009; Lee et al. 2011), have been reported for 
tackling dependent random variables. Although such copula 
or other available variants are practical to implement, find-
ing the right copula, when the joint distribution of random 
variables is arbitrary but unknown, is often not obvious. The 
authors here rule out the Rosenblatt transformation (Rosenb-
latt 1952) or others, commonly used for mapping dependent 
to independent variables, since they themselves may produce 

overly large nonlinearity to a random response, potentially 
degrading the convergence behavior of probabilistic solu-
tions (Rahman 2009a). Therefore, the existing methods must 
be generalized or new methods should be developed from 
the beginning for uncertainty quantification (UQ) or reliabil-
ity analysis to cope with dependent input random variables.

In a prior work, the authors developed a practical version 
of the generalized polynomial chaos expansion (GPCE) for 
UQ analysis under arbitrary, dependent input random vari-
ables (Lee and Rahman 2020). A distinguishing feature of 
this work, in contrast to the prequel (Rahman 2018), is that 
the multivariate orthonormal polynomial basis functions 
consistent with any non-product-type probability measure of 
input random variables can be numerically obtained without 
the need for a Rodrigues-type formula. Moreover, the GPCE 
approximation has been successfully employed for statisti-
cal moment and its design sensitivity analyses, leading to a 
computationally efficient solution of an RDO problem under 
dependent input random variables (Lee and Rahman 2021). 
However, it remains challenging to adopt the GPCE for solv-
ing RBDO problems, addressing the following questions: 
(1) how to simultaneously determine design sensitivity of 
reliability for a given design without added computational 
cost, (2) how to sidestep repetitive calculations of reliabil-
ity and its design sensitivities to the extent possible during 
design iterations, and (3) how to markedly reduce the num-
ber of function evaluations or finite element analysis (FEA) 
in conjunction with standard gradient-based optimization 
algorithms for problems with large design spaces. Only by 
addressing these challenging issues successfully will the 
GPCE method have tangible advantages for solving RBDO 
problems subject to dependent random variables.

This paper presents a new computational method for 
RBDO of complex mechanical systems in the presence of 
input random variables endowed with arbitrary, depend-
ent probability distributions. The method is based on (1) 
a GPCE for reliability analysis subject to dependent input 
random variables; (2) a novel fusion of the GPCE approxi-
mation and score functions for estimating the sensitivities 
of the failure probability with respect to design variables; 
and (3) standard gradient-based optimization algorithms, 
resulting in a multi-point single-step design process. The 
paper is organized as follows. Section 2 defines a general 
RBDO problem with the concomitant mathematical state-
ments. Section  3 briefly presents GPCE for reliability 
analysis, exploiting a three-step algorithm to construct a 
measure-consistent multivariate orthonormal polynomial 
basis and standard least squares to estimate the expansion 
coefficient. Section 4 presents the explicit form of the score 
function and discloses the new analytical sensitivity method 
by embedding score functions with GPCE. Section 5 illus-
trates the multi-point single-step design process for solv-
ing RBDO and explains how the GPCE-based methods for 
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reliability and design sensitivity analyses are coupled with 
a gradient-based optimization algorithm. Section 6 involves 
four numerical examples, ranging from simple mathemati-
cal functions to an industrial-scale engineering problem, 
conducted to determine the accuracy, convergence proper-
ties, and computational efforts of the proposed method. In 
Sect. 7, the novelty of this work and future works are dis-
cussed. Finally, Sect. 8 presents the conclusions of this work.

2  Reliability‑based design optimization

Let ℕ , ℕ0 , ℝ , and ℝ+
0
 be the sets of positive integer, non-

negative integer, real number, and non-negative real number, 
respectively. For a positive integer N ∈ ℕ , denote by ℝN the 
N-dimensional real vector space. Finally, denote by 𝔸N ⊆ ℝ

N 
and �̄�N ⊆ ℝ

N two bounded or unbounded domains.
Consider a measurable space (��,F�) , where �� is a sam-

ple space and F� is a �-field on �� . Defined over (��,F�) , 
let {ℙ� ∶ F� → [0, 1]} be a family of probability measures 
where, for M ∈ ℕ and N ∈ ℕ , � = (d1,⋯ , dM)

T ∈ D is an 
M-dimensional design vector with non-empty closed set 
D ⊂ ℝ

M . Here, � ∶= (X1,⋯ ,XN)
T ∶ (��,F�) → (�N ,BN) 

is an �N-valued input random vector with BN representing 
the Borel �-field on �N , describing the statistical uncertain-
ties in loads, material properties, and geometry of a complex 
mechanical system. The probability law of � is completely 
defined by a family of the joint probability density functions 
(PDF) 

{
f�(�;�) ∶ � ∈ ℝ

N , � ∈ D
}
 that are associated with 

probability measures {ℙ� ∶ � ∈ D} , so that the probability 
triple (��,F�,ℙ�) of � depends on � . In theory, a design 
variable dk can be any distribution parameter or a statistic; 
however, here, dk is limited to the mean of random variable 
Xk . Indeed, the design parameters as mean values are com-
monly used in almost all engineering problems.

Let yl(�) ∶= yl(X1,… ,XN) , l = 0, 1,… ,K  , represent a 
collection of (K + 1) real-valued, square-integrable, meas-
urable transformations on (��,F�) , describing perfor-
mance functions of a complex system. It is assumed that 
yl ∶ (𝔸N ,BN) → (ℝ,B) is not an explicit function of � , 
although yl implicitly depends on � via the probability law of 
� . This is not a major limitation, as most, if not all, RBDO 
problems involve means of random variables as design vari-
ables. Also, let D = ×M

k=1
[dk,L, dk,R] be a closed rectangular 

subregion of ℝM.
Two mathematical formulations of RBDO—one narrated 

with respect to the original input random variables and the 
other stated with respect to transformed input random vari-
ables—are discussed in the rest of this section. The formula-
tions are equivalent because they lead to matching solutions 
to a general design optimization problem. However, the lat-
ter is more advantageous than the former in light of GPCE 

approximations, as will be further explained in upcoming 
sections.

2.1  Original formulation

The mathematical formulation for RBDO, defined in terms 
of an objective function c0 ∶ D → ℝ and constraint functions 
cl ∶ D → ℝ , where l = 1,… ,K and 1 ≤ K < ∞ , demands 
one to (Ren et al. 2016; Tu et al. 1999)

Here, �F,l(�) is the lth failure domain, 0 ≤ pl ≤ 1 is the lth 
target failure probability, and dk,L and dk,U are the lower 
and upper bounds of the kth design variable dk . The objec-
tive function c0 is commonly prescribed as a deterministic 
function of � , describing relevant system geometry, such 
as area, volume, and mass. In contrast, the constraint func-
tions cl , l = 1, 2,… ,K , are generally more complicated than 
the objective function. Depending on the failure domain 
�F,l , a component or a system failure probability can be 
envisioned. For component reliability analysis, the failure 
domain is often adequately described by a single perfor-
mance function yl(�) , for instance, 𝛺F,l ∶=

{
� ∶ yl(�) < 0

}
 , 

whereas multiple, interdependent performance functions 
yl,i(�), i = 1, 2,… , are required for system reliability analy-
sis, leading, for example, to 𝛺F,l ∶= {� ∶ ∪iyl,i(�) < 0} and 
𝛺F,l ∶=

{
� ∶ ∩iyl,i(�) < 0

}
 for series and parallel systems, 

respectively. In any case, the evaluation of the failure prob-
ability in (1) is fundamentally equivalent to calculating a 
high-dimensional integral over a complex failure domain.

The evaluation of probabilistic constraints cl(�), 
l = 1, 2,⋯ ,K , requires calculating component- or system-
based probabilities of failure defined by respective perfor-
mance functions. A coupling with gradient-based optimi-
zation algorithms demands that the gradients of cl(�) also 
be formulated, thus expecting design sensitivity analysis of 
failure probability. The essence of this work is to solve a 
general RBDO problem described by (1) for arbitrary func-
tions yl(�) , l = 1, 2,… ,K , and arbitrary, non-product-type 
probability distributions of �.

2.2  Alternative formulation

Since the design variables are considered as the statisti-
cal means of some or all input random variables, a linear 
transformation, such as the shifting or scaling of random 
variables, yields an alternative formulation of RBDO. To 

(1)

min
�∈D⊆ℝM

c0(�),

subject to cl(�) ∶= ℙ�[� ∈ 𝛺F,l(�)] − pl ≤ 0,

l = 1,… ,K,

dk,L ≤ dk ≤ dk,U , k = 1,… ,M.
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do so, let (Xi1
,… ,XiM

)⊺ be an M-dimensional subvector of 
� ∶= (X1,… ,XN)

⊺ , 1 ≤ i1 ≤ ⋯ ≤ iM ≤ N , M ≤ N , such that 
the mean of its kth component is the kth design variable, as 
follows: ��[Xik

] = dk , k = 1,… ,M.
Shifting  Let � ∶= (Z1,… , ZN)

⊺ be an N-dimensional vec-
tor of new random variables obtained by shifting � as

where � ∶= (r1,… , rN)
⊺ is an N-dimensional vector of deter-

ministic variables. Define gi ∶= ��[Zi] as the mean of the ith 
component of � . Denote by (Zi1 ,… , ZiM )

⊺ a subvector of � , 
where the ik th new random variable Zik corresponds to the 
ik th original random variable Xik

 . Then, the mean of Zik from 
the shifting transformation is

and the PDF of � is

supported on the domain of � , say, �̄�N ⊆ ℝ
N . Here, the 

absolute value of the determinant of the Jacobian matrix 
is |�| = |det[��∕��]| = 1 and the M-dimensional vec-
tor � ∶= (g1,… , gM)

⊺ has its kth component such that 
gk = ��[Zik ] , k = 1,… ,M.

Scaling  Let � ∶= (Z1,… , ZN)
⊺ be an N-dimensional vec-

tor of new random variables obtained by scaling � as

where � ∶= (r1,… , rN)
⊺ is an N-dimensional vector of deter-

ministic variables. Define gi ∶= ��[Zi] as the mean of the ith 
component of � . Denote by (Zi1 ,… , ZiM )

⊺ a subvector of � , 
where the ik th new random variable Zik corresponds to the 
ik th original random variable Xik

 . Then, the mean of Zik from 
the scaling transformation is

and the PDF of � is

supported on the domain of � , say, �̄�N ⊆ ℝ
N . Here, the 

absolute value of the determinant of the Jacobian matrix is 
|�| = |det[��∕��]| = ||1∕(r1 … rN)

|| and the M-dimensional 
vector � ∶= (g1,… , gM)

⊺ has its kth component such that 
gk = ��[Zik ] , k = 1,… ,M.

For each l = 1, 2,… ,K  , define hl(�;�) ∶= yl(�) to be 
the generic output function of the new random variables � , 
where the relation between � and � is obtained by either the 

(2)� = � + �,

��[Zik ] = dk + rik = gk

f�(�;�) = |�|f�(�;�) = f�(�;�) = f�(� − �;�),

(3)� = diag[r1,… , rN]�,

��[Zik ] = dkrik = gk

f�(�;�) =|�|f�(�;�) =
||||

1

r1 … rN

||||f�(�;�)

=
||||

1

r1 … rN

||||f�(diag[1∕r1,… , 1∕rN]�;�),

shifting transformation in (2) or the scaling transformation 
in (3). In both cases, the RBDO formulation requires one to

where �̄�F,l(�) is the lth failure domain such that 
�̄�F,l ∶= {� ∶ hl(�;�) < 0} for  component  re l iab i l -
ity analysis of a performance function hl(�;�) , and 
�̄�F,l ∶= {� ∶ ∪ihl,i(�;�) < 0} or {� ∶ ∩ihl,i(�;�) < 0} if at 
least two performance functions hl,i(�;�), i = 1, 2,… , are 
involved in series or parallel systems, respectively, for sys-
tem reliability analysis.

The alternative formulation in (4) is a restatement of (1) 
with respect to the new transformed input random variables 
� . In this formulation, the probability measure of � is fixed 
during design iterations, thus sidestepping the need to rec-
ompute measure-associated quantities. For the remainder of 
the paper, the solution of an RBDO problem will be reported 
with respect to the alternative formulation. Furthermore, � 
or � and yl or hl will be referred to, interchangeably, as input 
random vector and output function, respectively.

2.3  Construction of subproblems

A gradient-based solution to the RBDO problem in (4) 
dictates adequate smoothness in objective and constraint 
functions. Therefore, both functions are assumed to be dif-
ferentiable with respect to design variables. Moreover, as 
these functions are usually nonlinear, iterative approxima-
tions of (4), leading to a sequence of RBDO subproblems, 
are necessary.

Let q = 1, 2,… ,Q , Q ∈ ℕ , be the design iteration count 
indicating the qth RBDO subproblem for (4). Given q, 
denote by �{q} , �{q} , and �{q} the qth iterative versions of 
� , � , and � , respectively. Then the qth RBDO subproblem 
demands one to

where c{q}
0

 and c{q}
l

 are, respectively, the objective and 
the constraint functions in the qth RBDO subproblem. 
They are usually obtained from first- or higher-order Tay-
lor series expansions T of c0 and cl at qth initial design 
�
{q}

0
= (d

{q}

1,0
,… , d

{q}

M,0
)⊺ . The optimal solution of (5), denoted 

(4)

min
�∈D⊆ℝM

c0(�),

subject to cl(�) ∶= ℙ�(�)[� ∈ �̄�F,l(�)] − pl ≤ 0,

l = 1,… ,K,

dk,L ≤ dk ≤ dk,U , k = 1,… ,M,

(5)

min
�{q}∈D⊆ℝM

c
{q}

0
(�{q}) ∶= T

[
c0(�

{q})
]

subject to c
{q}

l
(�{q}) ∶= T

[
ℙ�{q} [� ∈ �̄�F,l(�

{q})] − pl

] ≤ 0,

l = 1,… ,K,

dk,L ≤ d
{q}

k
≤ dk,U , k = 1,… ,M,
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by �{q}∗ = (d
{q}

1,∗
,… , d

{q}

M,∗
)⊺ , can be produced using a suitable 

programming method, such as the sequential linear or quad-
ratic programming methods. Subsequently, the qth RBDO 
subproblem solution �{q}∗  is set as the initial design �{q+1}

0
 

for the (q + 1) th RBDO subproblem. This process is iterated 
from a chosen initial design �0 = �

{1}

0
 to the final optimal 

design �∗ = �
{Q}
∗  during Q ∈ ℕ iterations to reach conver-

gence. In this paper, the count q indicates the qth design 
iteration.

Overall, the original RBDO problem in (1) is solved by 
the following steps. The flow chart is described in Fig. 1. 

1. Choose an initial design vector �0 and set � = �0 . Define 
a tolerance 0 < 𝜖 < 1.

2. Transform the input random vector � to a new random 
vector � such that ��[Zik ] = gk = 0 or 1, k = 1,… ,M , by 
shifting or scaling, respectively, described in Sect. 2.2.

3. At the current design vector � , implement reliability 
analysis to estimate the failure probabilities of perfor-
mance functions hl , l = 1,… ,K , in (4). Perform design 
sensitivity analysis for the failure probabilities. The 
detail of this step will be introduced in Sects. 3 and 4.

4. Set �{q}
0

= � . Solve qth RBDO subproblem in (5) itera-
tively from q = 1 to q = Q to obtain the converged opti-
mum �{Q}∗ .

5. If ||� − �
{Q}
∗ || < 𝜖 , stop the process. Then the final 

RBDO solution is �∗ = �
{Q}
∗  . Otherwise, update � = �

{Q}
∗  

and go to Step 3.

3  Reliability analysis

Given an input random vector � ∶= (Z1,… , ZN)
⊺ with 

known PDF f�(�;�) , let h(�;�) represent any one of the 
random output functions hl(�;�) , l = 1,… ,K , presented in 
Sect. 2. Then, the reliability analysis, required for evaluating 
the probabilistic constraints in (4), involves the calculation 
of the failure probability

where �̄�F is the failure domain and I�̄�F
 is an indicator func-

tion, such that

Depending on the failure domain, as explained in Sect. 2, 
�̄�F ∶= {� ∶ h(�;�) < 0} for component reliability analysis 
and �̄�F ∶= {� ∶ ∪ihi(�;�) < 0} or {� ∶ ∩ihi(�;�) < 0} for 
series or parallel system reliability analyses, respectively. 
The following subsections describe the GPCE approxima-
tion of h(�;�) , formerly introduced by the authors Lee and 
Rahman (2020), which has been combined with an embed-
ded Monte Carlo simulation (MCS) for reliability analysis 
under arbitrary, dependent input random variables.

3.1  Measure‑consistent multivariate orthonormal 
polynomials

When � = (Z1,… , ZN)
⊺ consists of statistically dependent 

random variables, the joint probability measure, in general, 
is not a product-type. In other words, the joint probability 
distribution of � cannot be strictly expressed by the prod-
uct of its marginal probability distributions. As a result, 
measure-consistent multivariate orthonormal polynomials 
of � = (z1,… , zN)

⊺ cannot be produced from N-dimensional 
tensor products of measure-consistent univariate orthonor-
mal polynomials. In this section, a three-step algorithm, 
rooted in a whitening transformation of the monic polyno-
mial basis, is introduced to create multivariate orthonormal 
polynomials consistent with an arbitrary, non-product-type 
probability measure f�(�;�)d� of � . Note that this is a modi-
fied version of the three-step algorithm introduced by Lee 
and Rahman (2020), where the monomial basis is now being 
replaced with the monic polynomial basis to alleviate the 
inherent ill-conditioned problems stemming from the mono-
mial basis. Further detail of this modified version will be 
presented in the latter part of this section. However, readers 
who are interested in more background information about 

(6)
ℙ�

[
� ∈ �̄�F

]
∶= ∫

�̄�N

I�̄�F
(�;�)f�(�;�)d�

∶= 𝔼�

[
I�̄�F

(�;�)
]
,

I�̄�F
=

{
1, � ∈ �̄�F,

0, � ∉ �̄�F.

Fig. 1  A schematic description of RBDO process by a sequence of 
subproblems to get the final optimum �∗
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the original three-step algorithm should review the prior 
work (Lee and Rahman 2020).

3.1.1  Monic orthogonal polynomials

Let fZi(zi) be the marginal PDF of the random variable Zi 
under the probability measure dFZi

(zi) = fZi(zi)dzi , which has 
finite moments of an arbitrary order. For any pair of func-
tions ui(zi) and vi(zi) , define an inner product

with respect to the probability measure dFZi
(zi) . Then, monic 

real polynomials �i,ji = z
ji
i
+… , ji = 0, 1, 2,… , are called 

monic orthogonal polynomials with respect to the measure 
dFZi

(zi) if

for ji ≠ ki , ji, ki = 0, 1, 2,… . There are infinitely many monic 
orthogonal polynomials if the index set {ji = 0, 1, 2,…} is 
unbounded and finitely many otherwise.

The monic orthogonal polynomials �i,ji (zi) , ji = 0, 1, 2,… 
can be determined from the well-known three-term recur-
rence relation (Gautschi 2004; Rahman 2009a):

where

and

are the recursion coefficients uniquely determined by the 
measure dFZi

(zi) . These coefficients can be obtained exactly 
for select continuous measures (Fernandes and Atchley 
2006; Gautschi 2004). Otherwise, approximation methods, 
such as the Stieltjes procedure Stieltjes (1884), are still avail-
able to estimate them. In this study, the Stieltjes procedure 
was used, comprising three steps (Rahman 2009a): (1) 
approximate the given measure dFZi

 by a discrete M-point 
measure dFZi,M

 such that (1, 1)dFZi ,M
= 1 ; (2) compute the 

r ecu r s ion  coe f f i c i en t s  ai,ji,M ∶= ai,ji (dFZi,M
) and 

bi,ji,M ∶= bi,ji (dFZi,M
) of the discrete measure dFZi,M

 ; and (3) 
increase M and iterate calculations of the discrete versions 

(
ui(zi), vi(zi)

)
dFZi

∶= ∫
�̄

ui(zi)vi(zi)fZi(zi)dzi

(
�i,ji (zi),�i,ki (zi)

)
dFZi

= 0

�i,ji+1(zi) = (zi − ai,ji )�i,ji (zi) − bi,ji�i,ji−1(zi),

�i,−1(zi) = 0, �i,0(zi) = 1,

ai,ji =
(zi�i,ji (zi),�i,ji (zi))dFZi

(�i,ji (zi),�i,ji (zi))dFZi

,

bi,ji =

⎧⎪⎨⎪⎩

(�i,0(zi),�i,0(zi))dFZi

, ji = 0,

(�i,ji (zi),�i,ji (zi))dFZi

(�i,ji−1(zi),�i,ji−1(zi))dFZi

, ji = 1, 2,… ,

of the recursion coefficients until a desired accuracy is 
achieved.

3.1.2  A modified three‑step algorithm

Let � ∶= (j1,… , jN) ∈ ℕ
N
0

 be an N-dimensional multi-index. 
For � = (z1,… , zN)

⊺ ∈ �̄�
N ⊆ ℝ

N , a multivariate monic poly-
nomial in the real variables z1,… , zN is the product

and has a total degree |�| = j1 +⋯ + jN  . Consider 
for each m ∈ ℕ0 the elements of the multi-index set 
{� ∈ ℕ

N
0
∶ |�| ≤ m} , which is arranged as �(1),… , �(LN,m) , 

�(1) = � , according to a monomial order of choice. The set 
has cardinality

Denote by

an LN,m-dimensional vector of multivariate orthonormal 
polynomials that is consistent with the probability measure 
f�(�;�)d� of � . It is determined as follows. 

(1) Given m ∈ ℕ0 , generate an LN,m-dimensional column 
vector 

 where 
∏N

i = 1

� = �(1)

�i,ji (zi) , of multivariate polynomials 

whose elements are the products of monic polynomials 
for |�| ≤ m arranged in the aforementioned order. It is 
referred to as the multivariate monic polynomial vector 
in � = (z1,… , zN)

⊺ of degree at most m.
(2) Construct an LN,m × LN,m monic moment matrix of 

�m(�) , defined as 

 For an arbitrary PDF f�(�;�) , �m cannot be deter-
mined exactly, but it can be estimated with satisfactory 

N∏
i=1

�i,ji (zi) = �i,j1 (z1)⋯�i,jN (zN)

LN,m ∶=

m∑
l=0

(
N + l − 1

l

)
=

(
N + m

m

)
.

�m(�;�) = (�1(�;�),… ,�LN,m
(�;�))⊺

�m(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

N�

i = 1

� = �(1)

�i,ji (zi),

N�

i = 1

� = �(2)

�i,ji (zi),… ,

N�

i = 1

� = �(LN,m)

�i,ji (zi)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⊺

,

�m ∶= 𝔼�

[
�m(�)�m(�)

⊺
]

∶= ∫
�̄�N

�m(�)�
⊺

m
(�)f�(�;�)d�.
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accuracy either by numerical integration or sampling 
methods (Lee and Rahman 2020).

(3) Select the LN,m × LN,m whitening matrix �m from the 
Cholesky decomposition of the monic moment matrix 
�m such that 

 Then, apply the whitening transformation to generate 
multivariate orthonormal polynomials from 

The success of the three-step algorithm depends on the con-
struction of a well-conditioned monic moment matrix �m for 
facilitating Cholesky factorization by standard techniques 
of linear algebra. During the original development of this 
algorithm (Lee and Rahman 2020), the authors encoun-
tered ill-conditioned moment matrices for large m if they 
are constructed using the monomial basis vector. In contrast, 
the monic moment matrix, because it is formed using ten-
sor products of univariate monic orthogonal polynomials, 
should be close to a diagonal matrix for any arbitrary m 
if the correlations among input random variables are not 
overly large. It is expected that the condition number of �m 
obtained employing monic polynomials should be much 
lower than that produced using monomials. Therefore, the 
improved three-step algorithm proposed here should expand 
the capability of the previous version in generating higher-
order, multivariate orthogonal polynomials for an arbitrary, 
dependent probability measure of input variables.

For an ith element �i(�;�) of the orthonormal polynomial 
vector �m(�;�) = (�1(�;�),… ,�LN,m

(�;�))⊺ , the first- and 
second-order moments are (Lee and Rahman 2020)

and

respectively. These properties are essential to GPCE, to be 
exploited in a forthcoming section.

Note that the above three-step algorithm is described in 
terms of orthonormal polynomials in � , not � . This is chiefly 
because � and hence �m(�;�) are intended to be invariant 
when the design vector � changes during design iterations. 
To explain this further, consider the qth RBDO subproblem 
in (5), where the shifting and scaling transformations for the 
kth initial design variable yield

�⊺

m
�m = �−1

m
or�−1

m
�−⊺

m
= �m.

�m(�;�) = �m�m(�).

(7)��

[
�i(�;�)

]
=

{
1, if i = 1,

0, if i ≠ 1,

(8)��

[
�i(�;�)�j(�;�)

]
=

{
1, i = j,

0, i ≠ j,

For (9), one may choose any value of g{q}
k

 with respect to 
d
{q}

k,0
 . However, for the sake of convenience, assign d{q}

k,0
 to d{q}

k
 

and g{q}
k

 to zero and one in the shifting and scaling transfor-
mations, respectively. Then, r{q}

ik
 is determined to be −d{q}

k,0
 

and 1∕d{q}
k,0

 , respectively, from (9). Solving the qth RBDO 
subproblem with the initial design �{q}

0
 yields �{q}∗  . Repeat-

edly, when updating the process from the qth to (q + 1) th 
design iterations, choose the same values of g{q}

k
 to be zero 

and one in the shifting and scaling transformations, respec-
tively, for all q = 1, 2,… ,Q . It contributes to only one 
sequence of calculation of the measure-consistent orthonor-
mal polynomials �m(�;�) throughout all design iterations.

3.2  Generalized polynomial chaos expansion

According to (7) and (8), any two distinct elements �i(�;�) 
and �j(�;�) , i, j = 1,… , LN,m , of the polynomial vector 
�m(�;�) are mutually orthonormal with respect to the proba-
bility measure of � . Therefore, the set {�i(�;�), 1 ≤ i ≤ LN,m} 
from �m(�;�) is linearly independent. Moreover, the set has 
the LN,m-dimension, which is equal to the dimension of the 
polynomial space of degree at most m. Hence, as m → ∞ , 
LN,m → ∞ and the resulting set {𝛹i(�;�), 1 ≤ i < ∞} com-
prises an infinite number of basis functions. If the prob-
ability measure of random input � is compactly supported 
or is exponentially integrable (Rahman 2018), as assumed 
here, the set {𝛹i(�;�), 1 ≤ i < ∞} forms an orthonormal 
basis of L2(��,F�,ℙ�) . Therefore, any random variable 
h(�;�) ∈ L2(��,F�,ℙ�) can be expanded as a Fourier series 
comprising multivariate orthonormal polynomials in � , 
referred to as the GPCE of1 

where the expansion coefficients Ci ∈ ℝ , i = 1,… ,∞ , are 
given by

According to (Rahman 2018),  the GPCE of 
h(�;�) ∈ L2(��,F�,ℙ�) converges in mean square, in prob-
ability, and in distribution.

(9)��{q}

[
Zik

]
= g

{q}

k
=

{
d
{q}

k
+ r

{q}

ik
, shifting,

d
{q}

k
r
{q}

ik
, scaling.

(10)h(�;�) ∼

∞∑
i=1

Ci(�)�i(�;�),

(11)
Ci(�) ∶= 𝔼�

[
h(�;�)�i(�;�)

]

∶= ∫
�̄�N

h(�;�)�i(�;�)f�(�;�)d�.

1 Here, the symbol ∼ represents equality in a weaker sense, such as 
equality in mean square, but not necessarily pointwise, nor almost 
everywhere.
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The GPCE involves an infinite number of orthonormal 
polynomials or coefficients. However, in a practical set-
ting, the number must be finite, meaning that the GPCE 
must be truncated. There are several ways to truncate the 
expansion, such as those involving tensor-product, total-
degree, and hyperbolic-cross index sets. In this work, the 
truncation stemming from the total-degree index set is 
employed, which retains polynomial expansion orders less 
than or equal to m ∈ ℕ0 . The result is an mth-order GPCE 
approximation of h(�;�) , given by

which comprises LN,m expansion coefficients defined by (11).
The GPCE in (10) and (11) should not be confused 

with that of Xiu and Karniadakis (2002). The GPCE here 
is meant for an arbitrary dependent probability distribu-
tion of random input. On the contrary, the existing PCE, 
whether classical (Wiener 1938) or generalized (Xiu and 
Karniadakis 2002), still needs independence of random 
input.

3.3  Expansion coefficients

The definitions of expansion coefficients of an mth-order 
GPCE approximation hm(�;�) mandate various N-dimen-
sional integrations. For an arbitrary function h and an 
arbitrary probability distribution of random input � , their 
exact evaluations from the definition alone are impractical. 
Numerical integration entailing a multivariate, tensor-prod-
uct Gauss-type quadrature rule is computationally intensive, 
if not prohibitive, for high-dimensional ( N ≥ 10 , say) RBDO 
problems. To resolve this difficulty, standard least squares 
(SLS) was employed to estimate the coefficients. Here, only 
a brief summary of SLS is given for the paper to be self-con-
tained. For additional details, readers are advised to consult 
a related work of Lee and Rahman (2020).

From the known distribution of random input � and an 
output function h ∶ �̄�

N
→ ℝ , consider an input–output data 

set {�(l), h(�(l);�)}L
l=1

 of size L ∈ ℕ , where � is decided from 
the knowledge of � and � , as discussed earlier. The data set, 
often referred to as the experimental design, is generated 
by calculating the function h at each input data �(l) . Vari-
ous sampling methods, namely, standard MCS, quasi-MCS 
(QMCS), Latin hypercube sampling, can be used to build 
the experimental design. Using the experimental design, the 
approximate GPCE coefficients C̃i(�) , i = 1,… , LN,m , satisfy 
the linear system

where

(12)hm(�;�) =

LN,m∑
i=1

Ci(�)�i(�;�),

�� = �,

From (13), �̃�i(�
(l);�) represents an estimate of �i(�

(l);�) 
owing to approximations resulting from the construction of 
the monic moment matrix in Sect. 3.1. According to SLS, 
the best set of expansion coefficients are estimated by mini-
mizing the mean-squared residual

As a result, the SLS solution Ĉi, i = 1,… , LN,m , is obtained 
from

where �̂ ∶= (Ĉ1(�),… , ĈLN,m
(�))⊺ and the LN,m × LN,m matrix 

�⊺� is referred to as the information or data matrix. Finally, 
the inversion of the data matrix, if it is positive-definite, 
produces the best estimate

of the approximate GPCE coefficients. When using SLS, the 
number of experimental data must be larger than the number 
of coefficients, that is, L > LN,m . Even if this condition is 
met, the experimental design must be carefully chosen to 
ensure that the resulting matrix �⊺� is well conditioned.

While this paper employs MCS for sampling the input 
random variables, it is also possible to use an optimal 
design of experiments (ODE) (Hadigol and Doostan 2018; 
Luthen et al. 2021). A detailed study entailing such ODEs 
is beyond the scope of this work.

3.4  Failure probability

The mth-order GPCE hm(�;�) can be used as an inex-
pensive surrogate model that replaces an expensive-to-
calculate function h(�;�) . Thus, for reliability analysis of 
performance functions h(�;�) in Sect. 2, the estimation 
of the failure probability can be conducted using MCS of 
hm(�;�) , as explained below.

Depending  on  component  or  sys tem re l i -
abi l i ty  analysis ,  let  �̄�F,m ∶= {� ∶ hm(�;�) < 0} or 
�̄�F,m ∶= {� ∶ ∪ihi,m(�;�) < 0} or {� ∶ ∩ihi,m(�;�) < 0} be a 
failure set, as a result of the mth-order GPCE hm(�;�) of 
h(�;�) or hi,m(�;�) of hi(�;�) . Then, the GPCE estimate of 
the failure probability PF(�) is

(13)

� ∶=

⎡
⎢⎢⎣

�̃�1(�
(1);�) ⋯ �̃�LN,m

(�(1);�)

⋮ ⋱ ⋮

�̃�1(�
(L);�) ⋯ �̃�LN,m

(�(L);�)

⎤
⎥⎥⎦
,

� ∶= (h(�(1);�),… , h(�(L);�))⊺, and

� ∶= (C̃1(�),… , C̃LN,m
(�))⊺.

(14)êm ∶=
1

L

L∑
l=1

[
h(�(l);�) −

LN,m∑
i=1

C̃i�̃�i(�
(l);�)

]2

.

�⊺��̂ = �⊺�,

�̂ = (�⊺�)−1�⊺�
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where �(l) is the lth realization of � , L̄ is the sample size, and 
I�̄�F,m

 is another indicator function such that

Note that the MCS of GPCE approximation in (15) should 
not be confused with crude MCS commonly used for pro-
ducing benchmark results. The crude MCS, which requires 
numerical calculations of h or hi for input samples �(l) , 
l = 1,⋯ , L , can be expensive or even prohibitive, par-
ticularly when the sample size L needs to be very large for 
estimating small failure probabilities. In contrast, the MCS 
embedded in the GPCE approximation requires evaluations 
of simple polynomial functions that describe hm or hi,m . 
Therefore, an arbitrarily large sample size can be accom-
modated in the GPCE approximation.

4  Proposed method for design sensitivity 
analysis

When solving an RBDO problem with a gradient-based 
optimization algorithm, such as sequential linear or quad-
ratic programming, at least the first-order derivatives of the 
failure probability associated with the functions hl(�;�) , 
l = 0, 1,… ,K  , with respect to each design variable dk , 
k = 1,… ,M , are required. In this section, an analytical 
design sensitivity formulation is unveiled by combining 
the GPCE approximation with score function for dependent 
input random variables. For such sensitivity analysis, the 
following regularity conditions are necessary: 

1. The PDF f�(�;�) of � is continuous. Also, the partial 
derivative �f�(�;�)∕�gk , k = 1,… ,M , exists and is finite 
for all possible values of � and gk . Moreover, the failure 
probability associated with the performance function 
h(�;�) is a differentiable function of �.

2. There exists a Lebesgue integrable dominating function 
t(�) such that 

Note that the sensitivity formulation proposed in the follow-
ing subsections is new since the existing sensitivity analysis 

(15)

ℙ�

[
� ∈ �̄�F,m

]
∶= ∫

�̄�N

I�̄�F,m
(�;�)f�(�;�)d�

∶= 𝔼�

[
I�̄�F,m

(�;�)
]

∶= lim
L̄→∞

1

L̄

L̄∑
l=1

I�̄�F,m
(�(l);�),

I�̄�F,m
=

{
1, � ∈ �̄�F,m,

0, � ∉ �̄�F,m.

||||I�̄�F
(�;�)

𝜕f�(�;�)

𝜕dk

|||| ≤ t(�), k = 1,… ,M.

is limited to only independent random variables (Ren et al. 
2016).

4.1  Score function

Suppose the first-order derivatives of the failure probability 
ℙ�

[
� ∈ �̄�F

]
 corresponding to a generic performance func-

tion h(�;�) with respect to design variables dk , k = 1,… ,M , 
have to be computed in solving the qth RBDO subproblem 
in (5). During the design process of the qth subproblem, �{q} 
changes, but �{q} remains constant locally. For brevity, the 
iteration or the subproblem number q is omitted from �{q} , 
�{q} , and �{q} in the remainder of this section.

From (6), recall that ℙ�

[
� ∈ �̄�F

]
∶= 𝔼�[I�̄�F

] . Then, 
applying the partial derivative with respect to dk to ��[I�̄�F

] 
and invoking the chain rule and Lebesgue dominated conver-
gence theorem (Browder 1996), which allows one to inter-
change the differential and integral operators, produces the 
first-order sensitivities

where �gk∕�dk =1 or rik for the shifting or scaling transforma-
tions, respectively. Define by

the first-order score function (Rahman 2009b; Rubinstein 
and Shapiro 1993) for the variable gk . Usually, the score 
functions can be determined numerically or analytically – for 
instance, when � follows classical probability distributions, 
such as those obtained for multivariate Gaussian and lognor-
mal density functions in Table 1.

Combining (16) and (17) results in

According to (6) and (18), the failure probability and its 
sensitivities have both been formulated as expectations of 
stochastic quantities with respect to the same probability 

(16)

𝜕ℙ�

[
� ∈ �̄�F

]
𝜕dk

=
𝜕𝔼�

[
I�̄�F

(�;�)
]

𝜕dk

=
𝜕

𝜕dk ∫�̄�N

I�̄�F
(�;�)f�(�;�)d�

=
𝜕gk

𝜕dk

𝜕

𝜕gk ∫�̄�N

I�̄�F
(�;�)f�(�;�)d�

=
𝜕gk

𝜕dk ∫�̄�N

I�̄�F
(�;�)

𝜕 ln f�(�;�)

𝜕gk
f�(�;�)d�,

k = 1,… ,M,

(17)sk(�;�) ∶=
� ln f�(�;�)

�gk

(18)

𝜕ℙ�

[
� ∈ �̄�F

]
𝜕dk

=
𝜕gk

𝜕dk ∫�̄�N

I�̄�F
(�;�)sk(�;�)f�(�;�)d�

=
𝜕gk

𝜕dk
𝔼�

[
I�̄�F

(�;�)sk(�;�)
]
, k = 1,… ,M.
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measure, facilitating their concurrent evaluations in a single 
stochastic simulation or analysis.

4.2  Sensitivity analysis

In general, the sensitivities of failure probability are not avail-
able analytically, since the failure probability is not either. The 
main contribution of this work is to simultaneously estimate 
both the failure probability and its sensitivity by GPCE, pro-
viding a computationally efficient, alternative route to the tra-
ditional MCS.

Replacing h(�;�) with its mth-order GPCE approximation 
hm(�;�) , the resultant approximation of the sensitivities of the 
failure probability is obtained as

where L̄ is the sample size and �(l) is the lth realization of 
� . The sensitivity in (19) is easily and inexpensively deter-
mined by sampling elementary polynomial functions that 
describe hm(�;�) in (12) and sk(�;�) in (17) using MCS. The 
same input data set {�(l)}L̄

l=1
 of size L̄ ∈ ℕ used to calculate 

the failure probability in Sect. 3.4 can be employed for such 
sensitivity analysis. Furthermore, during design iterations, 
� and � are fixed, thereby avoiding recalculations of sk(�;�) . 
However, hm(�;�) is required to be recalculated as � changes 

(19)

𝜕ℙ�

[
� ∈ �̄�F,m

]
𝜕dk

=
𝜕𝔼�[I�̄�F,m

(�;�)]

𝜕dk

=
𝜕gk

𝜕dk
𝔼�

[
I�̄�F,m

(�;�)sk(�;�)
]

=
𝜕gk

𝜕dk
lim
L̄→∞

1

L̄

L̄∑
l=1

[
I�̄�F,m

(�(l))sk(�
(l);�)

]
,

during design iterations. Having said so, these recalculations 
can also be circumvented using a single-step design process, 
to be introduced in Sect. 5.2.

The GPCE coefficients depend on � . Naturally, a GPCE 
approximation, whether obtained by truncating arbitrarily 
or adaptively, is also dependent on � , unless the approxima-
tion exactly reproduces the function h. It is important to 
clarify that the approximate sensitivity in (19) is obtained 
not by taking partial derivatives of the approximate failure 
probability in (15) with respect to gk . Instead, it results from 
replacing h with hm in the expectation describing the last 
line of (18).

The incorporation of score functions has the desirable 
property that it requires differentiating only the underlying 
PDF f�(�;�) . The resulting score functions can be easily 
and, in most cases, analytically determined. If the perfor-
mance function is not differentiable or discontinuous—for 
example, the indicator function that comes from reliability 
analysis—the proposed method still allows evaluation of the 
sensitivity if the density function is differentiable. In reality, 
the density function is often smoother than the performance 
function, and therefore the proposed sensitivity methods are 
able to calculate sensitivities for a wide variety of complex 
mechanical systems.

5  Proposed method for RBDO

The GPCE approximations, described in the foregoing 
sections, are intended to evaluate the constraint functions 
cl(�) , l = 1,… ,K , and its design sensitivities from a sin-
gle stochastic analysis. Such approximation, in contrast, is 
not demanded when the objective function is a simple and 
explicit deterministic mapping between design variables and 
output. However, it is conceivable that the objective function 
may also be defined as the statistical mean of a response 
function of random variables whose distribution parame-
ters are specified by design variables � = (d1,… , dM)

⊺ . For 
instance, let h0(�;�) ∈ L2(��,F�,ℙ�) be a random output 
function of an input random vector � ∶= (z1,… , zN)

⊺ with 
known PDF f�(�;�) . Then, the objective function in (4) can 
be generalized to read

where ��(�)[h0(�;�)] ∶= ∫
�̄N h0(�;�)f�(�;�(�))d� . In this case, 

the objective function and its design sensitivities can also be 
evaluated by a similar combination of GPCE approximation 
and score functions, as briefly summarized in Appendices 
1 and 2. Readers interested in additional details, including 
general statistical moment and design sensitivity analyses by 
GPCE, are directed to the authors’ prior work on RDO (Lee 
and Rahman 2021).

c0(�) ∶= ��(�)[h0(�;�)],

Table 1  Derivatives of log-density functions for two types of multi-
variate distributions (Lee and Rahman 2021)

a. sk(�;�) = � ln f�(�;�) ∕ �gk

b. lk = [1 + 2(�ik∕gk)
2] ∕ [gk{1 + (�ik∕gk)

2}]

Type Score function for design variables � = (g1,… , gM).

Gaussian density on (−∞,∞)N

1 sk(�;�)
(a) =

∑N

j=1
pik ,j(zj − �j),

�ik
= gk , k = 1,… ,M , 1 ≤ i1 < ⋯ < iM ≤ N,

[pi,j] = �−1
�

∈ ℝ
N×N , �� = [�ij�i�j],

0 < 𝜎i < ∞ , −1 < 𝜌ij < 1, i, j = 1,… ,N.

Lognormal density on [0,∞)N

2 sk(�;�)
(a) = lk

∑N

j=1
p̃ik ,j(ln zj − �̃�j)

(b),

�̃�i = ln[𝜇2

i
∕ 𝜎i] − 1 ∕ 2 , �̃�i =

√
ln
[
𝜎2

i
∕ 𝜇2

i

]
+ 1,

�ik
= gk , k = 1,… ,M , 1 ≤ i1 < ⋯ < iM ≤ N,

[p̃i,j] = �̄
−1

ln�
∈ ℝ

N×N , �̄ln� = [�̃�ij�̃�i�̃�j],
�̃�ij = ln

[
𝜌ij ∕ (𝜇i𝜇j) + 1

]
∕ (�̃�i�̃�j),

0 < 𝜎i < ∞ , −1 < 𝜌ij < 1 , i, j = 1,… ,N.
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An integration of reliability analysis, design sensitivity 
analysis, and a suitable optimization algorithm is expected 
to yield a convergent solution of an RBDO problem defined 
in (4). However, new reliability and sensitivity analyses 
through recalculations of the GPCE expansion coefficients are 
demanded at every design iteration. In addition, if the objec-
tive and/or constraint functions are highly nonlinear, there is a 
need for high-order GPCE approximations valid for the entire 
design space, leading to a computationally intensive design 
process. In such cases, GPCE with a low-order approximation 
may not even find the correct optimal solution. Therefore, a 
straightforward integration is costly, depending on the expense 
of evaluating the objective and constraint functions and the 
requisite number of design iterations. To resolve these prob-
lems, a multi-point design process (Ren et al. 2016) featuring 
sequential formulations of local RBDO problems through a 
single-step process with GPCE approximations is presented to 
efficiently obtain a convergent solution of the original RBDO 
problem.

5.1  Multi‑point approximation

The multi-point approximation entails local implementations 
of the GPCE approximation that are built on subregions of 
the entire design space. According to this method, the original 
RBDO problem is exchanged with a series of local RBDO 
problems, where the objective and constraint functions in each 
local RBDO problem represent their multi-point approxima-
tions (Toropov et al. 1993).

For the rectangular design space

of the RBDO problem described in (4), denote by 
q� = 1, 2,… ,Q� ,  Q� ∈ ℕ ,  an index indicating the 
q′ th subregion of D with the initial design vector 
�
(q�)

0
= (d

(q�)

1,0
,… , d

(q�)

M,0
)⊺ . Given a sizing factor 0 < 𝛽

(q�)

k
≤ 1 , 

the domain of the q′ th subregion is expressed by

According to the multi-point design process, the RBDO 
problem in (4) is transformed to a succession of local RBDO 
problems for Q′ subregions. For the q′ th subregion, the local 
RBDO problem requires one to

D = ×k=M
k=1

[dk,L, dk,U] ⊆ ℝ
M

D
(q�) = ×k=M

k=1

[
d
(q�)

k,0
− 𝛽

(q�)

k

(dk,U − dk,L)

2
,

d
(q�)

k,0
+ 𝛽

(q�)

k

(dk,U − dk,L)

2

]
⊆ D ⊆ ℝ

M ,

q� = 1,… ,Q�.

where c̃(q
�)

0,m
 , ̃̄𝛺(q�)

F,l,m
(�) , and c̃(q

�)

l,m
(�) , l = 1,… ,K , are the mth-

order GPCE approximations of, respectively, c0(�) , �̄�F,l(�) , 
and cl(�) for the q′ th subregion problem, and ̃̄𝛺(q�)

F,l,m
(�) is 

also defined using the mth-order GPCE approximation 
of h̃(q

�)

l,m
(�;�) of hl(�) , and d(q

�)

k,0
− �

(q�)

k
(dk,U − dk,L) ∕ 2 and 

d
(q�)

k,0
+ �

(q�)

k
(dk,U − dk,L) ∕ 2 , the so-called move limits, are 

the lower and upper bounds, respectively, of the kth coordi-
nate of the subregion D(q�).

In addition, if the objective function is defined as the mean, 
that is, c0(�) ∶= ��(�)[h0(�;�)] , then its q′ th local version 
becomes

where ��(�)[h̃
(q�)

0,m
(�;�)] ∶= ∫

�̄N h̃
(q�)

0,m
(�;�)f�(�;�(�))d� . From 

(20) and (21), the iterations with respect to q′ are associ-
ated with solving local RBDO problems and should not be 
confused with q describing design iterations or the qth sub-
problem in (5).

5.2  Single‑step process

The single-step process is intended to solve the local RBDO 
problem in (20) from a single stochastic analysis by obviating 
the need for recalculation of the GPCE coefficients from a new 
input–output data set in every design iteration. However, it is 
predicated on two important assumptions: (1) an mth-order 
GPCE approximation hm(�;�) of h(�;�) at the initial design 
is adequate for all possible designs; and (2) the GPCE coef-
ficients for a new design, derived by recycling those for an old 
design, are acceptable for their accuracy.

Under these two assumptions, let vectors � and �′ rep-
resent the old and new designs, respectively. Assume that 
GPCE coefficients Ci(�) , i = 1,… , LN,m , for the old design 
� have been already estimated from the old input–output 
data {�(l), h(�(l);�)}L

l=1
 . Then, GPCE coefficients Ci(�

�) , 
i = 1,… , LN,m , for the new design �′ are determined by adjust-
ing the input data set {�(l)}L

l=1
 to the following one {��(l)}L

l=1
 , as

(20)

min
�∈D(q�)⊆ℝM

c̃
(q�)

0,m
(�)

subject to c̃
(q�)

l,m
(�) ∶= ℙ�[� ∈ ̃̄𝛺

(q�)

F,l,m
(�)] − pl ≤ 0,

dk ∈
[
d
(q�)

k,0
− 𝛽

(q�)

k
(dk,U − dk,L) ∕ 2,

d
(q�)

k,0
+ 𝛽

(q�)

k
(dk,U − dk,L) ∕ 2

]
,

l = 1,… ,K; k = 1,… ,M,

(21)c̃
(q�)

0,m
(�) ∶= ��(�)[h

(q�)

0,m
(�;�)],

��(l) =

⎧⎪⎨⎪⎩

�(l) − �� + �, in shifting,

diag

�
r1

r�
1

,… ,
rN

r�
N

�
�(l), in scaling.
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To explain the adjustment of input data, first consider the 
shifting transformation. In this case, the new output value 
at the lth input sample is

where ��(l) ∶= �(l) − �� + � is the adjusted lth input sample. 
Second, for the scaling transformation, the new output value 
at the lth input sample is

where ��(l) ∶= diag[r1∕r
�
1
,… , rN∕r

�
N
]�(l) is the adjusted lth 

input sample. These adjustments are meant to construct an 
input–output data set for new designs from GPCE coeffi-
cients Ci(�) for the old design, that is,

where the last term indicates the mth-order GPCE approxi-
mation. Applying (22) to (14) yields an estimate of the 
mean-square residual

h(�(l);��) ∶= y(�(l) − ��) = y(�(l) − �� + � − �)

= y(��(l) − �) =∶ h(��(l);�),

h(�(l);��) ∶= y

(
diag

[
1

r�
1

,… ,
1

r�
N

]
�(l)

)

= y

(
diag

[
1

r1
,… ,

1

rN

]

× diag

[
r1

r�
1

,… ,
rN

r�
N

]
�(l)

)

= y

(
diag

[
1

r1
,… ,

1

rN

]
��(l)

)
=∶ h(��(l);�),

(22)h(�(l);��) = h(��(l);�) ≈

LN,m∑
i=1

Ci(�)�i(�
�(l);�),

the minimization of which by SLS produces the best esti-
mates of GPCE coefficients for the new design. Compared 
with the minimization of ê′

m
 in (14), the calculation of new 

output data using the original performance function h(�(l);��) 
is not demanded. Instead, the new output data are estimated 
by recycling the old coefficients and calculating basis func-
tion values at the adjusted input data �′ , as shown in (23). 
Subsequently, new failure probability and design sensitiv-
ity analyses, both employing mth-order GPCE approxima-
tions from the initial design, are conducted with little extra 
cost during all design iterations. Therefore, the single-step 
process holds the potential for substantially lessening the 
computational effort in solving RBDO problems.

5.3  Multi‑point single‑step process

When combining the multi-point approximation and the 
single-step process, the resulting method is equipped to 
efficiently yield a reliable design solution in solving an 
RBDO problem defined in (4). The multi-point single-step 
process is schematically depicted in Fig. 2. Here, �(q

�)
∗  is 

the optimal design solution obtained using the single-step 
process for the q′ th local RBDO problem in (20). Setting 
the initial design �(q

�+1)

0
 to �(q

�)
∗  for the next local RBDO 

(23)

ê��
m
∶=

1

L

L∑
l=1

[ LN,m∑
i=1

Ci(�)𝛹i(�
�(l);�)

−

LN,m∑
i=1

Ci(�
�)𝛹i(�

(l);�)

]2
,

Fig. 2  A schematic description of the multi-point single-step design process during Q′ iterations to get the final optimum �∗
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problem on D(q�+1) , the process is repeated until attaining 
a final, convergent solution �∗ that satisfies all probabilistic 
constraints. The flow chart of the method, referred to as 
the multi-point single-step GPCE or MPSS-GPCE method, 
is presented in Figs. 3 and 4 with supplementary explana-
tions of each step of the method, as follows. 

 1. Set termination criteria 0 < 𝜖1, 𝜖2 << 1 ; set tolerances 
for sizing subregions 0 < 𝜖3, 𝜖4, 𝜖5, 𝜖6, 𝜖7 < 1 ; initialize 
size parameters 0 < 𝛽

(q�)

k
≤ 1, k = 1,… ,M , of D(q�) ; 

and set an initial design vector �(q
�)

0
= (d

(q�)

1,0
,… , d

(q�)

M,0
)⊺ . 

The initial design can be in either feasible or infeasible 
domains with respect to the probabilistic constraints.

 2. Transform the input random vector � to a new random 
vector � such that ��[Zik ] = gk = 0 or 1, k = 1,… ,M , 
by shifting or scaling, respectively, described in 
Sect. 2.2.

 3. Select the total degree m ∈ ℕ of GPCE approxima-
tions for performance functions hl(�;�) , l = 1,… ,K . 
Construct an LN,m-dimensional vector of measure con-

Fig. 3  A flow chart of the 
MPSS-GPCE method
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sistent orthonormal polynomials �m(�;�) through the 
three-step algorithm, described in Sect. 3.1.

 4. Update the current design vector � , as follows. If 
q� = 1 , create input samples �(l), l = 1,… , L̄ , where 
L̄ >> L , via the MCS or other experimental design 
method. Use part of the input samples to construct 
an input–output data set {�(l), h(�(l);�)}L

l=1
 of sample 

size L > LN,m (say, L∕LN,m ≥ 3 ). If q′ > 1 , reuse the 
input samples to generate new input–output data sets 
{�(l), h(�(l);��)}L

l=1
 . In every q′ step, use SLS to estimate 

GPCE coefficients with respect to �m(�;�) for a perfor-
mance function h.

 5. In each iteration, conduct reliability analysis and 
compute the sensitivity of the failure probability with 
respect to design variables dk , k = 1,… ,M , both using 
mth-order GPCE approximations. For the design sensi-
tivity analysis, if q� = 1 , construct an input–output data 
set for score functions, {�(l), sk(�(l);�)}L̄l=1 , k = 1,… ,M . 
Otherwise, reuse the input–output data set created in 
q� = 1 . Finally, obtain the constraint function values 
and its gradients at � = �

(q�)

0
.

 6. If q� = 1 and s = 1 , use the initial or default values of 
size parameters 0 < 𝛽

(q�)

k
≤ 1, k = 1,… ,M , in Step 1. 

If q′ > 1 and s = 1 , modify the size parameters accord-
ing to three criteria: (1) the accuracy of GPCE approxi-
mations, (2) the active/inactive condition of subregion 
boundaries, and (3) the converging condition of cur-
rent designs. Otherwise, skip Step 6. The details of the 

three conditions mentioned earlier are explained in the 
following steps.

 6-1. First condition: For any of l = 1,… ,K  ,  if 
||c̃(q�)

l,m
(�

(q�)

0
) − c̃

(q�−1)

l,m
(�

(q�)

0
)|| ≤ 𝜖3||c̃(q

�)

l,m
(�

(q�)

0
)||  , 

increase �(q
�)

k
 for all k = 1,… ,M . Otherwise, go to 

Step 6-2. One may need to control the enlargement 
rate, depending on the problems at hand. For instance, 
set �(q

�)

k
= (2 − 1∕�)�

(q�−1)

k
 , where the golden ratio 

� ≈ 1.618.
 6-2. F i r s t  condi t ion :  For  any  l = 1,… ,K  ,  i f 

||c̃(q�)
l,m

(�
(q�)

0
) − c̃

(q�−1)

l,m
(�

(q�)

0
)|| ≥ 𝜖4||c̃(q

�)

l,m
(�

(q�)

0
)|| , decrease 

�
(q�)

k
 for all k = 1,… ,M . As an instance of the decre-

ment rate, set �(q
�)

k
= �

(q�−1)

k
∕� , where the golden ratio 

� ≈ 1.618 . Otherwise, go to Step 6-3.
 6-3. S e c o n d  c o n d i t i o n :  I f  d

(q�−1)

k,∗
 i s  a c t i ve , 

i n c r e a s e  �
(q�)

k
 ,  k = 1,… ,M  .  H e r e ,  t h e 

ac t ive  d
(q�−1)

k,∗
 means  t ha t  fo r  0 < 𝜖5 < 1 , 

||d(q�−1)
k,∗

− dk,U|| ≤ �5 or ||d(q
�−1)

k,∗
− dk,L|| ≤ �5  . 

As an instance of the enlargement rate, set 
�
(q�)

k
= (2 − 1∕�)�

(q�−1)

k
 , where the golden ratio 

� ≈ 1.618 . Otherwise, go to Step 6-4.
 6-4. Third condition: If ||d(q�)

k,0
− d

(q�−1)

k,0
|| ≤ �6 , decrease �(q

�)

k
 , 

k = 1,… ,M . As an instance of the decrement rate, set 
�
(q�)

k
= �

(q�−1)

k
∕� , where the golden ratio � ≈ 1.618 . 

Otherwise, go to Step 6-5.
 6-5. M ove  l i m i t :  I f  𝛽

(q�)

k
(dk,U − dk,L) < 𝜖7  ,  s e t 

�
(q�)

k
= �7∕(dk,U − dk,L) . Otherwise, k = k + 1 and repeat 

the process until the loop condition k ≤ M is satisfied.

Fig. 4  A flow chart of sizing the q′ th subregion in the multi-point single-step design process
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 7. If the current design � is not feasible, that is, at least 
one constraint is violated, go to Step 8. Otherwise, set 
� to the current feasible design �(q

�)

f
 , then go to Step 9.

 8. Interpolate between the current design � and the previ-
ous feasible design �(q

�−1)

f
 . For instance, set 

� = �
(q�−1)

f
∕� + (1 − 1∕�)� , where the golden ratio 

� ≈ 1.618 . If an initial design at q� = 1 is infeasible, 
interpolate it with upper or lower bounds of the design 
space, or another initial guess, depending on the prob-
lems at hand.

 9. If any of the two termination conditions, such that (1) 
‖�(q�)

f
− �

(q�−1)

f
‖ ≤ �1 and/or (2) ‖c̃(q� )

0,m
(�

(q� )

f
) − c̃

(q� )

0,m
(�

(q�−1)

f
)‖ ≤ 𝜖2 , 

are met, terminate the optimization process and set the 
final optimal design as �∗ = �

(q�)

f
 . Otherwise, go to 

Step 10.
 10. Solve the q′ th local RBDO problem with the single-

step process using a gradient-based algorithm, such 
as sequential quadratic programming, to obtain a local 
optimal solution �(q

�)
∗  . Then, increase the subregion 

count as q� = q� + 1 . Set �(q
�)

0
= �

(q�−1)
∗  and go to Step 4.

The multi-point single-step GPCE method will be 
referred to as the MPSS-GPCE method for the remainder 
of this paper

6  Numerical examples

Four numerical examples are presented to illustrate the pro-
posed MPSS-GPCE method for solving RBDO problems. 
The objective and constraint functions are either elementary 
mathematical functions or derived from a simple truss or a 
more complex, industrial-scale mechanical system. Both size 
and shape design problems in the context of RBDO were 
solved. In all examples, the design variables are the statisti-
cal means of some or all input random variables following 
dependent probability distributions.

In the probabilistic constraints of Examples 
1–4, all the target probabilities of failure are set to 
�(−3) ≈ 1.35 × 10−3 , where �(⋅) is the standard normal 
distribution function. Each component of the M-dimen-
sional vector � is either zero or one, depending on the 
shifting or scaling transformations, respectively, for input 
random variables. The multivariate orthonormal polyno-
mials consistent with the probability measure of � were 
determined using the three-step algorithm. The monic 
moment matrix �m , constructed from monic polyno-
mial basis, was estimated by QMCS with 5 × 106 sam-
ples together with the Sobol sequence (Lee and Rahman 
2020). The order (m) of GPCE approximations and sample 
sizes L and L̄ depend on the examples and are listed in 

Table 2. The GPCE coefficients are estimated using SLS 
and QMCS-generated input–output data. For reliability 
and design sensitivity analyses, the input samples �(l) , 
l = 1,… , L̄ , were created by MCS for simulation of GPCE 
approximations.

In Examples 1–3, the objective functions are determinis-
tic, and their design sensitivities were derived analytically. 
In Example 4, the objective function is the statistical mean 
of the volume of a jet engine compressor blade root, which 
is computed by an implicit function from CAD. The mean 
and its design sensitivities were simultaneously determined 
employing GPCE approximations, which are explained in 
Appendices 1 and 2.

As a gradient-based optimization, the sequential quad-
ratic programming was employed to solve RBDO prob-
lems in all examples. For the multi-point single-step 
design process, the tolerances and initial size parameter 
are as follows: �1 = 1 × 10−3 , �2 = 1 × 10−3 , �3 = 0.01 , 
�4 = 0.07 , �5 = 0.01 , �6 = 0.5 , �7 = 0.05 , �8 = 1 × 10−4 , and 
�
(1)

k
= 0.3, k = 1,… ,M , in all examples.

All numerical results were generated using MATLAB 
(MATLAB 2019), CREO parametric (CREO 2016), and 
ABAQUS (ABAQUS 2019) on an Intel Core i7-7700K 4.20 
GHz process with 64 GB of RAM.

6.1  Example 1: Optimization involving 
mathematical functions

Consider a mathematical optimization problem, formerly 
studied by Noh et al. (2009), involving a two-dimensional 
Gaussian random vector � = (X1,X2)

⊺ . The random vari-
ables follow a bivariate Gaussian distribution with means 
��[X1] = d1 , ��[X2] = d2 , standard deviations of 0.3 for X1 
and X2 , and three distinct cases of correlation coefficient 
between X1 and X2 : 0.4 (Case 1), −0.4 (Case 2), and 0 (Case 
3). The third case of zero correlation coefficient indicates 
statistical independence between X1 and X2 . Given a design 
vector � = (d1, d2)

⊺ , the objective of this RBDO problem 
is to

where

and

min
�∈D

c0(�) ∶= −d1 + d2,

subject to cl(�) ∶= ℙ�[yl(�) ≤ 0)] − Φ(−3) ≤ 0,

0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10, l = 1 − 3,

y1(�) = − 1 +
X2
1
X2

20
,

y2(�) = − 1 +
(X1 + X2 − 5)2

30
+

(X1 − X2 − 12)2

120
,
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are three nonlinear random performance functions 
of X1 and X2 . The design vector is � ∈ D , where 
D = [0, 10] × [0, 10] ⊂ ℝ

2 . For each case of a correlation 
coefficient, three different initial designs, such as (5, 5)⊺ , 
(1, 1)⊺ , and (9, 4)⊺ , were selected to verify the robustness of 
the proposed method in attaining optimal design solutions.

Using the shifting transformation for input random vari-
ables, the proposed MPSS-GPCE method entailing third-
order ( m = 3 ) GPCE approximations was applied to solve 
this elementary RBDO problem. To assess the accuracy of 
the proposed method, a benchmark solutions, named MCS/
FD, was obtained by crude MCS involving 1 × 106 sam-
ples for reliability analysis and the central finite-difference 
approximation for design sensitivity analysis. The approxi-
mate optimal solutions are denoted by �̃∗ = (d̃∗

1
, d̃∗

2
)⊺.

Table  3 summarizes the optimization results for the 
three aforementioned cases of the correlation coefficient 
and three different initial designs. Consider first the RBDO 
results when the initial design is �0 = (5, 5)⊺ . As shown 
in the second and third columns from the left in Table 3, 
the respective RBDO solutions generated by the MPSS-
GPCE (proposed) and MCS/FD (benchmark) methods are 

y3(�) = −1 +
80

(X2
1
+ 8X2 + 5)

practically identical for all three correlation coefficients. 
According to both of these methods, there are two active 
constraints c2 ≃ 0 and c3 ≃ 0 and one inactive constraint 
c1 = −�(−3) ≃ −1.35 × 10−3 . The reported solutions by 
PMA+ (Noh et al. 2009), included in the fourth column, 
are also accurate, although there is a palpable improvement 
in the results of the MPSS-GPCE method over those of 
PMA+. The PMA+ solution involved a copula, which was 
easy to guess when the input random variables are Gaussian. 
Nonetheless, these solutions obtained by all three methods 
are very close to each other, confirming the accuracy of the 
final optimal solution by the proposed method. Furthermore, 
for three correlation coefficients, the MPSS-GPCE method 
requires only 150–330 function evaluations, which are frac-
tions of the hundred million function evaluations demanded 
by MCS/FD. Therefore, the proposed method is not only 
accurate but also economical.

The fifth and sixth columns in Table 3 enumerate the 
optimal design solutions obtained by the MPSS-GPCE and 
MCS/FD methods using the remaining two initial designs: 
�0 = (1, 1)⊺ and �0 = (9, 4)⊺ . Whether starting from the 
former initial design ( �0 = (5, 5)⊺ ) or the latter two initial 
designs ( �0 = (1, 1)⊺ , �0 = (9, 4)⊺ ), the proposed method 
yields nearly indistinguishable optimal solutions for 
each case of the correlation coefficient, thus affirming its 

Table 2  The list of parameters 
(Examples 1–4): GPCE orders 
(m) and sample sizes (L, L̄)

aThe degree of GPCE approximation for an output response yl, l = 1,… ,K, 1 ≤ K < ∞
bThe sample size of input–output data set for expansion coefficients of an output response 
yl, l = 1,… ,K, 0 ≤ K < ∞
cThe sample size of input–output data set for reliability analysis
dThe degree of GPCE approximation for an output response yl, l = 0, 1, 2

eThe sample size of input–output data set for expansion coefficients of an output response yl, l = 0, 1, 2

Example 1
m(a) L(b) L̄(c)

y1 y2 y3 y1 y2 y3 −
3 3 3 30 30 30 1, 000, 000
4 4 4 45 45 45 1, 000, 000
Example 2
m(a) L(b) L̄(c)

y1 y2 y3 y1 y2 y3 −
4 4 4 210 210 210 1, 000, 000
5 5 5 378 378 378 1, 000, 000
6 6 6 630 630 630 1, 000, 000
Example 3
m(a) L(b) L̄(c)

y1 y2 y1 y2 −
2 2 759 759 3, 000, 000
Example 4
m(d) L(e) L̄(c)

y0 y1 y2 y0 y1 y2 3, 000, 000
1 1 1 75 75 75 3, 000, 000
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robustness in solving this RBDO problem. No PMA+ solu-
tions have been reported for these two initial designs.

In order to better understand the performance of 
the MPSS-GPCE method, Fig.  5a–c depict its itera-
tion histories in the two-dimensional design space 
D = [0, 10] × [0, 10] ⊂ ℝ

2 , obtained for all three correla-
tion coefficients and all three initial designs. The design 
space was discretized by a 100 × 100 grid, producing a 
total of 10,000 grid points. At each grid point, the esti-
mates of three probabilistic constraint functions cl , 
l = 1, 2, 3 , were obtained using crude MCS with a sample 
size of 2 × 106 . In Fig. 5a or c, the first initial design (5, 5)⊺ 
lies in the infeasible domain for the correlation coefficient 
0.4 or 0, respectively, whereas in Fig. 5b, the same initial 
design is located in the feasible domain for the correlation 
coefficient −0.4 . In contrast, the last two initial designs 
(1, 1)⊺ and (9, 4)⊺ lie in the infeasible domains for all three 
correlation coefficients in Fig. 5a–c. Notwithstanding that 
the two initial designs (1, 1)⊺ and (9, 4)⊺ are situated further 

from the feasible domain than (5, 5)⊺ , the proposed RBDO 
method adjusts the infeasible initial designs to feasible 
ones through the interpolation process, explained in Step 
8 of Fig. 3, and then delivers almost identical optimum 
solutions to those from (5, 5)⊺ after solving a few subre-
gion problems ( Q� = 4 − 9 ). Therefore, these optimization 
results demonstrate how the proposed method can be effec-
tively used to solve an RBDO problem, whether or not the 
initial design is feasible.

Furthermore, Fig. 5a–c illustrate that the optimal solu-
tions rely on the correlation between input random varia-
bles X1 and X2 . Indeed, the boundaries of feasible domains, 
formed by three probabilistic constraints cl(�) = 0 , 
l = 1, 2, 3 , are altered for different correlation coefficients, 
thus resulting in three different optimal designs, (5.3, 3.5)⊺ , 
(6.2, 3.3)⊺ , and (5.9, 3.4)⊺ , respectively. Hence, such cor-
relations, if they exist, among input random variables 
should be accounted for during design optimization under 
uncertainty.

Table 3  Optimization results 
for the mathematical problem 
(Example 1)

aThe MPCE-GPCE method employing third-order ( m = 3 ) GPCE approximations was employed
bCrude MCS with 1 × 10

6 sample size was employed for reliability analysis and design sensitivity analysis 
based on the central finite-difference method
cThe results of PMA+ are from Noh et al. (2009)
dThe constraint values are calculated by crude MCS with 106 sample size
eThe probabilistic constraint value at the optimal design is not provided by Noh et al. (2009)

�0 = (5, 5)⊺ �0 = (1, 1)⊺ �0 = (9, 4)⊺

MPSS-GPCE(a) MCS/FD(b) PMA+(c) MPSS-GPCE(a) MPSS-GPCE(a)

Case 1: Correlation coefficient = 0.4
d̃∗
1

5.6332 5.6375 5.622 5.6336 5.6329

d̃∗
2

3.4965 3.4960 3.516 3.4963 3.4965

c0(�̃
∗) −2.1367 −2.1415 −2.105 −2.1374 −2.1364

c1(�̃
∗)(d) −1.3499 × 10−3 −1.3499 × 10−3 -(e) −1.3499 × 10−3 −1.3499 × 10−3

c2(�̃
∗)(d) 1.0197 × 10−7 1.0197 × 10−7 -(e) 1.0197 × 10−7 1.0197 × 10−7

c3(�̃
∗)(d) −4.6898 × 10−5 1.0197 × 10−7 -(e) −4.2898 × 10−5 −4.8898 × 10−5

Case 2: Correlation coefficient = −0.4
d̃∗
1

6.1590 6.1575 6.145 6.1590 6.1590

d̃∗
2

3.2554 3.2556 3.271 3.2554 3.2554

c0(�̃
∗) −2.9036 −2.9019 −2.874 −2.9036 −2.9036

c1(�̃
∗)(d) −1.3499 × 10−3 −1.3499 × 10−3 -(e) −1.3499 × 10−3 −1.3499 × 10−3

c2(�̃
∗)(d) −8.9803 × 10−7 2.1020 × 10−6 -(e) 1.0197 × 10−7 −8.9803 × 10−7

c3(�̃
∗)(d) 2.9102 × 10−5 1.1020 × 10−6 -(e) 2.7102 × 10−5 2.8102 × 10−5

Case 3: Correlation coefficient = 0
d̃∗
1

5.8616 5.8605 5.846 5.8616 5.8622

d̃∗
2

3.4125 3.4128 3.4330 3.4125 3.4124

c0(�̃
∗) −2.4492 −2.4477 −2.414 −2.4491 −2.4499

c1(�̃
∗)(d) −1.3499 × 10−3 −1.3499 × 10−3 -(e) −1.3499 × 10−3 −1.3499 × 10−3

c2(�̃
∗)(d) 1.0197 × 10−7 1.0197 × 10−7 -(e) 1.0197 × 10−7 −8.9803 × 10−7

c3(�̃
∗)(d) 1.4102 × 10−5 1.0197 × 10−7 -(e) 1.4102 × 10−5 2.2102 × 10−5
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6.2  Example 2: Size design of an eccentric loaded 
column

The second example was created by recasting an eccentri-
cally loaded column problem, formerly investigated in the 
context of deterministic optimization by Arora (2004). This 
example intends to prove the technical merit of the proposed 
method when confronted with highly nonlinear performance 
functions in solving RBDO problems. As shown in Fig. 6, 
there are four input random variables � = (X1,X2,X3,X4)

⊺ , 

where X1 and X2 are means of the average radius (average 
of outer and inner radii) and the thickness, respectively, of a 
hollow circular tube of length X4 . The tubular column is sub-
ject to a deterministic load with eccentricity 0.01X3X1 about 
its center axis. It is made of cast iron, which has Young’s 
modulus E = 210 GPa. The design variables are d1 = ��[X1] 
and d2 = ��[X2] , and X1 and X2 follow a bivariate lognor-
mal distribution with the correlation coefficient 0.7982. The 
probability distributions of all input random variables are 
listed in Table 4.

Fig. 5  Iteration histories ( q′ ) of the MPSS-GPCE method for three 
different initial designs in Example 1: a correlation coefficient = 0.4; 
b correlation coefficient = −0.4 ; and c correlation coefficient = 0. 

Here, the initial designs are �0 (blue dots), the optimal designs are �∗ 
(red stars), and the boundaries of constraint functions are cl(�) = 0 , 
l = 1, 2, 3 (blue dotted lines)
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The objective of this RBDO problem is to minimize 
the volume of the hollow circular tube, calculated when 
the random geometric variables assume their respective 
means. Three probabilistic constraints, described in (25), 
(26), and (27), limit the normal stress, buckling load, and 
deflection at or below the respective thresholds of the 
allowable stress �a = 2.5 × 108 Pa and lateral deflection 
� = 0.25 m. The deterministic constraint c4 in (24) restricts 
the ratio of d1∕d2 , not to exceed the value of 50 for practi-
cal considerations. Mathematically, such an RBDO prob-
lem is devised to

where

(24)

min
�∈D⊆ℝM

c0(�) ∶= V(�),

subject to cl(�) ∶= ℙ�[yl(�) < 0] −𝛷(−3) ≤ 0,

l = 1, 2, 3,

c4(�) ∶= −1 +
d1

50d2
≤ 0,

0.01 m ≤ d1 ≤ 1 m,

0.005 m ≤ d2 ≤ 0.2 m,

are three random performance functions of the normal 
stress, buckling load, and deflection, respectively. In (24), 
the total volume of the column at mean values of input is 
V(�) ≈ 10�d1d2 . The initial design is �0 = (1, 0.2)⊺ m.

Table 5 presents detailed optimization results from the 
MPSS-GPCE method, obtained employing fourth- ( m = 4 ), 
fifth- ( m = 5 ), and sixth-order ( m = 6 ) GPCE approxima-
tions. The corresponding results are listed in the second, 
third, and fourth columns, respectively, from the left. The 
optimal solutions by the proposed methods, regardless of 
m, are very close to each other, satisfying practically all 
constraint conditions. Although there is a slight constraint 
violation for the second probabilistic constraint ( c2 > 0 ), it is 
considered to be active due to its negligibly small value with 
respect to its target failure probability �(−3) ≈ 1.35 × 10−3.

To evaluate the accuracy of the RBDO solutions from 
the multi-point single-step method, two benchmark solutions 
were created. The first benchmark solution, named MCS/FD 
and presented in the fifth column, involves crude MCS for 
reliability analysis and finite-difference approximation for 
design sensitivity analysis. However, to overcome its high 
computational cost, the initial design was selected to be the 
sixth-order MPSS-GPCE solution (fourth column), thus 
minimizing the needed design iterations as much as pos-
sible. The second benchmark solution, referred to as MCS/
SF and tabulated in the sixth column, entails crude MCS for 
reliability analysis but score functions for design sensitivity 
analysis. The initial design for the second benchmark solu-
tion is the same as the one used for the proposed RBDO 
solutions. The sample size of MCS in both benchmark solu-
tions is 1 × 106 . The comparisons between the benchmark 
solutions and those obtained by the proposed RBDO solu-
tions are remarkably close, thereby affirming the accuracy 
of the final optimal designs by the multi-point single-step 
method. However, the proposed method reduces the com-
putational cost dramatically, demanding only 5,460–16,38 
function evaluations, which are fractions of the tens of mil-
lions of function evaluations required by the MCS-based 
benchmark solutions.

(25)

y1(�) =1 −
50 × 103

2�X1X2�a

�
1 +

2 × 0.01X3(X1 + 0.5X2)

X1

× sec

�√
2X4

X1

�
50 × 103

E(2�X1X2)

��
,

(26)y2(�) =1 −
200 × 103X2

4

�3EX3
1
X2

,

(27)y3(�) =1 −
0.01X3X1

�

[
sec

(√
50 × 103

E�X3
1
X2

)
− 1

]

Fig. 6  Configuration of the vertical column with an eccentric load 
(Example 2)

Table 4  Statistical properties of random variables of the column with 
an eccentric load (Example 2)

aX1 and X2 are dependent with the correlation coefficient of 0.7982

Random variables Mean Standard deviation Probability distri-
bution

X1 , m(a) d1 0.15d1 Lognormal
X2 , m(a) d2 0.15d2 Lognormal
X3 3 0.1 Weibull
X4 , m 5 0.05 Normal
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6.3  Example 3: Optimal sizing design of a six‑bay, 
twenty‑one‑bar truss

The third example demonstrates the ability of the proposed 
method in solving an RBDO problem involving system reli-
ability constraints. Fig. 7 depicts a linear-elastic, six-bay, 
twenty-one-bar truss structure, originally studied by (Ren 
et al. 2016). It is simply supported at nodes 1 and 12 and 
is subject to four concentrated loads of 10,000 lb (44,482 
N) at nodes 3, 5, 9, and 11, respectively, and a concentrated 
load of 16,000 lb (71,172 N) at node 7. The truss is made of 
an aluminum alloy with the Young’s modulus E = 107 psi 
(68.94 GPa).

There are twenty-one (N = 21) random variables 
� = (X1,… ,X21)

⊺ representing the cross-sectional areas of 
all twenty bars. Unlike the previous study (Ren et al. 2016), 
these random variables follow correlated lognormal distri-
butions, which have means ��[Xi] , i = 1,… , 21 ; standard 

deviations 0.1��[Xi] , i = 1,… , 21 ; and correlation coefficients 
�ij = 0.5988 , i, j = 1,… , 21 , i ≠ j . The means of � are all set 
as design variables, that is, dk ∶= ��[Xk] , k = 1,… , 21.

Determined from a linear-elastic FEA, the maximum verti-
cal displacement vmax(�) and maximum axial stress �max(�) 
are limited by the permissible values of dallow = 0.266 in (6.76 
mm) and �allow = 37, 680 psi (259.8 MPa), respectively. The 
nodes at which these maximum physical values occur can shift 
depending on the changes in the means of the cross-sectional 
areas during the optimization process. The system-level fail-
ure set is defined as 𝛺F ∶= {� ∶ {y1(�) < 0} ∪ {y2(�) < 0}} , 
where the performance functions

For the RBDO problem, the objective is to minimize the 
volume of the truss, calculated at mean cross-sectional areas, 

y1(�) = 1 −
|vmax(�)|
dallow

, y2(�) = 1 −
|�max(�)|
�allow

.

Table 5  Optimization results for the vertical column design problem (Example 2)

aThe degree (m) of GPCE approximation
bCrude MCS with 106 sample size for reliability analysis and design sensitivity analysis based on the central finite-difference method; the initial 
design was set to the optimal solution of the sixth-order ( m = 6 ) multi-point single-step GPCE method
cCrude MCS with 106 sample size for reliability analysis and design sensitivity analysis based on the score function method; the initial design 
was set to the original initial design �0 = (1, 0.2)⊺

dThe constraint values were estimated by crude MCS with 106 sample size

MPSS-GPCE

m = 4(a) m = 5(a) m = 6(a) MCS/FD(b) MCS/SF(c)

d̃∗
1

0.0951 0.0937 0.0959 0.0959 0.0964

d̃∗
2

0.0050 0.0055 0.0050 0.0050 0.0050

c0(�̃
∗) 0.0149 0.0161 0.0151 0.0151 0.0151

c1(�̃
∗)(d) −1.2179 × 10−3 −1.2159 × 10−3 −1.2249 × 10−3 −1.2267 × 10−3 −1.2149 × 10−3

c2(�̃
∗)(d) 3.7710 × 10−4 −5.9898 × 10−5 1.4010 × 10−4 1.3630 × 10−4 −8.9803 × 10−7

c3(�̃
∗)(d) −1.3499 × 10−3 −1.3499 × 10−3 −1.3499 × 10−3 −1.3499 × 10−3 −1.3499 × 10−3

c4(�̃
∗) −6.1968 × 10−1 −6.5802 × 10−1 −6.1624 × 10−1 −6.1624 × 10−1 −6.1428 × 10−1

No. of yl eval., l = 1, 2, 3 5, 460 10, 206 16, 380 2, 950, 000, 000 34, 000, 000
No. of y4 evaluation 151 164 161 59 34

Fig. 7  Configuration of the 
six-bay, twenty-one-bar truss 
structure (Example 3)
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such that the system reliability constraint forcing vmax(�) 
and �max(�) at or below their respective thresholds defined 
earlier. That is, the RBDO problem is formulated to

The chosen initial design is �0 = (15,… , 15)⊺ in2 , whereas 
the approximate final optimal design is denoted by 
�̃∗ = (d̃∗

1
,… , d̃∗

21
)⊺.

The second column from the left in Table 6 presents 
the optimization results obtained by the proposed MPSS-
GPCE method employing second-order ( m = 2 ) GPCE 
approximations of y1 and y2 . To produce a reference 

min
�∈D⊆ℝM

c0(�) ∶= V(�),

subject to c1(�) ∶= ℙ�[{y1(�) < 0} ∪ {y2(�) < 0}]

−𝛷(−3) ≤ 0,

1 in2 ≤ dk ≤ 30 in2, k = 1,… , 21.

solution, crude MCS entailing 3 × 106 samples for reli-
ability analysis and design sensitivity analysis based on 
the score function method was employed. The reference 
solution, denoted by MCS/FD, has its results tabulated in 
the third column. The comparison of optimization results 
from these two methods indicates that the proposed RBDO 
solution is very close to the reference solution by MCS/
FD; however, the former requires only 14,421 FEA in con-
trast to 528 million FEA mandated by the latter. There-
fore, the multi-point single-step method developed is not 
only highly accurate but also computationally efficient. 
The optimal designs from both methods reveal constraint 
violations by negligibly small values. Thus, they can be 
viewed practically as active constraints.

Given the symmetry in the loading and truss configu-
ration, it is conceivable that the RBDO problem can be 

Table 6  Optimization results 
for the six-bay, 21-bar truss 
problem (Example 3)

aThe MPSS-GPCE method of second-order ( m = 2 ) GPCE approximations was employed
bCrude MCS with 3 × 10

6 sample size for reliability analysis and design sensitivity analysis based on the 
score function method
cThe value is obtained from the symmetry condition
dThe constraint value was estimated by crude MCS with 3 × 106 sample size

Case 1 (without the symmetry condition) Case 2 (with the symmetry condition)

MPSS-GPCE(a) MCS/SF(b) MPSS-GPCE(a) MCS/SF(b)

d̃∗
1

3.7922 3.9103 3.8497 3.9320

d̃∗
2

4.1494 4.2432 3.9691 3.8865

d̃∗
3

4.3534 4.3490 4.3705 4.4173

d̃∗
4

4.0770 4.2448 4.1482 4.2876

d̃∗
5

4.5972 4.5695 4.6146 4.6347

d̃∗
6

5.4279 5.5801 5.2380 5.2985

d̃∗
7

1.0000 1.0000 1.0000 1.0000

d̃∗
8

1.0000 1.0000 1.0000 1.0000

d̃∗
9

1.0000 1.0280 1.0000 1.0000

d̃∗
10

1.0000 1.0000 1.0000 1.0000

d̃∗
11

1.0023 1.0000 1.0000 1.0000

d̃∗
12

4.1815 4.1256 4.3705(c) 4.4173(c)

d̃∗
13

3.8101 3.9231 3.9691(c) 3.8865(c)

d̃∗
14

3.4667 3.6848 3.8497(c) 3.9320(c)

d̃∗
15

4.4683 4.4063 4.1482(c) 4.2876(c)

d̃∗
16

4.5358 4.4057 4.6146(c) 4.6347(c)

d̃∗
17

5.3795 5.2284 5.2380(c) 5.2985 (c)

d̃∗
18

1.0000 1.0000 1.0000(c) 1.0000(c)

d̃∗
19

1.0000 1.0000 1.0000(c) 1.0000(c)

d̃∗
20

1.0000 1.0000 1.0000(c) 1.0000(c)

d̃∗
21

1.0000 1.0000 1.0000(c) 1.0000(c)

c0(�̃
∗) 620.04 624.64 621.15 626.84

c1(�̃
∗)(d) 5.8277 × 10−4 4.3530 × 10−7 7.1544 × 10−4 1.6102 × 10−5

No. of FEA 14, 421 528, 000, 000 5, 382 477, 000, 000
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recast by reducing the number of input random vari-
ables from 21 to 11, as done in a past work (Ren et al. 
2016). Henceforth, the reduced RBDO problem involving 
� = (X1,… ,X11)

⊺ and invoking the symmetry in cross-
sectional areas of truss members was solved using the 
two aforementioned methods. The statistical properties of 
this reduced input vector are the same as before, but there 
are no separate random variables associated with truss 
members 12 through 21. The corresponding optimization 
results by the multi-point single-step method and MCS/
FD solution are listed in the fourth and fifth columns of 
Table 6, respectively. Again, the proposed method deliv-
ers an accurate and computationally efficient RBDO solu-
tion for this problem. Due to a reduced number of random 
variables, the multi-point single-step method requires only 
5382 FEA, whereas 477 million FEA are necessary to gen-
erate the MCS/FD solution.

Finally, the optimization results obtained using the full 
truss geometry and symmetric truss geometry should not be 
expected to be identical. Although some design variables 
have the same optimal values, there are other optimal design 
variables that are dissimilar. This is because the two opti-
mization problems in the context of RBDO are fundamen-
tally different, possibly yielding distinct design solutions. 
Therefore, imposing such a symmetry condition may not be 
suitable when solving design problems in the presence of 
correlated or dependent input random variables.

6.4  Example 4: Shape optimization of a jet engine 
compressor blade root

This last example demonstrates the high performance of the 
proposed RBDO method in solving an industrial-scale shape 
design problem, encompassing a gas turbine jet engine in 
an aircraft, as shown in Fig. 8a. The jet engine includes a 
compressor section, as shown in Fig. 8a, for pressurizing 
incoming air mixed with fuels before it enters the combus-
tion chamber and then gets ignited. For the compressor, indi-
vidual blades are attached to a disk through joining parts, 
referred to as a blade root and a disk groove, depicted in 
Fig. 8a. When the blades are installed, the disk acts as an 
anchoring component for the turbine blades. As a result, the 
blades can transmit to the disk the energy they extract from 
the exhaust gases.

In general, such a blade root attachment permits blades 
to be easily replaced, thus saving maintenance costs. The 
blade roots need to be designed to maintain fatigue dura-
bility under harsh environments, such as high temperature, 
high pressure, or high centrifugal loading, sustaining its 
performance during the expected service lifetime. Other-
wise, it may cause catastrophic failure. However, uncertain-
ties in manufacturing variables or material properties exist 
inherently, resulting in the randomness of fatigue life. As a 

conservative design approach, a large safety factor is applied 
to ensure its satisfactory long-term performance, but it may 
cause an unnecessary blade weight increment and, hence, 
fuel efficiency loss. Thus, reliability analysis of fatigue 
life should be accounted for when designing a lightweight 
blade/disk attachment geometry. Such optimal design can be 
achieved through the RBDO process developed in this work.

In Fig. 8b, the left figure depicts a computer-aided design 
(CAD) model of a sector of the blade/disk assembly, and the 
right two figures present its blade root including a total of 
14 random manufacturing variables � = (X1,… ,X14)

⊺ . Of 
these random variables, (1) X1 through X11 describe the outer 
profile of the blade root cross-section; (2) X12 and X13 are the 
width and the height, respectively, of four holes in the blade 
root, created to reduce the volume as much as possible; and 
(3) X14 is the depth of the blade root. The 14-dimensional 
(N = 14) input random vector � follows a multivariate log-
normal distribution with means ��[Xi] , i = 1,… , 14 ; stand-
ard deviations 0.05��[Xi] , i = 1,… , 14 ; and correlation coef-
ficients �ij = 0.4997 , i, j = 1,… , 14 . There are 14 design 
variables, that is, dk = ��[Xk] , k = 1,… , 14 . The respective 
disk groove always has the same outer shape as the blade 
root to be properly fitted together during design optimiza-
tion. The jet engine compressor blade and disk are made of 
Titanium Alloy Ti-6Al-4V with the following deterministic 
material properties: mass density � = 4430 kg/m3 , elastic 
modulus E = 115 GPa, and Poisson’s ratio � = 0.33 . The 
deterministic fatigue parameters are as follows: fatigue 
strength coefficient ��

f
= 2030 MPa, fatigue strength expo-

nent b = −0.104 , fatigue ductility coefficient ��
f
= 0.841 , and 

fatigue ductility exponent c = −0.69.
The probabilistic performances of the blade and the disk 

were determined by fatigue durability analysis under the 
variable rotational speed of the engine compressor due to 
different flight conditions for takeoff, cruise, and land. It 
is assumed here that the compressor blade/disk assembly 
experiences constant-amplitude cyclic centrifugal forces 
determined by the maximum and minimum rotational speeds 
of 2100 rad/s and 0 rad/s, respectively. The fatigue durabil-
ity analysis involved (1) calculating the maximum principal 
strain and the mean stress at a critical point; and (2) calcu-
lating the fatigue crack initiation life at that point from the 
well-known Coffin–Manson–Morrow equation (Stephens 
et al. 2000). The critical point is the location where the von-
Mises stress is the largest, identified from FEA. As shown in 
Fig. 9a, the boundary condition involves fixing the bottom 
of the disk sector in all three directions and three axes of 
rotations, describing its geometric condition to be welded to 
the shaft. The junctions between surfaces of the blade root 
and the disk groove are enforced by tied contact constraints. 
The disk FEA model has rotational symmetry of the order 
30 ( 30 × 12◦ = 360◦ ) on its left and right side borders, as 
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Fig. 8  The gas turbine jet 
engine (Example 4): a a photo 
of the blade/disk assembly; b a 
CAD model of a sector of the 
blade/disk assembly (left) and 
blade roots (right) (unit: mm)
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shown in 9a, and the whole body of the blade/disk assembly 
is presented in Fig. 8a.

For the RBDO problem, the objective is to minimize the 
volume of the blade root by changing the geometry such 
that the fatigue crack initiation lives N1(�) and N2(�) for 
the blade and the disk, respectively, under the cyclic loading 
conditions at the critical point exceed the design threshold 
of a half-million cycles with (1 −�(−3)) × 100 = 99.865% 
probability. Mathematically, the RBDO problem requires 
one to

where

min
�∈D

c0(�) ∶=
𝔼�[y0(�)]

𝔼�0
[y0(�)]

,

subject to c1(�) ∶= ℙ�[y1(�) < 0] −𝛷(−3) ≤ 0,

c2(�) ∶= ℙ�[y2(�) < 0] −𝛷(−3) ≤ 0,

10 mm ≤ d1 ≤ 12 mm, 1 mm ≤ d2 ≤ 3 mm,

4 mm ≤ d3 ≤ 7 mm, 1 mm ≤ d4 ≤ 3 mm,

9 mm ≤ d5 ≤ 12 mm, 1 mm ≤ d6 ≤ 3 mm,

4 mm ≤ d7 ≤ 7 mm, 1 mm ≤ d8 ≤ 3 mm,

8 mm ≤ d9 ≤ 12 mm, 1 mm ≤ d10 ≤ 3 mm,

1 mm ≤ d11 ≤ 7 mm, 0.5 mm ≤ d12 ≤ 4 mm,

0.5 mm ≤ d13 ≤ 4 mm, 10 mm ≤ d14 ≤ 20 mm,

is the random volume of the blade root, and

and

are stochastic performance functions given by log-scale nor-
malized fatigue crack initiation lives for the blade root and 
the groove potion of the disk, respectively. The initial design 
�0 = (d1,0,… , d14,0)

⊺ mm is listed in Table 7. Figure 9b pre-
sents an FEA mesh for the initial design of a sector of the 
blade/disk assembly, which comprises 203,026 hexahedral 
elements. The approximate optimal solution is denoted by 
�̃∗ = (d̃∗

1
,… , d̃∗

14
)⊺.

The MPSS-GPCE method, employing first-order 
(m = 1) GPCE approximations for reliability analyses 
of y1(�) and y2(�) , was applied in solving this RBDO 
problem. The selection of the low-order GPCE approxi-
mation is motivated by local design spaces where a high-
order GPCE may not be needed, thereby reducing the 

y0(�) = ∫
D

�(�)

dD�

y1(�) = log10

[
N1(�)

5 × 105

]

y2(�) = log10

[
N2(�)

5 × 105

]

Fig. 9  An FEM of the com-
pressor blade/disk assembly 
(Example 4): a boundary condi-
tions and a centrifugal loading 
condition (the maximum 
rotational speed: 1200 rad/s); 
b hexahedral mesh comprising 
203,026 elements
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computational demand of the MPSS-GPCE method as 
much as possible.

The optimal design solutions are presented in the third 
column from the left in Table 7. At optimum, the design 
variables d∗

4
 and d∗

14
 reached their lower limits, but the rest 

of the design variables converged to values between their 
respective lower and upper limits, satisfying probabilistic 
constraints ( c1 ≃ −0.0010 , c2 ≃ −0.0013 ). The mean opti-
mal volume of the blade root is 3409.0 mm3 , achieving a 
65% reduction from the initial volume of 9707.7 mm3 . To 
complete the design process, the requisite number of FEA 
runs is 1, 425.

Figures 10a–d present the contour plots of the logarithm 
of the fatigue crack initiation life at the mean shapes of 
the blade root for several design iterations, including the 
initial design and the optimal design. The RBDO process 
started with a conservative initial design, such that the mini-
mum fatigue crack initiation lives of 1.96 × 1014 cycles and 
4.74 × 1014 cycles for the blade and the disk, respectively, 
are much larger than the target fatigue crack initiation life 
of a half-million cycles. Through the proposed method with 
tolerances and subregion size parameters appropriately 
selected, a total of 219 iterations (q) led to a final optimal 
design. Indeed, at optimum, there is a considerable reduction 
in the overall volume of the blade root, satisfying the target 
fatigue crack initiation life, as presented in Fig. 10d.

Figure 11 presents iterative histories (q) of the objective 
function value c0 and normalized design variables dk∕dk,0 , 
k = 1–14, attained by the proposed method. In Fig. 11a, 
the objective function value decreases from 1 at the initial 
design to about 0.35 at the optimal design, resulting in an 
almost 65% reduction. However, the objective function con-
verges non-monotonically with respect to design iteration 
(q) characterized by three distinct situations, as marked by 
A, B, and C in Fig. 11a. At mark A, the objective function 

decreases steeply with the single-step process for the first 
( q� = 1 ) subregion problem. At mark B, the rate of decrease 
becomes relatively slower, since the single-step process 
almost reaches convergence for the same subregion problem. 
After the convergence, the local optimal design is evaluated 
to determine whether or not it satisfies probabilistic con-
straints by new GPCE approximations recalculated by a new 
output data. If the constraints are fulfilled, then the optimal 
design is set to the initial design for the next subregion prob-
lem. Otherwise, the infeasible design is interpolated with the 
former feasible design to find a new feasible one, resulting 
in the fluctuation identified at mark C. The constraint viola-
tions at the optimal design by the single-step process are 
due to employing the relatively lower-order ( m = 1 ) GPCE 
approximations with respect to the original performance 
functions. However, the multi-point approximation handles 
such error by restoring the infeasible design to a feasible 
one while continuously approaching the final optimal design 
and narrowing the next subregion size for a better conver-
gence. Figures 11b and c show that all fourteen design vari-
ables have undergone moderate to substantial changes over 
iterations from their initial values, leading to the significant 
loss of the blade root volume while increasing its hole sizes. 
Note that the fatigue crack initiation lives for the blade root 
and disk groove were maintained above the target value of 
half-million cycles at the desired level of probability. Con-
sequently, the minimum weight and target reliability of the 
blade root were both achieved, a distinctive advantage of 
RBDO over traditional deterministic design optimization. 
This culminating example confirms that the proposed RBDO 
method is capable of solving industrial-scale engineering 
design problems using only a few thousand FEA.

7  Discussion

This work should be distinguished from the earlier studies 
on UQ and design optimization conducted by the authors. 
Firstly, the underlying GPCE approximation was intro-
duced by Lee and Rahman (2020) to tackle UQ problems 
for dependent random variables, but it does not provide a 
means to compute stochastic design sensitivities or design 
optimization. Secondly, the recently published paper by Lee 
and Rahman (2021) contains design sensitivity analysis, but 
it is limited to design optimization for robustness, not reli-
ability. Thirdly, Ren et al. (2016) addressed RBDO prob-
lems, including formulating design sensitivity analysis and 
design optimization algorithms, but their work was restricted 
to independent random variables only. In contrast, the cur-
rent study is new in the sense that a more general class of 
RBDO problems, tackling dependent input random variables 
head-on, is highlighted.

Table 7  Initial and optimal 
values of design variables for 
the jet engine compressor blade 
root (Example 4)

k dk,0 mm d̃∗
k
 mm

1 12 10.8318
2 3 1.9780
3 7 4.8823
4 2 3.0000
5 12 9.8823
6 3 1.8318
7 7 4.8823
8 2 2.8683
9 12 8.0000
10 3 1.8697
11 7 1.2515
12 0.5 3.9125
13 0.5 1.9360
14 20 10.0000
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The RBDO method developed here can be combined with 
RDO methods from the past (Lee and Rahman 2021) when 
the objective and/or constraint functions contain statistical 
moments of responses. Indeed, in Example 4, this was dem-
onstrated by including the mean value of random geomet-
ric properties as the objective function. This may lead to a 
reliability-based robust design optimization framework for 
design under uncertainty.

For high-dimensional FEA-based RBDO problems, 
say, those involving 20 random or design variables, the 
GPCE approximation will require an astronomically large 

number of basis functions or coefficients, succumbing to 
the curse of dimensionality. Thus, developments of alter-
native RBDO methods capable of exploiting low effective 
dimensions of high-dimensional functions, such as those 
touted by the generalized polynomial dimensional decom-
position (GPDD) (Rahman 2019), are desirable. In addition, 
variance-based importance measures or global sensitivity 
analysis (das Neves Carneiro and António 2020; das Neves 
Carneiro and Antonio 2021) may be employed to mitigate 
the curse of dimensionality by reducing essentially the size 
of an RBDO problem. In contrast, GPDD preserves all input 

Fig. 10  Contours of logarithmic fatigue crack initiation life at the sta-
tistical mean shapes of the jet engine compressor blade root by the 
multi-point single-step design process employing 1st-order ( m = 1 ) 

GPCE approximations (Example 4): a initial design; b iteration 40; c 
iteration 100; d iteration 219 (optimum)
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random variables, while effectively reducing the number of 
basis functions in terms of interaction degrees between input 
random variables. Therefore, GPDD holds promise in tack-
ling the curse of dimensionality for truly high-dimensional 
RBDO problems.

8  Conclusion

A new computational method, referred to as the multi-
point single-step GPCE method or simply the MPSS-GPCE 
method, was devised for RBDO of complex mechanical sys-
tems in the presence of input random variables with arbi-
trary, dependent probability distributions. The method con-
sists of three major components: (1) a GPCE for reliability 
analysis subject to dependent input random variables; (2) a 
novel fusion of the GPCE approximation and score functions 
for estimating the sensitivities of the failure probability with 
respect to design variables; and (3) standard gradient-based 
optimization algorithms, resulting in a multi-point single-
step design process. When combined with score functions, 
the MPSS-GPCE method engenders analytical formulae for 
calculating the design sensitivities. More crucially, the fail-
ure probability and its design sensitivities are determined 
simultaneously from a single stochastic analysis or simula-
tion, rendering the resultant MPSS-GPCE method compu-
tationally viable for generating optimal solutions.

Numerical results obtained from design optimization 
of mathematical functions and simple mechanical systems 
indicate adequate robustness of the MPSS-GPCE method, 
which provides not only highly accurate but also compu-
tationally efficient design solutions. Because of the local 
approach in the proposed RBDO method, a low-order GPCE 
approximation can be used for solving practical engineering 
problems, as demonstrated by shape design optimization of 
an industrial-scale jet engine compressor blade root.

Appendix 1: Statistical first‑moment

Consider the mth-order GPCE approximation hm(�;�) of 
h(�;�) , presented in (12). Applying the expectation opera-
tor on hm(�;�) and recognizing (7), its mean

coincides with the exact mean of h(�;�) for any m ∈ ℕ0.

(28)��[hm(�;�)] = C1(�) = ��[h(�;�)]

Fig. 11  RBDO iteration histories (q) for the compressor blade root 
design (Example 4): a objective function value c0 ; b normalized 
design variables dk∕d0,k from k = 1 to k = 7 ; c normalized design var-
iables dk∕d0,k from k = 8 to k = 14

▸
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Appendix 2: Sensitivities of the first‑moment

For k = 1,… ,M , consider the kth first-order score function 
sk(�;�) in (17). Then, applying the full GPCE to sk(�;�) 
leads to

with its GPCE coefficients

Similarly, as shown in (16), by interchanging differential 
and integral operators and by replacing h(�;�) and sk(�;�) 
with their mth-order and m′th-order GPCE approximations, 
respectively, for m,m� ∈ ℕ0 , the sensitivity of the first-
moment with respect to dk is formulated as follows:

where Lmin ∶= min(LN,m, LN,m� ) . The approximate sensitiv-
ity in (29) converges to ���[h(�;�)] ∕ �dk when m → ∞ and 
m�

→ ∞.
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Replication of results The results for Examples 1–4 provided in this 
paper were generated by MATLAB codes developed by the authors. 
In Example 4, the CAD model of the blade/disk assembly was created 
by CREO parametric. Then, the FE model was built and solved by 
ABAQUS/CAE. Finally, the fatigue crack initiation life was analyzed 
using an in-house MATLAB code. The CAD and FEA processes were 
fully integrated with the proposed RBDO algorithm for design automa-
tion by using MACRO functions and batch files in the MATLAB plat-
form. The interested reader is encouraged to contact the corresponding 
author for further implementation details by e-mail.
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