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Abstract This paper puts forward two new methods for
reliability-based design optimization (RBDO) of complex
engineering systems. The methods involve an adaptive-
sparse polynomial dimensional decomposition (AS-PDD)
of a high-dimensional stochastic response for reliability
analysis, a novel integration of AS-PDD and score functions
for calculating the sensitivities of the failure probability
with respect to design variables, and standard gradient-
based optimization algorithms, encompassing a multi-point,
single-step design process. The two methods, depending on
how the failure probability and its design sensitivities are
evaluated, exploit two distinct combinations built on AS-
PDD: the AS-PDD-SPA method, entailing the saddlepoint
approximation (SPA) and score functions; and the AS-
PDD-MCS method, utilizing the embedded Monte Carlo
simulation (MCS) of the AS-PDD approximation and score
functions. In both methods, the failure probability and its
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design sensitivities are determined concurrently from a sin-
gle stochastic simulation or analysis. When applied in col-
laboration with the multi-point, single-step framework, the
proposed methods afford the ability of solving industrial-
scale design problems. Numerical results stemming from
mathematical functions or elementary engineering problems
indicate that the new methods provide more computa-
tionally efficient design solutions than existing methods.
Furthermore, shape design of a 79-dimensional jet engine
bracket was performed, demonstrating the power of the AS-
PDD-MCS method developed to tackle practical RBDO
problems.

Keywords Design under uncertainty · Orthogonal
polynomials · Saddlepoint approximation · Score
functions · Optimization

1 Introduction

Reliability-based design optimization, commonly referred
to as RBDO, is an important prototype for solving engineer-
ing design problems in the presence of uncertainty, mani-
fested by probabilistic descriptions of the objective and/or
constraint functions (Kuschel and Rackwitz 1997; Tu et al.
1999; Du and Chen 2004; Chiralaksanakul and Mahade-
van 2005; Agarwal and Renaud 2006; Liang et al. 2007;
Rahman and Wei 2008). Formulated within a probabilis-
tic framework, RBDO strives to achieve high reliability of
an optimal design by fulfilling the probabilistic constraints
at desired levels. With new formulations and methods
appearing almost every year, RBDO, in conjunction with
finite-element analysis (FEA), is becoming increasingly
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relevant and perhaps necessary for design of aerospace,
civil, microelectronics, and automotive structures and sys-
tems.

The solution of an RBDO problem is heavily reliant
on the methods employed for reliability analysis. Existing
RBDO algorithms using surrogate methods for reliabil-
ity analysis can be broadly classified into two groups: (1)
the first-order reliability method or FORM-based methods
(Kuschel and Rackwitz 1997; Tu et al. 1999; Du and Chen
2004; Chiralaksanakul and Mahadevan 2005; Agarwal and
Renaud 2006; Liang et al. 2007) and (2) decomposition-
based methods (Rahman and Wei 2008; Lee et al. 2008a,
b; Youn and Wang 2008; Lee et al. 2012). Depending on
how reliability analysis and optimization iterations are inte-
grated, the FORM-based RBDO algorithms can be further
assorted into three kinds: double-loop algorithms (Tu et al.
1999), single-loop algorithms (Kuschel and Rackwitz 1997;
Liang et al. 2007), and decoupled algorithms (Du and Chen
2004; Agarwal and Renaud 2006). For the double-loop
RBDO, two equivalent approaches, known as the reliabil-
ity index approach (RIA) and the performance measure
approach (PMA), have emerged (Tu et al. 1999). Neverthe-
less, a double-loop method is expensive, because for each
design (outer) iteration, a set of reliability (inner) iterations
involving costly function evaluations must be generated
for locating the most probable point (MPP) required by
FORM. To overcome high computational expense, single-
loop formulations exploiting the Karush-Kuhn-Tucker opti-
mality condition at MPP have appeared. In addition, several
researchers have reformulated the nested RBDO problem
to decouple reliability analysis from design optimization.
However, a fundamental requirement of all three algo-
rithms is FORM, which may not provide accurate reliability
estimates in high dimensions and for highly nonlinear per-
formance functions. Indeed, recent results from Rahman
and Wei (2008) and Zou and Mahadevan (2006) reveal that
the FORM-based RBDO process may produce infeasible
or inaccurate designs. It should also be noted that no for-
mal proof of convergence exists for either a single-loop or a
decoupled algorithm (Royset et al. 2001).

More recently, Rahman and Wei (2008) proposed a uni-
variate decomposition method for solving a general RBDO
problem. Their method is rooted in a univariate truncation of
the referential dimensional decomposition (RDD) (Rahman
2011, 2014) of a high-dimensional performance function.
The resulting approximation, generated using the MPP as
the reference point in the rotated standard Gaussian space
of input variables, leads to accurate reliability and design
sensitivity analysis. The computational effort for estimating
failure probabilities and their design sensitivities required
by RBDO has been markedly reduced owing to perform-
ing multiple yet one-dimensional integrations. A few other

researchers adopted the same decomposition method under
the synonym, the dimension-reduction method, and reported
computationally efficient RBDO solutions (Lee et al. 2008a,
b; Youn Wang 2008; Lee et al. 2012). However, simi-
lar to the FORM-based methods, the decomposition or
dimension-reduction method also requires finding the MPP,
which can be unwieldy for noisy functions or even expen-
sive for high-dimensional problems. Furthermore, a recent
error analysis reveals the sub-optimality of RDD approxi-
mations, meaning that the RDD approximation, regardless
of how the reference point is chosen, cannot be better
than the analysis of variance (ANOVA) approximation for
identical degrees of interaction (Rahman 2014; Yadav and
Rahman 2013, 2014a). Therefore, approximations derived
from the ANOVA dimensional decomposition (Efron and
Stein 1981) or its polynomial variant, the polynomial
dimensional decomposition (PDD) (Rahman 2008, 2009a),
are expected to provide more accurate RBDO solutions
at the same cost of existing decomposition-based meth-
ods. Although PDD-based reliability analysis is established
(Rahman and Ren 2014), subsequent developments of
PDD-based RBDO algorithms have yet to appear. More
importantly, both the FORM- and decomposition-based
methods discussed mandate new reliability and design sen-
sitivity analysis at every design iteration. Consequently,
a direct and straightforward integration of a reliability
method — existing or new — with design optimiza-
tion is expensive, depending on the cost of evaluating
the objective and constraint functions and the requisite
number of design iterations. The authors argue that not
only are new computational methods needed for predicting
reliability or design sensitivities, but also new or signif-
icantly improved design archetypes, possibly requiring a
few stochastic simulations for solving the entire RBDO
problem.

This paper presents two new methods — the adaptive-
sparse PDD-saddlepoint approximation (SPA), or AS-
PDD-SPA, method and the adaptive-sparse PDD-Monte
Carlo simulation (MCS), or AS-PDD-MCS, method — for
reliability-based design optimization of complex engineer-
ing systems. Both methods are based on (1) an adaptive-
sparse PDD approximation of a high-dimensional stochastic
response for reliability analysis; (2) a novel integration of
the adaptive-sparse PDD approximation and score functions
for calculating the sensitivities of the failure probability
with respect to design variables; and (3) standard gradient-
based optimization algorithms, encompassing a multi-point,
single-step design process. Section 2 formally defines a gen-
eral RBDO problem, including a concomitant mathematical
statement. Section 3 starts with a brief exposition of PDD
and explains how it leads up to the AS-PDD approxima-
tion. Section 4 formally introduces the AS-PDD-SPA and
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AS-PDD-MCS methods for reliability analysis. Exploiting
score functions, Section 5 explains how the effort required
to calculate the failure probability by these two methods
also delivers its design sensitivities, sustaining no addi-
tional cost. The calculation of PDD expansion coefficients,
required for reliability and design sensitivity analysis, is
discussed in Section 6. Section 7 introduces a multi-point,
single-step iterative scheme for RBDO and explains how
the reliability analysis and design sensitivities from the
AS-PDD-SPA and AS-PDD-MCS methods are integrated
with a gradient-based optimization algorithm. Section 8
presents four numerical examples, including shape design
of a 79-dimensional engine bracket problem, to evaluate the
accuracy, convergence properties, and computational efforts
of the proposed RBDO methods. Finally, the conclusions
are drawn in Section 9.

2 Reliability-based design optimization

Let N, N0, R, and R
+
0 represent the sets of positive inte-

ger (natural), non-negative integer, real, and non-negative
real numbers, respectively. For k ∈ N, denote by R

k the k-
dimensional Euclidean space and by N

k
0 the k-dimensional

multi-index space. These standard notations will be used
throughout the paper.

Consider a measurable space (�d,Fd), where �d is a
sample space and Fd is a σ -field on �d. Defined over
(�d,Fd), let {Pd : Fd → [0, 1]} be a family of prob-
ability measures, where for M ∈ N and N ∈ N,
d = (d1, · · · , dM)T ∈ D is an R

M -valued design vec-
tor with non-empty closed set D ⊆ R

M and let X :=
(X1, · · · , XN)T : (�d,Fd) → (RN,BN) be an R

N -valued
input random vector with BN representing the Borel σ -
field on RN , describing the statistical uncertainties in loads,
material properties, and geometry of a complex mechani-
cal system. The probability law of X is completely defined
by a family of the joint probability density functions (PDF)
{fX(x; d), x ∈ R

N, d ∈ D} that are associated with prob-
ability measures {Pd, d ∈ D}, so that the probability triple
(�d,Fd, Pd) of X depends on d. A design variable dk can
be any distribution parameter or a statistic — for instance,
the mean or standard deviation — of Xi .

Let yl(X), l = 1, 2, · · · , K , be a collection of K + 1
real-valued, square-integrable, measurable transformations
on (�d,Fd), describing performance functions of a com-
plex system. It is assumed that yl : (RN,BN) → (R,B) is
not an explicit function of d, although yl implicitly depends
on d via the probability law of X. This is not a major
limitation, as most RBDO problems involve means and/or
standard deviations of random variables as design variables.
Nonetheless, the mathematical formulation for RBDO in

most engineering applications involving an objective func-
tion c0 : R

M → R and probabilistic constraint functions
cl : R

M → R, where l = 1, · · · , K and 1 ≤ K < ∞,
requires one to

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pd
[
X ∈ �F,l(d)

]− pl ≤ 0,
l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · , M,

(1)

where �F,l(d) is the lth failure domain, 0 ≤ pl ≤ 1 is the
lth target failure probability, and dk,L and dk,U are the lower
and upper bounds of the kth design variable dk . The objec-
tive function c0 is commonly prescribed as a deterministic
function of d, describing relevant system geometry, such as
area, volume, and mass. In contrast, the constraint functions
cl , l = 1, 2, · · · , K , are generally more complicated than
the objective function. Depending on the failure domain
�F,l , a component or a system failure probability can be
envisioned. For component reliability analysis, the failure
domain is often adequately described by a single perfor-
mance function yl(X), for instance,�F,l := {x : yl(x) < 0},
whereas multiple, interdependent performance functions
yl,i(x), i = 1, 2, · · · , are required for system reliability
analysis, leading, for example, to �F,l := {x : ∪iyl,i (x)
< 0} and �F,l := {x : ∩iyl,i (x) < 0

}
for series and paral-

lel systems, respectively. In any case, the evaluation of the
failure probability in (1) is fundamentally equivalent to cal-
culating a high-dimensional integral over a complex failure
domain.

The evaluation of probabilistic constraints cl(d), l =
1, 2, · · · , K , requires calculating component or system
probabilities of failure defined by respective performance
functions. Coupling with gradient-based optimization algo-
rithms mandates that the gradients of cl(d) also be formu-
lated, thus requiring design sensitivity analysis of failure
probability. The focus of this work is to solve a general high-
dimensional RBDO problem described by (1) for arbitrary
functions yl(X), l = 1, 2, · · · , K , and arbitrary probability
distributions of X.

3 Polynomial dimensional decomposition

Let y(X) := y(X1, · · · , XN ) represent any one of the ran-
dom functions yl , l = 1, · · · , K , introduced in Section 2,
and let L2(�d,Fd, Pd) represent a Hilbert space of square-
integrable functions y with respect to the probability mea-
sure fX(x; d)dx supported on R

N . Assuming independent
coordinates, the joint probability density function of X is
expressed by the product, fX(x; d) = ∏i=N

i=1 fXi
(xi; d), of

marginal probability density functions fXi
: R → R

+
0
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of Xi , i = 1, · · · , N , defined on its probability triple
(�i,d,Fi,d, Pi,d) with a bounded or an unbounded sup-
port on R. Then, for a given subset u ⊆ {1, · · · , N},
fXu(xu; d) := ∏|u|

p=1fip (xip ; d) defines the marginal den-

sity function of the subvector Xu = (Xi1 , · · · , Xi|u|)
T

of X.
Let {ψij (Xi; d); j = 0, 1, · · · } be a set of univari-

ate orthonormal polynomial basis functions in the Hilbert
space L2(�i,d,Fi,d, Pi,d) that is consistent with the prob-
ability measure Pi,d of Xi for a given design d, where
i = 1, · · · , N . For a given ∅ 
= u = {i1, · · · , i|u|} ⊆
{1, · · · , N}, 1 ≤ |u| ≤ N , 1 ≤ i1 < · · · < i|u| ≤
N , denote by (×p=|u|

p=1 �ip,d, ×p=|u|
p=1 Fip,d, ×p=|u|

p=1 Pip,d) the
product probability triple of the subvector Xu. Since the
probability density function of Xu is separable (indepen-
dent), the product polynomial ψuj|u|(Xu; d) := ∏|u|

p=1

ψipjp (Xip ; d), where j|u| = (j1, · · · , j|u|) ∈ N
|u|
0 is a |u|-

dimensional multi-index, constitutes an orthonormal basis
in L2(×p=|u|

p=1 �ip,d, ×p=|u|
p=1 Fip,d, ×p=|u|

p=1 Pip,d).
The PDD of a square-integrable function y represents a

hierarchical expansion (Rahman 2008, 2009a)

y(X) = y∅(d) +
∑

∅
=u⊆{1,··· ,N}

∑

j|u|∈N|u|
0

j1,··· ,j|u| 
=0

Cuj|u|(d)

× ψuj|u|(Xu; d), (2)

in terms of a set of random multivariate orthonormal poly-
nomials of input variables with increasing dimensions,
where

y∅(d) =
∫

RN

y(x)fX(x; d)dx (3)

and

Cuj|u|(d) : =
∫

RN

y(x)ψuj|u|(xu; d)fX(x; d)dx,

∅ 
= u ⊆ {1, · · · , N}, j|u| ∈ N
|u|
0 , (4)

are various expansion coefficients. The inner sum of (2)
precludes j1, · · · , j|u| 
= 0, that is, the individual degree
of each variable Xi in ψuj|u| , i ∈ u, can not be zero
since ψuj|u|(Xu; d) is a zero-mean strictly |u|-variate func-
tion. Derived from the ANOVA dimensional decomposition
(Efron and Stein 1981), (2) provides an exact representation
because it includes all main and interactive effects of input
variables. For instance, |u| = 0 corresponds to the con-
stant component function y∅, representing the mean effect
of y; |u| = 1 leads to the univariate component functions,
describing the main effects of input variables, and |u| = S,
1 < S ≤ N , results in the S-variate component functions,
facilitating the interaction among at most S input variables
Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤ N . Further details of
PDD are available elsewhere (Rahman 2008, 2009a).

Equation (2) contains an infinite number of coefficients,
emanating from infinite numbers of orthonormal polynomi-
als. In practice, the number of coefficients must be finite,
say, by retaining finite-order polynomials and reduced-
degree interaction among input variables. Doing so results
in a truncated PDD and concomitant approximation, but
there is more than one way to perform the truncation,
described as follows.

3.1 Truncated PDD approximation

The PDD in (2) is grounded on a fundamental conjec-
ture known to be true in many real-world applications:
given a high-dimensional function y, its |u|-variate com-
ponent functions decay rapidly with respect to |u|, leading
to accurate lower-variate approximations of y. Furthermore,
the largest order of polynomials in each variable can be
restricted to a finite integer. Indeed, given the integers 0 ≤
S < N and 1 ≤ m < ∞ for all 1 ≤ |u| ≤ S and the
∞-norm ||j|u|||∞ := max

(
j1, · · · , j|u|

)
, the truncated PDD

(Rahman 2008, 2009a)

ỹS,m(X) := y∅(d) +
∑

∅
=u⊆{1,··· ,N}
1≤|u|≤S

∑

j|u|∈N|u|
0 ,‖j|u|‖∞≤m

j1,··· ,j|u| 
=0

Cuj|u|(d)ψuj|u|(Xu; d) (5)

leads to the S-variate,mth-order PDD approximation, which
for S > 0 includes interactive effects of at most S input
variables Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤ N , on y. It
is elementary to show that when S → N and/or m → ∞,
ỹS,m converges to y in the mean-square sense, generating a
hierarchical and convergent sequence of approximations of
y. The truncation parameters S and m depend on the dimen-
sional structure and nonlinearity of a stochastic response.
The higher the values of S and m, the higher the accuracy,
but also the computational cost that is endowed with an Sth-
order polynomial computational complexity (Rahman 2008,
2009a). The S-variate, mth-order PDD approximation will
be referred to as simply truncated PDD approximation in
this paper.

3.2 Adaptive-sparse PDD approximation

In practice, the dimensional hierarchy or nonlinearity, in
general, is not known apriori. Therefore, indiscriminately
assigning the truncation parameters S and m is not desir-
able, nor is it possible to do so when a stochastic solution
is obtained via complex numerical algorithms. In which
case, one should perform these truncations adaptively by
progressively drawing in higher-variate or higher-order con-
tributions as appropriate. Furthermore, given 1 ≤ S < N ,
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all S-variate component functions of PDD may not con-
tribute equally or even appreciably to be considered in the
resulting approximation. Therefore, a sparse approximation,
expelling component functions with negligible contribu-
tions, is possible. Indeed, addressing these issues, Yadav
and Rahman (2014b) developed two AS-PDD approxima-
tions, but they have yet to be exploited for solving RBDO
problems.

Based on the authors’ past experience, an S-variate PDD
approximation, where S � N , is adequate, when solving
real-world engineering problems, with the computational
cost varying polynomially (S-order) with respect to the
number of variables (Rahman 2008, 2009a). As an exam-
ple, consider the selection of S = 2 for solving a stochastic
problem in 100 dimensions by a bivariate PDD approxima-
tion, comprising 100 × 99/2 = 4950 bivariate component
functions. If all such component functions are included,
then the computational effort for even a full bivariate PDD
approximation may exceed the computational budget allo-
cated to solving this problem. But many of these component
functions contribute little to the probabilistic characteris-
tics sought and can be safely ignored. Similar conditions
may prevail for higher-variate component functions. Hence-
forth, define an S-variate, partially AS-PDD approximation
(Yadav and Rahman 2014b)

ȳS(X) : = y∅(d) +
∑

∅
=u⊆{1,··· ,N}
1≤|u|≤S

∞∑

mu=1

∑

‖j|u|‖∞=mu, j1,··· ,j|u| 
=0

G̃u,mu>ε1,�G̃u,mu>ε2

Cuj|u|(d)ψuj|u|(Xu; d) (6)

of y(X), where

G̃u,mu : = 1

σ 2(d)

∑

j|u|∈N|u|
0 ,‖j|u|‖∞≤mu

j1,··· ,j|u| 
=0

C2
uj|u|(d),

mu ∈ N, 0 < σ 2(d) < ∞, (7)

defines the approximate muth-order approximation of the
global sensitivity index of y(X) for a subvector Xu, ∅ 
=
u ⊆ {1, · · · , N}, of input variables X and

�G̃u,mu := G̃u,mu − G̃u,mu−1

G̃u,mu−1
(8)

defines the relative change in the approximate global sen-
sitivity index when the largest polynomial order increases
from mu − 1 to mu, provided that 2 ≤ mu < ∞ and
G̃u,mu−1 
= 0. Here,

σ 2(d) =
∑

∅
=u⊆{1,··· ,N}

∑

j|u|∈N|u|
0

j1,··· ,j|u| 
=0

C2
uj|u|(d) (9)

is the variance of y(X). Then the sensitivity indices G̃u,mu

and�G̃u,mu provide an effective means to truncate the PDD
in (2) both adaptively and sparsely. Equation (6) is attained
by subsuming at most S-variate component functions, but
fulfilling two inclusion criteria: (1) G̃u,mu > ε1 for 1 ≤
|u| ≤ S ≤ N , and (2) �G̃u,mu > ε2 for 1 ≤ |u| ≤ S ≤ N ,
where ε1 ≥ 0 and ε2 ≥ 0 are two non-negativetolerances.
The resulting approximation is partially adaptive because
the truncations are restricted to at most S-variate com-
ponent functions of y. When S = N , (6) becomes the
fully AS-PDD approximation (Yadav and Rahman 2014b).
Figure 1 presents a computational flowchart to accomplish
the numerical implementation of both variants of the AS-
PDD approximation. The algorithmic details of the iterative
process are available elsewhere (Yadav and Rahman 2014b)
and are not included here for brevity.

The S-variate, partially AS-PDD approximation behaves
differently from the S-variate, mth-order PDD approxima-
tion. While the latter approximation includes a sum con-
taining at most S-variate component functions, the former
approximation may or may not include all such component
functions, depending on the tolerances ε1 > 0 and ε2 > 0.
It is elementary to show that ȳS approaches ỹS,m in the
mean-square sense as ε1 → 0, ε2 → 0, and m → ∞.
The S-variate, partially adaptive-sparse PDD approximation
will be referred to as simply AS-PDD approximation in this
paper.

It is important to note that the existing adaptive-sparse
approximations, such as the one reported by Hu and Youn
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and Rahman 2014b)
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(2011), are based on polynomial chaos expansion (PCE).
In a previous work (Rahman and Yadav 2011), the authors
found the PDD method to be more accurate or computation-
ally efficient than the PCEmethod. Therefore, for stochastic
design optimization, an adaptive method rooted in PDD is
preferred over that derived from PCE.

4 Reliability analysis

A fundamental problem in reliability analysis, required
for evaluating the probabilistic constraints in (1), entails
calculation of the failure probability

PF (d) := Pd [X ∈ �F ] =
∫

RN

I�F
(x)fX(x; d)dx

=: Ed
[
I�F

(X)
]
, (10)

where �F is the failure domain and I�F
(x) is the associ-

ated indicator function, which is equal to one when x ∈ �F

and zero otherwise. Depending on the failure domain, as
explained in Section 2, �F := {x : y(x) < 0} for com-
ponent reliability analysis and �F := {x : ∪iyi(x) <

0} and �F := {x : ∩iyi(x) < 0} for series- and
parallel-type system reliability analyses, respectively. In this
section, two methods are presented for estimating the failure
probability. The AS-PDD-SPA method, which blends the
AS-PDD approximation with SPA, is described first. Then
the AS-PDD-MCS method, which exploits the AS-PDD
approximation for MCS, is elucidated.

4.1 The AS-PDD-SPA method

Let Fy(ξ) := Pd[y ≤ ξ ] be the cumulative distribution
function (CDF) of y(X). Assume that the PDF fy(ξ) :=
dFy(ξ)/dξ exists and suppose that the cumulant generating
function (CGF)

Ky(t) := ln

{∫ +∞

−∞
exp(tξ)fy(ξ)dξ

}
(11)

of y converges for t ∈ R in some non-vanishing interval
containing the origin. Using inverse Fourier transformation,
exponential power series expansion, and Hermite poly-
nomial approximation, Daniels (1954) developed an SPA
formula to approximately evaluate fy(ξ). However, the suc-
cess of such a formula is predicated on how accurately the
CGF and its derivatives, if they exist, are calculated. In
fact, determining Ky(t) is immensely difficult because it is
equivalent to knowing all higher-order moments of y. To
mitigate this problem, consider the Taylor series expansion
of

Ky(t) =
∑

r∈N

κ(r)t r

r! (12)

at t = 0, where κ(r) := drKy(0)/dtr , r ∈ N, is known as
the rth-order cumulant of y(X). If some of these cumulants
are effectively estimated, then a truncated Taylor series pro-
vides a useful means to approximate Ky(t). For instance,
assume that, given a positive integer Q < ∞, the approx-
imate raw moments m̄

(r)
S (d) := ∫

RN ȳr
S(x)fX(x; d)dx =:

Ed
[
ȳr
S(X)
]
of order 1 ≤ r ≤ Q have been calculated with

sufficient accuracy using an S-variate, AS-PDD approxi-
mation ȳS(X) of y(X), involving integrations of elementary
polynomial functions and requiring no expensive evaluation
of the original function y(X). Nonetheless, because ȳS(X)

is a superposition of at most S-variate component func-
tions of independent variables, the largest dimension of the
integrals is min(rS, N). Therefore, many high-dimensional
integrations are involved if min(rS, N) is large, even though
the ȳS(X) is known analytically. An alternative approach,
adopted in the paper, is dimension-reduction integration,
approximating the N-dimensional integral by

m̄
(r)
S (d) ∼=

T∑

i=0

(−1)i
(

N − T + i − 1
i

)

∑

v⊆{1,··· ,N}
|v|=T −i

∑

k|v|∈P (nv)

w(k|v|)ȳr
S(x

(k|v|)
v , c−v), (13)

and hence involving at most T -dimensional lower-variate
Gauss quadratures, where T ≤ N is a positive integer. When
T � N , the computational cost of statistical moment anal-
ysis is markedly reduced. Then the corresponding approx-
imate cumulants are easily obtained from the well-known
cumulant-moment relationship,

κ̄
(r)
S (d)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m̄
(1)
S (d) : r = 1,

m̄
(r)
S (d) −

r−1∑

p=1

(
r − 1
p − 1

)
×

κ̄
(p)
S (d)m̄

(r−p)
S (d)

: 2 ≤ r ≤ Q,

(14)

where the functional argument d serves as a reminder that
the moments and cumulants all depend on the design vector
d. Setting κ(r) = κ̄

(r)
S for r = 1, · · · , Q, and zero otherwise

in (12), the result is an S-variate, AS-PDD approximation

K̄y,Q,S(t; d) =
Q∑

r=1

κ̄
(r)
S (d)tr

r! (15)

of the Qth-order Taylor series expansion of Ky(t). It is ele-
mentary to show that K̄y,Q,S(t; d) → Ky(t) when ε1 → 0,
ε2 → 0, S → N , and Q → ∞.

Using the CGF approximation in (15), Daniels’ SPA
leads to the explicit formula (Daniels 1954),

f̄y,APS(ξ ; d) =
[
2πK̄ ′′

y,Q,S(ts; d)
]− 1

2 ×
exp
[
K̄y,Q,S(ts; d) − tsξ

]
, (16)
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for the approximate PDF of y, where the subscript “APS”
stands for AS-PDD-SPA and ts is the saddlepoint that is
obtained from solving

K̄ ′
y,Q,S(ts; d) = ξ (17)

with K̄ ′
y,Q,S(t; d) := dK̄y,Q,S(t; d)/dt and

K̄ ′′
y,Q,S(t; d) := d2K̄y,Q,S(t; d)/dt2 defining the first- and

second-order derivatives, respectively, of the approximate
CGF of y with respect to t . Furthermore, based on a related
work of Lugannani and Rice (1980), the approximate CDF
of y becomes

F̄y,APS(ξ ; d) = 
(w) + φ(w)

(
1

w
− 1

v

)
,

w = sgn(ts)
{
2
[
tsξ − K̄y,Q,S(ts; d)

]} 1
2 ,

v = ts

[
K̄ ′′

y,Q,S(ts; d)
] 1
2
, (18)

where 
(·) and φ(·) are the CDF and PDF, respectively, of
the standard Gaussian variable and sgn(ts) = +1, −1, or 0,
depending on whether ts is positive, negative, or zero.
According to (18), the CDF of y at a point ξ is obtained
using solely the corresponding saddlepoint ts , that is, with-
out the need to integrate (16) from −∞ to ξ .

Finally, using Lugannani and Rice’s formula, the AS-
PDD-SPA estimate P̄F,APS(d) of the component failure
probability PF (d) := Pd[y(X) < 0] is obtained as
P̄F,APS(d) = F̄y,APS(0; d), (19)

the AS-PDD-SPA generated CDF of y at ξ = 0. It is
important to recognize that no similar SPA-based formulae
are available for the joint PDF or joint CDF of dependent
stochastic responses. Therefore, the AS-PDD-SPA method
in the current form cannot be applied to general system
reliability analysis.

The AS-PDD-SPA method contains several truncation
parameters that should be carefully selected. For instance,
if Q is too small, then the truncated CGF from (15) may
spoil the method, regardless of how large is the S chosen
in the AS-PDD approximation. On the other hand, if Q

is overly large, then many higher-order moments involved
may not be accurately calculated by the PDD approxima-
tion. More significantly, a finite-order truncation of CGF
may cause loss of convexity of the actual CGF, meaning
that the one-to-one relationship between ξ and ts in (17) is
not ensured for every threshold ξ . Furthermore, the impor-
tant property K̄ ′′

y,Q,S(ts; d) > 0 may not be maintained.
To resolve this quandary, Yuen et al. (2007) presented for
Q = 4 several distinct cases of the cumulants, describ-
ing the interval (tl, tu), where −∞ ≤ tl ≤ 0 and 0 ≤
tu ≤ ∞, such that tl ≤ ts ≤ tu and K̄ ′′

y,Q,S(ts; d) > 0,
ruling out any complex values of the square root in (16)
or (18). If ξ falls into these specified thresholds, then the

saddlepoint ts is uniquely determined from (17), leading
to the CDF or reliability in (18) or (19). Otherwise, the
AS-PDD-SPA method will fail to provide a solution. Fur-
ther details of these thresholds can be found elsewhere
(Rahman and Ren 2014).

4.2 The AS-PDD-MCS method

Depending on component or system reliability analysis, let
�̄F,S := {x : ȳS(x) < 0} or �̄F,S := {x : ∪i ȳi,S(x) < 0} or
�̄F,S := {x : ∩i ȳi,S(x) < 0} be an approximate failure set
as a result of S-variate, AS-PDD approximations ȳS(X) of
y(X) or ȳi,S(X) of yi(X). Then the AS-PDD-MCS estimate
of the failure probability PF (d) is

P̄F,APM(d) = Ed

[
I�̄F,S

(X)
]

= lim
L→∞

1

L

L∑

l=1

I�̄F,S
(x(l)), (20)

where the subscript “APM” stands for AS-PDD-MCS, L is
the sample size, x(l) is the lth realization of X, and I�̄F,S

(x)
is another indicator function, which is equal to one when
x ∈ �̄F,S and zero otherwise.

Note that the simulation of the PDD approximation in
(20) should not be confused with crude MCS commonly
used for producing benchmark results. The crude MCS,
which requires numerical calculations of y(x(l)) or yi(x(l))

for input samples x(l), l = 1, · · · , L, can be expensive
or even prohibitive, particularly when the sample size L

needs to be very large for estimating small failure prob-
abilities. In contrast, the MCS embedded in the AS-PDD
approximation requires evaluations of simple polynomial
functions that describe ȳS(x(l)) or ȳi,S(x(l)). Therefore, an
arbitrarily large sample size can be accommodated in the
AS-PDD-MCS method. In which case, the AS-PDD-MCS
method also furnishes the approximate CDF F̄y,PM(ξ ; d)

:= Pd[ȳS(X) ≤ ξ ] of y(X) or even joint CDF of dependent
stochastic responses, if desired.

Although the AS-PDD-SPA and AS-PDD-MCS methods
are both rooted in the same PDD approximation, the former
requires additional layers of approximations to calculate the
CGF and saddlepoint. Therefore, the AS-PDD-SPAmethod,
when it works, is expected to be less accurate than the AS-
PDD-MCS method at comparable computational efforts.
However, the AS-PDD-SPA method facilitates an analytical
means to estimate the probability distribution and reliability
— a convenient process not supported by the AS-PDD-MCS
method. The respective properties of both methods extend
to sensitivity analysis, presented in the following section.
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5 Design sensitivity analysis

When solving RBDO problems employing gradient-based
optimization algorithms, at least first-order derivatives of
the failure probability with respect to each design variable
are required. Therefore, the AS-PDD-SPA and AS-PDD-
MCS methods for reliability analysis in Section 4 are
expanded for sensitivity analysis of the failure probability in
the following subsections.

5.1 Score functions

Let

h(d) = Ed[g(X)] :=
∫

RN

g(x)fX(x; d)dx (21)

be a generic probabilistic response, where h(d) and g(x) are
either PF (d) and I�F

(x) for reliability analysis, or m(r)(d)

and yr(x) for statistical moment analysis, where m(r)(d) =
Ed
[
yr
S(X)
]
, r = 1, · · · , Q, is the rth-order raw moment of

y(X). Suppose that the first-order derivative of h(d) with
respect to a design variable dk , 1 ≤ k ≤ M , is sought.
Taking the partial derivative of h(d) with respect to dk and
then applying the Lebesgue dominated convergence the-
orem (Browder 1996), which permits the differential and
integral operators to be interchanged, yields the sensitivity

∂h(d)

∂dk

:= ∂Ed [g(X)]

∂dk

= ∂

∂dk

∫

RN

g(x)fX(x; d)dx

=
∫

RN

g(x)
∂ ln fX(x; d)

∂dk

fX(x; d)dx

=: Ed

[
g(X)s

(1)
dk

(X;d)
]
,

(22)

provided that fX(x; d) > 0 and the derivative ∂ ln fX(x;
d)
/
∂dk exists. In the last line of (22), s

(1)
dk

(X;d) :=
∂ ln fX(X;d)

/
∂dk is known as the first-order score func-

tion for the design variable dk (Rubinstein and Shapiro
1993; Rahman 2009b). According to (21) and (22), the
generic probabilistic response and its sensitivities have both
been formulated as expectations of stochastic quantities
with respect to the same probability measure, facilitating
their concurrent evaluations in a single stochastic simulation
or analysis.

Remark 1 The evaluation of score functions, s
(1)
dk

(X;d),
k = 1, · · · , M , requires differentiating only the PDF of X.
Therefore, the resulting score functions can be determined
easily and, in many cases, analytically — for instance,
when X follows classical probability distributions (Rahman
2009b). If the density function of X is arbitrarily prescribed,

the score functions can be calculated numerically, yet inex-
pensively, since no evaluation of the performance function
is involved.

When X comprises independent variables, as assumed
here, ln fX(X;d) = ∑ i=N

i=1 ln fXi
(xi; d) is a sum of N

univariate log-density (marginal) functions of random vari-
ables. Hence, in general, the score function for the kth
design variable, expressed by

s
(1)
dk

(X;d) =
N∑

i=1

∂ ln fXi
(Xi; d)

∂dk

=
N∑

i=1

ski(Xi; d), (23)

is also a sum of univariate functions ski(Xi; d) := ∂ ln fXi

(Xi; d)
/
∂dk , i = 1, · · · , N , which are the derivatives

of log-density (marginal) functions. If dk is a distribu-
tion parameter of a single random variable Xik , then the

score function reduces to s
(1)
dk

(X;d) = ∂ ln fXik
(Xik ; d)

/
∂dk =: skik (Xik ; d), the derivative of the log-density

(marginal) function of Xik , which remains a univariate func-
tion. Nonetheless, combining (22) and (23), the sensitivity
of the generic probabilistic response h(d) is obtained as

∂h(d)

∂dk

=
N∑

i=1

Ed [g(X)ski(Xi; d)] , (24)

the sum of expectations of products comprising stochastic
response and log-density derivative functions with respect
to the probability measure Pd, d ∈ D.

5.2 The AS-PDD-SPA method

Suppose that the first-order derivative ∂F̄y,APS(ξ ; d)/∂dk

of the CDF F̄y,APS(ξ ; d) of ȳS(X), obtained by the AS-
PDD-SPA method, with respect to a design variable dk , is
desired. Applying the chain rule on the derivative of (18),

∂F̄y,APS(ξ ; d)

∂dk

=
Q∑

r=1

(
∂F̄y,APS

∂w

∂w

∂κ̄
(r)
S

+ ∂F̄y,APS

∂v

∂v

∂κ̄
(r)
S

)

× ∂κ̄
(r)
S

∂dk

(25)

is obtained via the partial derivatives

∂F̄y,APS

∂w
= φ(w)

(
w

v
− 1

w2

)
,

∂F̄y,APS

∂v
= φ(w)

v2
, (26)

∂κ̄
(r)
S

∂dk

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂m̄
(1)
S (d)

∂dk

: r = 1,

∂m̄
(r)
S (d)

∂dk
−

r−1∑

p=1

(
r − 1
p − 1

)
×

(
∂κ̄

(r)
S

∂dk
m̄

(r−p)
S (d) + κ̄

(p)
S

∂m̄
(r−p)
S

∂dk

): 2 ≤ r ≤ Q,

(27)
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where the derivatives of moments, that is, ∂m̄
(r)
S /∂dk , r =

1, · · · , Q, required to calculate the derivatives of cumulants,
are also obtained by the dimension-reduction numerical
integration. In which case,

∂m̄
(r)
S (d)

∂dk

= Ed

[
ȳr
S(X)s

(1)
dk

(X;d)
]

=
∫

RN

ȳr
S(x)s(1)

dk
(x; d)fX(x; d)dx

∼=
T∑

i=0

(−1)i
(

N − T + i − 1
i

) ∑

v⊆{1,··· ,N}
|v|=T −i

∑

k|v|∈P (nv)

w(k|v|)ȳr
S(x

(k|v|)
v , c−v)s

(1)
dk

(x
(k|v|)
v , c−v; d),

(28)

requiring also at most T -dimensional lower-variate Gauss
quadratures. The remaining two partial derivatives in (25)
are expressed by

∂w

∂κ̄
(r)
S

= ∂w

∂ts

∂ts

∂κ̄
(r)
S

+ ∂w

∂K̄y,Q,S

[
∂K̄y,Q,S

∂κ̄
(r)
S

+ ∂K̄y,Q,S

∂ts

∂ts

∂κ̄
(r)
S

]

,

(29)

and

∂v

∂κ̄
(r)
S

= ∂v

∂ts

∂ts

∂κ̄
(r)
S

+ ∂v

∂K̄ ′′
y,Q,S

[
∂K̄ ′′

y,Q,S

∂κ̄
(r)
S

+ ∂K̄ ′′
y,Q,S

∂ts

∂ts

∂κ̄
(r)
S

]

,

(30)

where

∂w

∂ts
= ξ

w
,

∂w

∂K̄y,Q,S

= − 1

w
,

∂K̄y,Q,S

∂ts
= ξ,

∂v

∂ts
=
[
K̄ ′′

y,Q,S

] 1
2
, (31)

∂v

∂K̄ ′′
y,Q,S

= ts

2
√

K̄ ′′
y,Q,S

,
∂ts

∂κ̄
(r)
S

= −

∂K̄ ′
y,Q,S

∂κ̄
(r)
S

∂K̄ ′
y,Q,S

∂ts

. (32)

The expressions of the partial derivatives ∂K̄y,Q,S/∂κ̄
(r)
S ,

∂K̄ ′
y,Q,S/∂κ̄

(r)
S , and ∂K̄ ′′

y,Q,S/∂κ̄
(r)
S , not explicitly presented

here, can be easily derived from (15) once the cumulants
κ̄

(r)
S , r = 1, · · · , Q, and the saddlepoint ts are obtained.
Henceforth, the first-order derivative of the failure prob-

ability estimate by the AS-PDD-SPA method is easily
determined from

∂P̄F,APS(d)

∂dk

= ∂F̄y,APS(0; d)

∂dk

, (33)

the sensitivity of the CDF evaluated at ξ = 0.

5.3 The AS-PDD-MCS method

Taking the partial derivative of the AS-PDD-MCS estimate
of the failure probability in (20) with respect to dk and then
following the same arguments in deriving (22) produces

∂P̄F,APM(d)

∂dk

:=
∂Ed

[
I�̄F,S

(X)
]

∂dk

= Ed

[
I�̄F,S

(X)s
(1)
dk

(X;d)
]

= lim
L→∞

1

L

L∑

l=1

[
I�̄F,S

(x(l))s
(1)
dk

(x(l); d)
]
,

(34)

where L is the sample size, x(l) is the lth realization of
X, and I�̄F,S

(x) is the AS-PDD-generated indicator func-
tion. Again, they are easily and inexpensively determined
by sampling analytical functions that describe ȳS and s

(1)
dk

.
A similar sampling procedure can be employed to calcu-
late the sensitivity of the AS-PDD-MCS-generated CDF
F̄y,APM(ξ ; d) := Pd[ȳS(X) ≤ ξ ]. It is important to note
that the effort required to calculate the failure probability or
CDF also delivers their sensitivities, incurring no additional
cost. Setting S = 1 or 2 in (20) and (34), the univariate or
bivariate AS-PDD approximation of the failure probability
and its sensitivities are determined.

Remark 2 The score function method has the nice prop-
erty that it requires differentiating only the underlying
PDF fX(x; d). The resulting score functions can be easily
and, in most cases, analytically determined. If the perfor-
mance function is not differentiable or discontinuous − for
example, the indicator function that comes from reliabil-
ity analysis − the proposed method still allows evaluation
of the sensitivity if the density function is differentiable.
In reality, the density function is often smoother than the
performance function, and therefore the proposed sensitiv-
ity methods will be able to calculate sensitivities for a wide
variety of complex mechanical systems.

Remark 3 The AS-PDD-SPA and AS-PDD-MCS meth-
ods, discussed in Sections 3 and 4, are predicated on the
S-variate, AS-PDD approximation ȳS(X) (6) and are, there-
fore, new. The authors had developed in a prequel similar
methods, called the PDD-SPA and PDD-MCS methods
(Rahman and Ren 2014), employing the truncated PDD
approximation ỹS,m(X) (5). The new methods will be con-
trasted with the existing ones in the Numerical Examples
section.
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6 Expansion coefficients by dimension-reduction
integration

The determination of AS-PDD expansion coefficients y∅(d)

and Cuj|u|(d) is vitally important for reliability analysis,
including its design sensitivities. As defined in (3) and
(4), the coefficients involve variousN-dimensional integrals
over RN . For large N , a multivariate numerical integration
employing an N-dimensional tensor product of a univari-
ate quadrature formula is computationally prohibitive and
is, therefore, ruled out. An attractive alternative approach
entails dimension-reduction integration, which was orig-
inally developed by Xu and Rahman (2004) for high-
dimensional numerical integration. For calculating y∅ and
Cuj|u| , this is accomplished by replacing the N-variate func-
tion y in (3) and (4) with an R-variate RDD approximation
at a chosen reference point, where R ≤ N . The result is a
reduced integration scheme, requiring evaluations of at most
R-dimensional integrals.

Let c = (c1, · · · , cN)T ∈ R
N , which is commonly

adopted as the mean of X, be a reference point, and
y(xv, c−v) represent an |v|-variate RDD component func-
tion of y(x), where v ⊆ {1, · · · , N} (Rahman 2011, 2014).
Given a positive integer S ≤ R ≤ N , when y(x) in (3) and
(4) is replaced with its R-variate RDD approximation, the
coefficients y∅(d) and Cuj|u|(d) are estimated from (Xu and
Rahman 2004)

y∅(d) ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

)
×

∑

v⊆{1,··· ,N}
|v|=R−i

∫

R|v|
y(xv, c−v)fXv (xv; d)dxv (35)

and

Cuj|u|(d) ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

) ∑

v⊆{1,··· ,N}
|v|=R−i,u⊆v

∫

R|v|
y(xv, c−v)ψuj|u|(xu; d)fXv (xv; d)dxv, (36)

respectively, requiring evaluation of at most R-dimensional
integrals. The reduced integration facilitates calculation of
the coefficients approaching their exact values as R → N

and is significantly more efficient than performing one N-
dimensional integration, particularly when R � N . Hence,
the computational effort is significantly lowered using the
dimension-reduction integration. For instance, when R =
1 or 2, (35) and (36) involve one-, or at most, two-
dimensional integrations, respectively. Nonetheless, numer-
ical integrations are still required for performing various
|v|-dimensional integrals over R|v|, where 0 ≤ |v| ≤ R.
When R > 1, the multivariate integrations involved can be

approximated using full-grid and sparse-grid quadratures,
including their combination, described as follows.

6.1 Full-grid integration

The full-grid dimension-reduction integration entails con-
structing a tensor product of the underlying univariate
quadrature rules. For a given v ⊆ {1, · · · , N}, 1 < |v| ≤ R,
let v = {i1, · · · i|v|}, where 1 ≤ i1 < · · · < i|v| ≤ N . Denote

by {x(1)
ip

, · · · , x
(nv)
ip

} ⊂ R a set of integration points of xip

and by {w(1)
ip

, · · · , w
(nv)
ip

} the associated weights generated
from a chosen univariate quadrature rule and a positive inte-
ger nv ∈ N. Denote by P (nv) = ×p=|v|

p=1 {x(1)
ip

, · · · , x
(nv)
ip

}
the rectangular grid consisting of all integration points
generated by the variables indexed by the elements of v.
Then the coefficients using dimension-reduction numerical
integration with a full grid are approximated by

y∅(d) ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

)

∑

v⊆{1,··· ,N}
|v|=R−i

∑

k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v), (37)

Cuj|u|(d) ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

)
×

∑

v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑

k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v) ×

ψuj|u|(x
(k|u|)
u ; d), (38)

where x
(k|v|)
v = {x(k1)

i1
, · · · , x

(k|v|)
i|v| } and w(k|v|) = ∏p=|v|

p=1

w
(kp)

ip
is the product of integration weights generated by

the variables indexed by the elements of v. For indepen-
dent coordinates of X, as assumed here, a univariate Gauss
quadrature rule is commonly used, where the integration
points and associated weights depend on the probability dis-
tribution of Xi . The quadrature rule is readily available, for
example, as the Gauss-Hermite or Gauss-Legendre quadra-
ture rule, when Xi follows Gaussian or uniform distribution
(Gautschi 2004). For an arbitrary probability distribution of
Xi , the Stieltjes procedure can be employed to generate the
measure-consistent Gauss quadrature formulae (Gautschi
2004). An nv-point Gauss quadrature rule exactly integrates
a polynomial of total degree at most 2nv − 1.

The calculation of y∅ and Cuj|u| from (37) and (38)
involves at most R-dimensional tensor products of an
nv-point univariate quadrature rule, requiring the follow-
ing deterministic responses or function evaluations: y(c),
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y(x
(j|v|)
v , c−v) for i = 0, · · · , R, v ⊆ {1, · · · , N}, |v| =

R − i, and j|v| ∈ P (nv). Accordingly, the total cost for
estimating the PDD expansion coefficients entails

LFG =
R∑

i=0

∑

v⊆{1,··· ,N}
|v|=R−i

n|v|
v (39)

function evaluations, encountering a computational com-
plexity that is Rth-order polynomial − for instance, linear
or quadratic when R = 1 or 2 − with respect to the number
of random variables or integration points. For R < N , the
technique alleviates the curse of dimensionality to an extent
determined by R. The dimension-reduction integration in
conjunction with the full-grid quadrature rule was used for
constructing truncated PDD approximations (Rahman 2008,
2009a).

6.2 Sparse-grid integration

Although the full-grid dimension-reduction integration has
been successfully applied to the calculation of the PDD
expansion coefficients in the past (Rahman 2008, 2009a;
Ren and Rahman 2013), it faces a major drawback when
the polynomial order mu for a PDD component function
yu needs to be modulated for adaptivity. As the value of
mu is incremented by one, a completely new set of integra-
tion points is generated by the univariate Gauss quadrature
rule, rendering all expensive function evaluations on prior
integration points as useless. Therefore, a nested Gauss
quadrature rule, such as the fully symmetric interpolatory
rule capable of exploiting dimension-reduction integration,
becomes desirable.

The fully symmetric interpolatory (FSI) rule, developed
by Genz and his associates (Genz 1986; Genz and Keister
1996), is a sparse-grid integration technique for performing
high-dimensional numerical integration. Applying this rule
to the |v|-dimensional integrations in (35) and (36), the PDD
expansion coefficients are approximated by

y∅ ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

) ∑

v⊆{1,··· ,N}
|v|=R−i

∑

p|v|∈P (ñv ,|v|)
wp|v|

×
∑

q|v|∈p|v|

∑

t|v|
y
(
ti1αqi1

, · · · , ti|v|αqi|v| , c−v

)
, (40)

Cuj|u| ∼=
R∑

i=0

(−1)i
(

N − R + i − 1
i

) ∑

v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑

p|v|∈P (ñv ,|v|)
wp|v|

∑

q|v|∈p|v|

∑

t|v|
y
(
ti1αqi1

, · · · , ti|v|αqi|v| , c−v

)

×ψuj|u|
(
ti1αqi1

, · · · , ti|u|αqi|u|

)
, (41)

where v = {i1, · · · i|v|}, t|v| = (ti1 , · · · , ti|v|), p|v| =
(pi1 , · · · , pi|v|), and

P (ñv,|v|) = {p|v| : ñv ≥ pi1 ≥ · · · ≥ pi|v| ≥ 0,
∥∥p|v|
∥∥ ≤ ñv} (42)

with
∥∥p|v|
∥∥ := ∑ |v|

r=1pir is the set of all distinct |v|-
partitions of the integers 0, 1, · · · , ñv , and p|v| is the set of
all permutations of p|v|. The innermost sum over t|v| is taken
over all of the sign combinations that occur when tir = ±1
for those values of ir with generators αqir


= 0 (Genz and
Keister 1996). The weight

wp|v| = 2−K
∑

‖k|v|‖�ñv−‖p|v|‖

|v|∏

r=1

akir +pir

kir +pir∏

j=0,j 
=pir

(
α2

pir
− α2

j

)
,

(43)

where K is the number of nonzero components in p|v| and
ai is a constant that depends on the probability measure of
Xi, for instance,

ai = 1√
2π

∫

R

exp

(
−ξ2

2

) i−1∏

j=0

(
ξ2 − α2

j

)
dξ (44)

for i > 0 and a0 = 1 when Xi follows the standard Gaus-
sian distribution (Genz and Keister 1996). An ñv-parameter
FSI rule exactly integrates a polynomial of degree at
most 2ñv − 1.

The number of function evaluations by the original FSI
rule (Genz 1986) increases rapidly as |v| and ñv increase. To
enhance the efficiency, Genz and Keister (1996) proposed
an extended FSI rule in which the function evaluations are
significantly reduced if the generator set is chosen such
that some of the weights wp|v| are zero. The pivotal step
in constructing such an FSI rule is to extend a (2β + 1)-
point Gauss-Hermite quadrature rule by adding 2γ points
or generators ±αβ+1, ±αβ+2, . . . , ±αβ+γ with the objec-
tive of maximizing the degree of polynomial exactness of
the extended rule, where β ∈ N and γ ∈ N. Genz and
Keister (1996) presented a special case of initiating the FSI
rule from the univariate Gauss-Hermite rule over the interval
(−∞, ∞). The additional generators in this case are deter-
mined as roots of the monic polynomial ζ 2γ + tγ−1ζ

2γ−1 +
· · ·+ t0, where the coefficients tγ−1, · · · , t0 are obtained by
invoking the condition

1√
2π

∫

R

exp

(
−ξ2

2

) β∏

j=0

ξ2b
(
ξ2 − α2

j

)
dξ = 0, (45)

where γ > β. A new set of generators is propagated based
on the prior rule and, therefore, as the polynomial degree of
exactness of the rule increases, all the previous points and
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the expensive function evaluations over those points are pre-
served. A remarkable feature of the extended FSI rule is that
the choice of generators is such that some of the weights
wp|v| = 0 in each integration step of the extension (Genz
and Keister 1996), thus eliminating the need for function
evaluations at the integration points corresponding to zero
weights, making the extended FSI rule significantly more
efficient than its earlier version. The dimension-reduction
integration in conjunction with the sparse-grid quadrature
rule was used for constructing AS-PDD approximations
of high-dimensional complex systems (Yadav and Rahman
2014b).

6.3 Combined sparse- and full-grids

The adaptive-sparse algorithm (Yadav and Rahman 2014b)
described by Fig. 1, in tandem with the sparse-grid quadra-
ture, should be employed to calculate the requisite AS-PDD
expansion coefficients and hence determine the largest poly-
nomial orders of PDD component functions retained. How-
ever, due to potential approximation errors, the expansion
coefficients may need to be recalculated for at least two
reasons.

The first source of error is low values of R set in the
dimension-reduction integration. According to the algo-
rithm, the largest polynomial orders maxu mu, ∅ 
= u ⊆
{1, · · · , N}, 1 ≤ |u| ≤ S, associated with all S-variate PDD
component functions, are determined using the expansion
coefficients estimated by the dimension-reduction integra-
tion with R = |u|. For instance, the largest polynomial
orders max{i} m{i}, i = 1, · · · , N, of univariate (S = 1)
PDD component functions are ascertained employing the
univariate expansion coefficients Cij , i = 1, · · · , N , j =
1, 2, · · · , estimated with R = 1 to keep the computational
effort at minimum. However, from the authors’ recent expe-
rience, the setting R = 1 is too low to warrant convergent
solutions of complex RBDO problems, especially when the
original function y contains significant interactive effects
among input random variables. For an illustration, consider
the function

y(X1, X2, X3) = X3
1 +X2+X2

3 + (1+X1)
2(1+X2)

2 (46)

of three independent standard Gaussian random variables
X1, X2, and X3 with zero means and unit variances. Select-
ing S = 2 and sufficiently small tolerance parameters, let
ȳ2(X1, X2, X3) denote a bivariate, AS-PDD approximation,
reproducing all terms of y(X1, X2, X3). By definition, (4)
yields the exact univariate, first-order coefficient C11 =
7. However, setting R = 1 for the dimension-reduction
integration in (36), the adaptive-sparse algorithm produces
an estimate of 5. The underestimation of C11 originates
from the failure to include the bivariate interactive term
(1 + X1)

2(1 + X2)
2 of (46). Indeed, when R = 2 is

employed, (36) reproduces the exact value of 7. There-
fore, the value of R must be raised to two to capture the
two-variable interaction in this case and, in general, to
S, which is the largest degree of interaction retained in
a concomitant S-variate AS-PDD approximation. In other
words, after the largest polynomial orders are determined
by the adaptive-sparse algorithm, the AS-PDD coefficients
need to be recalculated when S ≥ 2. The authors propose
doing so using full-grid dimension-reduction integration
with R = S.

The second source of error is low-order Gauss quadra-
ture. When calculating AS-PDD expansion coefficients
Cuj|u| by (36), a low-order Gauss quadrature, selected
merely according to the order of ψuj|u|(xu; d) without
accounting for maxu mu (reflecting the nonlinearity of
y(xv, c−v)), may result in inadequate or erroneous esti-
mates. For example, consider the bivariate, first-order
expansion coefficientC1211 for the function in (46). Accord-
ing to (4), the exact value of C1211 = 4. However, when
the 2 × 2 Gauss quadrature is used in the dimension-
reduction integration with R = 2, the adaptive-sparse
algorithm produces an estimate of 1. This is due to not
accounting for the third-order term X3

1 (max{1} m{1} = 3)
in (46), resulting in an under-integration by the order of
Gauss quadrature chosen. Indeed, when the 3 × 2 Gauss
quadrature is employed, the resulting estimate becomes 4,
which is the exact value of C1211. Therefore, the order of
Gauss quadrature for the ith dimension in the dimension-
reduction integration must be selected according to both
maxi∈u mu and the order of the corresponding polynomial
basis to accurately estimate all |u|-variate expansion coef-
ficients. In other words, after the largest polynomial orders
are determined by the adaptive-sparse algorithm, the AS-
PDD coefficients need to be recalculated. Again, the authors
propose doing so using full-grid dimension-reduction
integration with a Gauss quadrature rule commensurate
with maxi∈u mu.

6.4 Computational expense

For the AS-PDD approximation, the computational effort
is commonly determined by the total number of origi-
nal function evaluations required for calculating all neces-
sary expansion coefficients. In solving an RBDO problem,
which is presented in Section 7, the total computational
effort stems from two types of calculations: (1) initial
calculations involved in the adaptive-sparse algorithm to
automatically determine the truncation parameters of PDD;
and (2) final calculations of the AS-PDD expansion coeffi-
cients based on the knowledge of truncation parameters. The
computational cost required by the initial calculations, that
is, by the S-variate, adaptive-sparse algorithm, is discussed
by Yadav and Rahman (2014b), although an explicit formula
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for the number of original function evaluations remains elu-
sive. However, the computational cost can be bounded from
above by

LI ≤
S∑

k=0

(
N

k

)
(mmax + 1)k , (47)

the number of function evaluations in the truncated S-
variate, mmaxth-order PDD approximation, where

mmax = max
∅
=u⊆{1,··· ,N}, 1≤|u|≤S

G̃u,mu>ε1,�G̃u,mu>ε2

mu < ∞ (48)

is the largest order of polynomial expansions for all PDD
component functions yu(Xu), ∅ 
= u ⊆ {1, · · · , N}, 1 ≤
|u| ≤ S, such that G̃u,mu > ε1, �G̃u,mu > ε2. It is assumed
here that the number of integration points at each dimension
is mmax+1. Therefore, the computational complexity of the
S-variate AS-PDD approximation is at most an Sth-order
polynomial with respect to the number of input variables
or the largest order of polynomial. Therefore, S-variate AS-
PDD approximation alleviates the curse of dimensionality
to an extent determined by S, ε1, and ε2.

The number of original function evaluations required by
the final calculations, that is, by recalculations of the AS-
PDD expansion coefficients based on the known truncation
parameters, can be obtained from another bound

LII ≤ 1 +
∑

v⊆{1,··· ,N}
1≤|v|≤S

∏

i∈v
maxmv 
=0

max
u⊆{1,··· ,N},1≤|u|≤S,i∈u

G̃u,mu>ε1,�G̃u,mu>ε2,mu∈N

�mu + maxmv + 1

2
� (49)

when full-grid Gauss quadrature is employed. Here, the
symbol �t� refers to the ceiling function, which is the small-
est integer not less than t . Therefore, the recalculation of the
expansion coefficients results in a computational expense
in addition to that incurred by the adaptive-sparse algo-
rithm. The total computational effort, measured in terms
of the total number of function evaluations, is bounded by
LI +LII , and will be discussed in the Numerical Examples
section.

7 Proposed RBDO methods

The PDD approximations described in the preceding sec-
tions provide a means to evaluate the constraint functions,
including their design sensitivities, from a single stochas-
tic analysis. No such approximation is required for the
objective function, when it is a simple and explicit deter-
ministic function of design variables. However, for complex
mechanical design problems, for instance, Example 4 in the
Numerical Examples section, the objective function is usu-
ally determined implicitly by intrinsic calculations from a

computer-aided design code. In which case, the objective
function and its design sensitivities may also be simul-
taneously evaluated by constructing PDD approximations
of c0(d) in the space of design variables d. Additional
details of the PDD approximations of the objective func-
tion and its design sensitivities are not included here for
brevity.

An integration of reliability analysis, design sensitivity
analysis, and a suitable optimization algorithm should ren-
der a convergent solution of the RBDO problem in (1).
However, new reliability and sensitivity analyses, entail-
ing re-calculations of the PDD expansion coefficients, are
needed at every design iteration. Therefore, a straightfor-
ward integration is expensive, depending on the cost of
evaluating the objective and constraint functions and the
requisite number of design iterations. In this section, a
multi-point design process (Toropov et al. 1993; Ren and
Rahman 2013), where a series of single-step, AS-PDD
approximations are built on a local subregion of the design
space, are presented for solving the RBDO problem.

7.1 Multi-point approximation

Let

D = ×k=M
k=1

[
dk,L, dk,U

] ⊆ R
M (50)

be a rectangular domain, representing the design space
of the RBDO problem defined by (1). For a scalar vari-
able 0 < β

(q)
k ≤ 1 and an initial design vector d(q)

0 =
(d

(q)

1,0 , · · · , d
(q)

M,0)
T , the subset

D(q) = ×k=M
k=1

[
d

(q)

k,0 − β
(q)
k (dk,U − dk,L)/2,

d
(q)

k,0 + β
(q)
k (dk,U − dk,L)/2

]
⊆ D ⊆ R

M (51)

defines the qth subregion for q = 1, 2, · · · . Using the multi-
point approximation (Toropov et al. 1993; Ren and Rahman
2013), the original RBDO problem in (1) is exchanged
with a succession of simpler RBDO subproblems, expressed
by

min
d∈D(q)⊆D

c̄
(q)

0,S(d),

subject to c̄
(q)
l,S (d) := Pd

[
X ∈ �̄

(q)
F,l,S(d)

]
− pl ≤ 0

l = 1, · · · , K,

d
(q)

k,0 − β
(q)
k (dk,U − dk,L)/2 ≤ dk ≤ d

(q)

k,0 +
β

(q)
k (dk,U − dk,L)/2, k = 1, · · · , M, (52)

where c̄
(q)

0,S(d), �̄(q)
F,l,S(d) and c̄

(q)
l,S (d) , l = 1, 2, · · · , K , are

local S-variate, AS-PDD approximations of c0(d), �F,l(d)

and cl(d), respectively, at iteration q, where �̄
(q)
F,l,S(d) is

defined using local, S-variate, AS-PDD approximations of
ȳ

(q)
l,S (X) of yl(X), and d

(q)

k,0 −β
(q)
k (dk,U −dk,L)/2 and d

(q)

k,0 +
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β
(q)
k (dk,U − dk,L)/2, also known as the move limits, are

the lower and upper bounds, respectively, of the kth coor-
dinate of subregion D(q). In (52), the original objective and
constraint functions are replaced with those derived locally
from respective AS-PDD approximations. Since the PDD
approximations are mean-square convergent (Rahman 2008,
2009a), they also converge in probability and in distribution.
Therefore, given a subregion D(q), the solution of the asso-
ciated RBDO subproblem also converges when ε1 → 0,
ε2 → 0, and S → N .

7.2 Single-step procedure

The single-step procedure is motivated on solving each
RBDO subproblem in (52) from a single stochastic analysis
by sidestepping the need to recalculate the PDD expan-
sion coefficients at every design iteration. It subsumes two
important assumptions: (1) an S-variate, AS-PDD approx-
imation ȳS of y at the initial design is acceptable for all
possible designs in the subregion; and (2) the expansion
coefficients for one design, derived from those generated for
another design, are accurate.

Consider a change of the probability measure of X from
fX(x; d)dx to fX(x; d′)dx, where d and d′ are two arbi-
trary design vectors corresponding to old and new designs,
respectively. Let {ψij (Xi; d′); j = 0, 1, · · · } be a set
of new orthonormal polynomial basis functions consistent
with the marginal probability measure fXi

(xi; d′)dxi of
Xi , producing new product polynomials ψuj|u|(Xu; d′) =
∏|u|

p=1 ψipjp (Xip ; d′), ∅ 
= u ⊆ {1, · · · , N}. Assume that
the expansion coefficients, y∅(d) and Cuj|u|(d), for the old
design have been calculated already. Then, the expansion
coefficients for the new design are determined from

y∅(d′) =
∫

RN

[ ∑

∅
=u⊆{1,··· ,N}

∑

j|u|∈N|u|
0

j1,··· ,j|u| 
=0

Cuj|u|(d)

× ψuj|u|(xu; d) + y∅(d)

]
fX(x; d′)dx (53)

and

Cuj|u|(d
′) =
∫

RN

[ ∑

∅
=v⊆{1,··· ,N}

∑

j|v|∈N|v|
0

j1,··· ,j|v| 
=0

Cvj|v|(d)

× ψvj|v|(xv; d) + y∅(d)

]
ψuj|u|(xu; d′)fX(x; d′)dx, (54)

for all ∅ 
= u ⊆ {1, · · · , N} by recycling the old expansion
coefficients and using orthonormal polynomials associated
with both designs. The relationship between the old and
new coefficients, described by (53) and (54), is exact and
is obtained by replacing y in (3) and (4) with the right side

of (2). However, in practice, when the S-variate, AS-PDD
approximation (6) is used to replace y in (3) and (4), then
the new expansion coefficients,

y∅(d′) ∼=
∫

RN

[ ∑

∅
=u⊆{1,··· ,N}
1≤|u|≤S

∞∑

mu=1

∑

‖j|u|‖∞=mu, j1,··· ,j|u| 
=0

G̃u,mu>ε1,�G̃u,mu>ε2

Cuj|u|(d)

× ψuj|u|(Xu; d) + y∅(d)

]
fX(x; d′)dx (55)

and

Cuj|u|(d
′) ∼=
∫

RN

[ ∑

∅
=v⊆{1,··· ,N}
1≤|v|≤S

∞∑

mv=1

∑

‖j|v|‖∞=mv, j1,··· ,j|v| 
=0

G̃v,mv >ε1,�G̃v,mv >ε2

Cvj|v|(d)ψvj|v|(Xv; d) +y∅(d)

]

×ψuj|u|(xu; d′)fX(x; d′)dx, (56)

which are applicable for ∅ 
= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤
S, become approximate, although convergent. In the latter
case, the integrals in (55) and (56) consist of finite-order
polynomial functions of at most S variables and can be eval-
uated inexpensively without having to compute the original
function y for the new design. Therefore, new stochastic
analyses, all employing S-variate, AS-PDD approxima-
tion of y, are conducted with little additional cost during
all design iterations, drastically curbing the computational
effort in solving an RBDO subproblem.

7.3 The AS-PDD-SPA and AS-PDD-MCS methods

When the multi-point approximation is combined with the
single-step procedure, the result is an accurate and effi-
cient design process to solve the RBDO problem defined
by (1). Depending on whether the AS-PDD-SPA or AS-
PDD-MCS method is employed for reliability and design
sensitivity analyses in the combined multi-point, single-step
design process, two distinct RBDO methods are proposed:
the AS-PDD-SPA method and the AS-PDD-MCS method.
Using the single-step procedure in both methods, the design
solution of an individual RBDO subproblem becomes the
initial design for the next RBDO subproblem. Then, the
move limits are updated, and the optimization is repeated
iteratively until an optimal solution is attained. The method
is schematically depicted in Fig. 2. Given an initial design
d0, a sequence of design solutions, obtained successively
for each subregion D(q) and using the S-variate, AS-PDD
approximation, leads to an approximate optimal solution d̄∗
of the RBDO problem. In contrast, an AS-PDD approx-
imation constructed for the entire design space D, if it
commits large approximation errors, may possibly lead to
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Fig. 2 A schematic description
of the multi-point, single-step
design process

d*

d0

Contours of AS-PDD approximation

of c0 atinitial design d0

Contours of c0

Multipoint step

Optimization without

multipoint step

Subregion

d(q)
* 

a premature or an erroneous design solution. The multi-
point approximation in the proposed methods overcomes
this quandary by adopting smaller subregions and local
AS-PDD approximations, whereas the single-step proce-
dure diminishes the computational requirement as much as
possible by recycling the PDD expansion coefficients.

When ε1 → 0, ε2 → 0, S → N , and q → ∞,
the reliability and its design sensitivities by the AS-PDD
approximations converge to their exactness, yielding coin-
cident solutions of the optimization problems described
by (1) and (52). However, if the subregions are suffi-
ciently small, then for finite and possibly low values of
S and nonzero values of ε1 and ε2, (52) is expected to

generate an accurate solution of (1), the principal motiva-
tion for developing the AS-PDD-SPA and AS-PDD-MCS
methods.

The AS-PDD-SPA and AS-PDD-MCS methods in con-
junction with the combined multi-point, single-step design
process is outlined by the following steps. The flow chart of
this method is shown in Fig. 3.

Step 1: Select an initial design vector d0. Define toler-
ances ε(1) > 0, ε(2) > 0, and ε(3) > 0. Set the
iteration q = 1, d(q)

0 = (d
(q)

1,0 , · · · , d
(q)

M,0)
T =

d0. Define the subregion size parameters 0 <

β
(q)
k ≤ 1, k = 1, · · · , M , describing

Fig. 3 A flow chart of the
proposed AS-PDD-SPA and
AS-PDD-MCS methods
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D(q) = ×k=M
k=1 [d(q)

k,0−β
(q)
k (dk,U −dk,L)/2, d(q)

k,0+
β

(q)
k (dk,U − dk,L)/2]. Denote the subregion’s

increasing history by a set H(0) and set it to
empty. Set two designs df = d0 and df,last 
=
d0 such that ||df − df,last ||2 > ε(1). Set d(0)∗ =
d0, qf,last = 1 and qf = 1. Usually, a feasible
design should be selected to be the initial design
d0. However, when an infeasible initial design is
chosen, a new feasible design can be obtained
during the iteration if the initial subregion size
parameters are large enough.

Step 2: Define tolerances ε1 > 0 and ε2 > 0. Use the
adaptive PDD algorithm together with sparse-
grid integration to obtain truncation parameters
of c0(d) and yl(X), l = 1, · · · , K at current
design d(q)

0 . Set dAS = d(q)

0 .
Step 3: Use (q > 1) the PDD truncation parameters

obtained in Step 2. At d = d(q)

0 , generate the AS-
PDD expansion coefficients, y∅(d) and Cuj|u|(d),
where ∅ 
= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S,
and j|u| ∈ N

|u|
0 , j1, · · · , j|u| 
= 0 was determined

in Step 2, using dimension-reduction integration
with R = S, leading to S-variate, AS-PDD
approximations c̄

(q)

0,S(d) of c0(d) and ȳ
(q)
l,S (X) of

yl(X), l = 1, · · · , K .

Step 4: Evaluate c̄
(q)
l,S (d) of cl(d), l = 1, · · · , K , in

(52) and their sensitivities by the AS-PDD-MCS
or AS-PDD-SPA methods based on AS-PDD
approximations ȳ

(q)
l,S (X) in Step 3.

Step 5: If q = 1 and c̄
(q)
l,S (d(q)

0 ) < 0 for l = 1, · · · , K ,

then go to Step 7. If q > 1 and c̄
(q)
l,S (d(q)

0 ) < 0
for l = 1, · · · , K , then set df,last = df , df =
d(q)

0 , qf,last = qf , qf = q and go to Step 7.
Otherwise, go to Step 6.

Step 6: Compare the infeasible design d(q)

0 with the fea-

sible design df and interpolate between d(q)

0 and
df to obtain a new feasible design and set it

as d(q+1)
0 . For dimensions with large differences

between d(q)

0 and df , interpolate aggressively,
that is, interpolate close to df . Reduce the size
of the subregion D(q) to obtain new subregion
D(q+1). For dimensions with large differences
between d(q)

0 and df , reduce aggressively. Also,
for dimensions with large differences between
the sensitivities of c̄

(q)
l,S (d(q)

0 ) and c̄
(q−1)
l,S (d(q)

0 ),
reduce aggressively. Update q = q + 1 and go to
Step 3.

Step 7: If ||df −df,last ||2 < ε(1) or |[c̄(q)

0,S(df )− c̄
(qf,last )

0,S

(df,last )]/c̄(q)

0,S(df )| < ε(3), then stop and denote

the final optimal solution as d̄∗ = df . Otherwise,
go to Step 8.

Step 8: If the subregion size is small, that is, β(q)
k (dk,U −

dk,L) < ε(2), and d(q−1)∗ is located on the
boundary of the subregion, then go to Step 9.
Otherwise, go to Step 11.

Step 9: If the subregion centered at d(q)

0 has been

enlarged before, that is, d(q)

0 ∈ H(q−1), then set
H(q) = H(q−1) and go to Step 11. Otherwise, set

H(q) = H(q−1)⋃{d(q)

0 } and go to Step 10.
Step 10: For coordinates of d(q)

0 located on the boundary

of the subregion and β
(q)
k (dk,U − dk,L) < ε(2),

increase the sizes of corresponding components
of D(q); for other coordinates, keep them as they
are. Set the new subregion as D(q+1).

Step 11: Solve the design problem in (52) employing
the single-step procedure. In so doing, recycle
the PDD expansion coefficients obtained from
Step 3 in (55) and (56), producing approxima-
tions of the objective and constraint functions
that stem from single calculation of these coef-
ficients. Denote the optimal solution by d(q)∗ and
set d(q+1)

0 = d(q)∗ . Update q = q + 1 and go to
Step 12.

Step 12: If the form of a response function changes, go
to Step 2; otherwise, go to Step 3. A threshold
t ∈ [0, 1] was used to determine whether the
form changed. Only when the relative change of
the objective function is greater than t , that is,
|c0(d(q)

0 ) − c0(dAS)|/|c0(dAS)| > t , then it is
assumed that the form of the response function
changes.

It is important to distinguish new contributions of this
paper with those presented in past works (Yadav and Rah-
man 2014b; Rahman and Ren 2014; Ren and Rahman
2013). First, Yadav and Rahman (2014b) solved high-
dimensional uncertainty quantification problems without
addressing stochastic sensitivity analysis and design opti-
mization. Second, Rahman and Ren (2014) conducted
probabilistic sensitivity analysis based on non-adaptively
truncated PDD and pre-assigned truncation parameters,
which cannot capture automatically the hierarchical struc-
ture and/or nonlinearity of a complex system response.
Third, the stochastic optimization performed by Ren and
Rahman (2013) covered only RDO, not RBDO. Therefore,
the unique contributions of this work include: (1) a novel
integration of AS-PDD and score function for probabilis-
tic RBDO sensitivity analysis; (2) a new AS-PDD-based
RBDO design procedure for high-dimensional engineer-
ing problems; (3) a new combined sparse- and full-grid
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numerical integration to further improve the accuracy of
the AS-PDD methods; and (4) construction of three new
numerical examples.

8 Numerical examples

Four examples are presented to illustrate the AS-PDD-SPA
and AS-PDD-MCS methods developed in solving various
RBDO problems. The objective and constraint functions
are either elementary mathematical functions or relate to
engineering problems, ranging from simple structures to
complex FEA-aided mechanical designs. Both size and
shape design problems are included. In Examples 1 through
4, orthonormal polynomials, consistent with the probability
distributions of input random variables, were used as bases.
For the Gaussian distribution, the Hermite polynomials
were used. For random variables following non-Gaussian
probability distributions, such as the Lognormal distribution
in Example 3 and truncated Gaussian distribution in Exam-
ple 4, the orthonormal polynomials were obtained either
analytically when possible or numerically, exploiting the
Stieltjes procedure (Gautschi 2004). The value of S for AS-
PDD approximation varies, depending on the function or
the example, but in all cases the tolerances are as follows:
ε1 = ε2 = 10−4. The AS-PDD expansion coefficients
were calculated using dimension-reduction integration with
R = S and the Gauss quadrature rule of the ith dimen-
sion consistent with maxi∈u mu. The moments and their
sensitivities required by the AS-PDD-SPAmethod in Exam-
ples 1 and 2 were calculated using dimension-reduction
integration with R = 2. The sample size for the embed-
ded simulation of the AS-PDD-MCS method is 106 in all
examples. In Examples 1-3, the design sensitivities of the
objective functions were obtained analytically. Since the
objective function in Example 4 is an implicit function, the
truncated PDD approximation of the objective function was
employed to obtain design sensitivities. The multi-point,
single-step PDD method was used in all examples. The tol-
erances, initial subregion size, and threshold parameters for
the multi-point, single-step PDD method are as follows:
(1) ε(1) = 0.1 (Examples 1 and 2), ε(1) = 0.01 (Exam-
ple 3), ε(1) = 0.2 (Example 4); ε(2) = 2; ε(3) = 0.005
(Examples 1, 2, and 3), ε(3) = 0.05 (Example 4); (2)
β

(1)
1 = · · · = β

(1)
M = 0.5; and (3) t = 0.99 (Example 1-3);

t = 0.6 (Example 4). The optimization algorithm selected
is sequential quadratic programming (DOT 2001) in all
examples.

8.1 Example 1: optimization of a mathematical problem

Consider a mathematical example, involving a 100-
dimensional random vector X, where Xi , i = 1, · · · , 100,
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are independent and identically distributed Gaussian ran-
dom variables, each with the mean value μ and the standard
deviation s. Given the design vector d = (μ, s)T , the
objective of this problem is to

min
d∈D

c0(d) = d2
1 + 5d2,

subject to c1(d) = Pd(y1(X) < 0) − 10−3 ≤ 0,

−9 ≤ d1 ≤ 9, 0.5 ≤ d2 ≤ 4, (57)

where

y1(X) = 1

1000 +
100∑

i=1
Xi

− 1

1000 + 3
√
100

(58)

is a random function. The design vector d ∈ D, where
D = [−9, 9] × [0.5, 4] ⊂ R

2. The exact solution of the
RBDO problem in (57) is as follows: d∗ = (0, 0.5)T ;
c0(d∗) = 2.5; and c1(d∗) = 
(−6) − 10−3 ≈ −10−3.
The AS-PDD-SPA and AS-PDD-MCS methods with S =
1 were employed to solve this elementary RBDO prob-
lem. The approximate optimal solution is denoted by
d̄∗ = (d̄∗

1 , d̄∗
2 )T .

Four different initial designs were selected to study the
robustness of the proposed methods in obtaining optimal
design solutions. The first two initial designs d0 = (−9, 4)T

and d0 = (−4.5, 2)T lie in the feasible region, whereas the
last two initial designs d0 = (9, 4)T and d0 = (4.5, 2)T

are located in the infeasible region. Table 1 summarizes
the optimization results, including the numbers of func-
tion evaluations, by the AS-PDD-SPA and AS-PDD-MCS
methods for all four initial designs. The exact solution,
existing for this particular problem, is also listed in Table 1
to verify the approximate solutions. From Table 1, the pro-
posed methods, starting from four different initial designs,
engender identical optima, which is the exact solution.
Hence, each method can be used to solve this optimiza-
tion problem, regardless of feasible or infeasible initial
designs.

Figures 4 and 5 depict the iteration histories of the AS-
PDD-SPA and AS-PDD-MCS methods, respectively, for all
four initial designs. When starting from the feasible initial
designs d0 = (−9, 4)T and d0 = (−4.5, 2)T , both methods
experience nearly identical iteration steps. This is because at
every step of the design iteration the AS-PDD-SPA method
provides estimates of the failure probability and its design
sensitivities very close to those obtained by the AS-PDD-
MCS method. Consequently, both methods incur the same
number of function evaluations in reaching respective opti-
mal solutions. In contrast, when the infeasible initial designs
d0 = (9, 4)T and d0 = (4.5, 2)T are chosen, there exist
some discrepancies in the iteration paths produced by the

Fig. 4 Iteration histories of the
AS-PDD-SPA method for four
different initial designs
(Example 1)
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Fig. 5 Iteration histories of the
AS-PDD-MCS method for four
different initial designs
(Example 1)

AS-PDD-SPA and AS-PDD-MCS methods. This is primar-
ily due to the failure of SPA, where the existence of the
saddlepoint is not guaranteed for some design iterations.
In which case, the MCS, instead of SPA, were used to
calculate the failure probability and its design sensitivi-
ties. Therefore, the computational cost by the AS-PDD-SPA
method should increase, depending on the frequency of
the failure of SPA. Indeed, when the discrepancy is large,
as exhibited for the initial design d0 = (9, 4)T , nearly
900 more function evaluations are needed by the AS-PDD-
SPA method. For the initial design d0 = (4.5, 2)T , the
discrepancy is small, and consequently, the AS-PDD-SPA
method requires almost 300 more function evaluations than
the AS-PDD-MCS method. In general, the AS-PDD-MCS
method should be more efficient than the AS-PDD-SPA
method in solving RBDO problems since an added layer of
approximation is involved when evaluating CGF in the latter
method.

8.2 Example 2: optimization of a speed reducer

The second example, studied by Lee and Lee (2005), entails
RBDO of a speed reducer, which was originally formulated
as a deterministic optimization problem by Golinski (1970).
Seven random variables, as shown in Fig. 6, comprise the
gear width X1 (cm), the teeth module X2 (cm), the number
of teeth in the pinion X3, the distances between bearings
X4 (cm) and X5 (cm), and the axis diameters X6 (cm) and

X7 (cm). They are independent Gaussian random variables
with means Ed[Xk], k = 1, · · · , 7, and a standard deviation
of 0.005. It is important to notice that in reality X3 should
be a discrete random variable, but here it is treated as a con-
tinuous Gaussian random variable. The design variables are
the means of X, that is, dk = Ed[Xk]. The objective is to
minimize the weight of the speed reducer subject to 11 prob-
abilistic constraints, limiting the bending stress and surface
stress of the gear teeth, transverse deflections of shafts 1 and

Fig. 6 A schematic illustration of the speed reducer (Example 2)
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2, and stresses in shafts 1 and 2. Mathematically, the RBDO
problem is formulated to

min
d∈D

c0(d) = 0.7854d1d
2
2 (3.3333d

2
3 + 14.9334d3

−43.0934) − 1.508d1(d
2
6 + d2

7 )

+7.477(d3
6 + d3

7 ) + 0.7854(d4d
2
6 + d5d

2
7 )

subject to cl(d) = Pd(yl(X) ≤ 0) − 
(−βl) ≤ 0,

l = 1, · · · , 11

2.6 cm≤d1 ≤ 3.6 cm, 0.7 cm≤d2≤0.8 cm,

17 ≤ d3 ≤ 28 , 7.3 cm ≤ d4 ≤ 8.3 cm,

7.3 cm≤d5 ≤ 8.3 cm, 2.9 cm≤d6 ≤ 3.9 cm,

5.0 cm ≤ d7 ≤ 5.5 cm, (59)

where

y1(X) = 1 − 27

X1X
2
2X3

, (60)

y2(X) = 1 − 397.5

X1X
2
2X

2
3

, (61)

y3(X) = 1 − 1.93X4

X2X3X
4
6

, (62)

y4(X) = 1 − 1.93X5

X2X3X
4
7

, (63)

y5(X) = 1100 −
√

(745X4/(X2X3))2 + 16.9 × 106

0.1X3
6

, (64)

y6(X) = 850 − (65)
√

(745X5/(X2X3))2 + 157.5 × 106

0.1X3
7

, (66)

y7(X) = 40 − X2X3, (67)

y8(X) = X1

X2
− 5, (68)

y9(X) = 12 − X1

X2
, (69)

y10(X) = 1 − 1.5X6 + 1.9

X4
, (70)

y11(X) = 1 − 1.1X7 + 1.9

X5
, (71)

are 11 random performance functions and βl = 3, l =
1, · · · , 11. The initial design vector is d0 = (3.1 cm,

0.75 cm, 22.5 , 7.8 cm, 7.8 cm, 3.4 cm, 5.25 cm)T . The
approximate optimal solution is denoted by d̄∗ = (d̄∗

1 , d̄∗
2 ,

· · · , d̄∗
7 )T .

Table 2 presents detailed optimization results generated
by the AS-PDD-SPA and AS-PDD-MCS methods, each
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Fig. 7 A six-bay,
twenty-one-bar truss structure
(Example 3)

entailing S = 1 and S = 2, in the second through fifth
columns. The optimal solutions by both proposed methods,
regardless of S, are very close to each other, all indicating
no constraints are active. The objective function values of
optimal solutions by the AS-PDD-MCS method are slightly
lower than those by the AS-PDD-SPA method. Although
there is a constraint violation, that is, maxl cl > 0 in the AS-
PDD-MCS method with S = 1, it is negligibly small. The
results of both versions (S = 1 and S = 2) of the AS-PDD-
SPA and AS-PDD-MCS methods confirm that the solutions
obtained using the univariate (S = 1), AS-PDD approxima-
tion are accurate and hence adequate. However, the numbers
of function evaluations step up for the bivariate (S = 2),
AS-PDD approximation, as expected. When the univariate,
AS-PDD approximation is employed, the respective num-
bers of function evaluations diminish by more than a factor
of five, regardless of method selected.

Since this problem was also solved by the RIA, PMA,
RIA envelope method, and PMA envelope method, compar-
ing their reported solutions (Lee and Lee 2005), listed in the
sixth through ninth columns of Table 2, with the proposed
solutions should be intriguing. These existing methods are
commonly used in conjunction with FORM for solving
RBDO problems. It appears that RIA and PMA and their
respective enhancements are also capable of producing opti-
mal solutions similar to those obtained by the AS-PDD-SPA
and AS-PDD-MCS methods, but by incurring computa-
tional costs markedly higher than those by the latter two
methods. Comparing the numbers of function evaluations,
the RIA and PMAmethods are more expensive than the AS-
PDD-SPA methods by factors of 20 to 120. These factors
grow into 25 to 150 when graded against the AS-PDD-MCS
methods. The dramatic reduction of computational cost by
the proposed methods indicates that the AS-PDD approx-
imations, in cooperation with the multi-point, single-step
design process, should greatly improve the current state of
the art of reliability-based design optimization.

8.3 Example 3: size design of a six-bay, twenty-one-bar
truss

This example demonstrates how an RBDO problem entail-
ing system reliability constraints can be efficiently solved
by the AS-PDD-MCS method. A linear-elastic, six-bay,

twenty-one-bar truss structure, with geometric properties
shown in Fig. 7, is simply supported at nodes 1 and 12, and
is subjected to four concentrated loads of 10,000 lb (44,482
N) at nodes 3, 5, 9, and 11 and a concentrated load of 16,000
lb (71,172 N) at node 7. The truss material is made of an alu-
minum alloy with the Young’s modulus E = 107 psi (68.94
GPa). Considering the symmetry properties of the struc-
ture, the random input is selected as X = (X1, · · · , X11)

T

∈ R
11, where Xi, i = 1, · · · , 11 , is the cross-sectional

areas of the ith truss member. The random variables are
independent and lognormally distributed with means μi in2,
and standard deviations σi = 0.1 in2, i = 1, · · · , 11. From
linear-elastic finite-element analysis (FEA), the maximum
vertical displacement vmax(X) and maximum axial stress
σmax(X) occur at node 7 and member 3 or 12, respectively,
where the permissible displacement and stress are limited to
dallow = 0.266 in (6.76 mm) and σallow = 37, 680 psi (259.8
MPa), respectively. The system-level failure set is defined
as �F := {x : {y1(x) < 0} ∪ {y2(x) < 0}}, where the
performance functions

y1(X) = 1 − |vmax(X)|
dallow

, y2(X) = 1 − |σmax(X)|
σallow

. (72)

Due to symmetry, the design vector is d =
(μ1, · · · , μ11)

T ∈ D ⊂ R
11. The objective is to mini-

mize the volume of the truss structure subject to a system
reliability constraint, limiting the maximum vertical dis-
placement and the maximum axial stress. Therefore, the
RBDO problem is formulated to

min
d∈D

c0(d) = V (d),

subject to c1(d) = Pd [{y1(X) < 0} ∪ {y2(X) < 0}]
−
(−3) ≤ 0,

1.0 ≤ dk ≤ 30.0, k = 1, · · · , 11, (73)

where V (d) is the total volume of the truss.
The initial design is d0 = (15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15)T in2 (×2.542 cm2). The
approximate optimal solution is denoted by d̄∗ =
(d̄∗

1 , · · · , d̄∗
11)

T .
The second column of Table 3 presents detailed opti-

mization results generated by the proposed AS-PDD-MCS
method employing S = 2. For comparison, the optimiza-
tion results from the multi-point, single-step method using
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Table 3 Optimization results for the six-bay, 21-bar truss problem

AS-PDD-MCS Truncated PDD-MCS Crude-MCS- Crude-MCS-

S = 2, m = 2 I(a) II(b)

d̄∗
1 , in2 5.0071 4.3799 5.0071 4.3799

d̄∗
2 , in2 4.7132 3.9511 4.7132 3.9511

d̄∗
3 , in2 2.7500 2.5637 2.7500 2.5637

d̄∗
4 , in2 2.8494 3.6468 2.8494 3.6468

d̄∗
5 , in2 2.7354 3.4131 2.7354 3.4131

d̄∗
6 , in2 5.2246 3.8784 5.2246 3.8784

d̄∗
7 , in2 1.8607 4.8285 1.8607 4.8285

d̄∗
8 , in2 1.6262 3.1202 1.6262 3.1202

d̄∗
9 , in2 3.2716 5.1164 3.2716 5.1164

d̃∗
10, in2 1.3084 3.2883 1.3084 3.2883

d̄∗
11, in2 2.4425 2.1743 2.4425 2.1743

c0, in3 641.14 722.14 641.14 722.14

c
(c)
1 −0.2000 × 10−4 −0.5400 × 10−4 −0.2000 × 10−4 −0.5400 × 10−4

No. of yi eval., i = 1 · · · , 2 4,886 8,464 264,000,000 280,000,000

(a)Crude-MCS-I: initial design is set to the optimal solution of AS-PDD-MCS, i.e., the optimal solution in the second column
(b)Crude-MCS-II: initial design is set to the optimal solution of truncated PDD-MCS, i.e., the optimal solution in the third column
(c)The constraint values are calculated by MCS with 106 sample size

an existing truncated PDD-MCS approximation (S = 2,
m = 2) for reliability and sensitivity analyses (Rahman and
Ren 2014) are also tabulated in the third column. According
to Table 3, both solutions reveal no constraint violations, but

there are moderate to significant differences in the design
variables at respective optima. This is possible because the
surrogate approximations grounded in adaptive-sparse and
truncated PDD approximations are not necessarily the same

Fig. 8 A jet engine bracket; (a)
a jet engine; (b) isometric view;
(c) lateral view; (d) top view
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Fig. 9 Definitions of 79 design variables
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or even similar. Therefore, when the original performance
functions in (72) are replaced by two different variants of the
PDD approximation, the same initial condition may lead to
distinct local optima, as found in this specific example. To
seek further credibility to this reasoning, the RBDO prob-
lem, using these two optimal solutions as initial designs,
was re-solved by crude MCS (106 samples) for evaluating
the constraint and its design sensitivities in (73). The opti-
mal solutions from crude MCS, listed in the fourth and fifth
columns of Table 3, are the same as the initial designs, indi-
cating that the optimal solutions generated by the proposed
and existing RBDO methods pertain to two distinct local
optima. Comparing the values of objective functions at the
two optima, the proposed AS-PDD-MCS method yields a
slightly lower volume of the truss than the existing method.
Furthermore, the AS-PDD-MCS method accomplishes this
feat by reducing the number of function evaluations by 42
percent.

It is important to recognize that the AS-PDD-SPA
method can be applied to solve this RBDO problem involv-
ing series-system reliability analysis by interpreting the
failure domain as �F := {x : ysys(x) < 0}, where
ysys(X) := min{y1(X), y2(X)} and then constructing an
AS-PDD approximation of ysys(X). In doing so, however,
ysys(X) is no longer a smooth function of X, meaning that
the convergence properties of the resulting AS-PDD-SPA
method can be significantly deteriorated. More importantly,
the AS-PDD-SPA method is not suitable for a general sys-
tem reliability problem involving multiple, interdependent
component performance functions. This is the primary rea-
son why the AS-PDD-SPA method was not used in this
example.

8.4 Example 4: shape design of a jet engine bracket

The final example demonstrates the usefulness of the RBDO
methods advocated in designing an industrial-scale mechan-
ical component, known as a jet engine bracket, as shown
in Fig. 8a. Seventy-nine random shape parameters, Xi ,
i = 1, · · · , 79, resulting from manufacturing variability,
describe the shape of a jet engine bracket in three dimen-
sions, including two quadrilateral holes introduced to reduce
the mass of the jet engine bracket as much as possible.
The design variables, dk = Ed[Xk], k = 1, · · · ,79, as
shown in Fig. 9, are the means (mm) of these 79 inde-
pendent random variables, with Figs. 8b–d depicting the
initial design of the jet engine bracket geometry at mean
values of the shape parameters. The centers of the four
bottom circular holes are fixed. A deterministic horizon-
tal force, F = 43.091 kN, was applied at the center
of the top circular hole with a 48◦ angle from the hor-
izontal line, as shown in Fig. 8c, and a deterministic
torque, T = 0.1152 kN-m, was applied at the center

of the top circular hole, as shown in Fig. 8d. These bound-
ary conditions are determined from the interaction of the jet
engine bracket with other mechanical components of the jet
engine. The jet engine bracket is made of TitaniumAlloy Ti-
6Al-4V with deterministic material properties, as follows:
mass density ρ = 4430 kg/m3, elastic modulus E = 113.8
GPa, Poisson’s ratio ν = 0.342, fatigue strength coefficient
σ

′
f = 2030 MPa, fatigue strength exponent b = −0.104,

fatigue ductility coefficient ε
′
f = 0.841, and fatigue ductil-

ity exponent c = −0.69. The performance of the jet engine
bracket was determined by its fatigue durability obtained by
(1) calculating maximum principal strain and mean stress at
a point; and (2) calculating the fatigue crack-initiation life
at that point from the well-known Coffin-Manson-Morrow
equation (Stephens and Fuchs 2001). The objective is to
minimize the mass of the jet engine bracket by changing
the shape of the geometry such that the minimum fatigue
crack-initiation life Nmin(X) exceeds a design threshold
of Nc = 106 loading cycles with 99.865 % probability.
Mathematically, the RBDO for this problem is defined to

min
d∈D

c0(d) = ρ

∫

D′(d)

dD′,

subject to c1(d) = Pd [y1(X) < 0] − 
(−3) ≤ 0,

dk,L ≤ dk ≤ dk,U i = 1, ..., 79, (74)

where

y1(X) = Nmin(X) − Nc (75)

is a high-dimensional random response function. The ini-
tial design d0 = (d0,1, · · · , d0,79)

T mm; the upper and
lower bounds of the design vector d = (d1, · · · , d79)

T ∈
D ⊂ R

79 are listed in Table 4. Figure 10 portrays the
FEA mesh for the initial jet engine bracket design, which
comprises 341,112 nodes and 212,716 ten-noded, quadratic,
tetrahedral elements.

Due to their finite bounds, the random variables Xi ,
i = 1, · · · , 79, were assumed to follow truncated Gaussian
distributions with densities

fXi
(xi) =

φ

(
xi − di

σi

)




(
Di

σi

)
− 


(
−Di

σi

) (76)

when ai ≤ xi ≤ bi and zero otherwise, where 
(·) and φ(·)
are the cumulative distribution and probability density func-
tions, respectively, of a standard Gaussian random variable;
σi = 0.2 are constants; and ai = di − Di and bi = di + Di

are the lower and upper bounds, respectively, of Xi ; and
Di = 2.

The proposed AS-PDD-MCS method was applied to
solve this jet engine bracket design problem employing
S = 1 since employing S ≥ 2 demands a large number
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Fig. 10 FEA mesh of the initial jet engine bracket design

of FEAs leading to a prohibitive computational cost for this
79-dimensional problem. Figures 11a through d show the
contour plots of the logarithm of fatigue crack-initiation life
at mean shapes of several design iterations, including the

initial design, throughout the RBDO process. Due to a con-
servative initial design, with fatigue life contour depicted
in Fig. 11a, the minimum fatigue crack-initiation life of
0.665× 1010 cycles is much larger than the required fatigue
crack-initiation life of a million cycles. For the tolerance and
subregion size parameters selected, 14 iterations and 2,808
FEA led to a final optimal design with the corresponding
mean shape presented in Fig. 11d.

Table 4 exhibits the values of design variables, objective
function, and constraint function for both the optimal and
initial designs. The objective function c0 is reduced from
2.9977 kg at initial design to 0.4904 kg at optimal design
— an almost 84 percent change. At optimum, the constraint
function c1 is −1.35×10−3 and is, therefore, close to being
active. Most of the design variables, except for d12, d18,
and d43, have undergone the most significant changes from
their initial values, prompting substantial modifications of
the shapes or sizes of the outer boundaries, quadrilateral
holes, and bottom surfaces of the engine bracket. The
design variables d12, d18, and d43, controlling minor fea-
tures of outer boundaries, are virtually unchanged, because
the associated initial values used are close to or the same
as their lower or upper bounds, which the design process is
seeking.

Fig. 11 Contours of logarithmic fatigue crack-initiation life at mean shapes of the jet engine bracket by the multi-point, single-step PDD method;
(a) initial design; (b) iteration 4; (c) iteration 7; (d) iteration 14 (optimum)
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This final example demonstrates that the RBDOmethods
developed — in particular, the AS-PDD-MCS method —
are capable of solving industrial-scale engineering design
problems with reasonable computational cost. However, the
“optimal” solution generated from the univariate AS-PDD
approximation has yet to be verified with those obtained
from bivariate or higher-variate AS-PDD approximations.
The univariate solution reported here should be guardedly
interpreted.

9 Conclusion

Two new methods, namely, the AS-PDD-SPA method and
the AS-PDD-MCS method, are proposed for reliability-
based design optimization of complex engineering sys-
tems. The methods involve an adaptive-sparse polynomial
dimensional decomposition of a high-dimensional stochas-
tic response for reliability analysis, a novel integration of
AS-PDD and score functions for calculating the sensitivi-
ties of the probability failure with respect to design vari-
ables, and standard gradient-based optimization algorithms,
encompassing a multi-point, single-step design process. The
AS-PDD-SPA method capitalizes on a novel integration of
AS-PDD, SPA, and score functions. The result is analytical
formulae for calculating the failure probability and design
sensitivities, solving component-level RBDO problems. In
contrast, the AS-PDD-MCS method utilizes the embed-
ded MCS of AS-PDD approximations and score functions.
Unlike the AS-PDD-SPAmethod, however, the failure prob-
ability and design sensitivities in the AS-PDD-MCSmethod
are estimated via efficient sampling of approximate stochas-
tic responses, thereby affording the method the capability to
address either component- or system-level RBDO problems.
Furthermore, the AS-PDD-MCS method is not influenced
by any added approximations, involving calculations of the
saddlepoint and higher-order moments, of the AS-PDD-
SPA method. Since both methods are rooted in the AS-PDD
approximation, a dimension-reduction approach combining
sparse- and full-grid quadratures is proposed to estimate the
expansion coefficients more accurately than existing tech-
niques. For the two methods developed, both the failure
probability and its design sensitivities are determined con-
currently from a single stochastic analysis or simulation.
Consequently, the methods provide more computationally
efficient design solutions than existing methods. Moreover,
the multi-point, single-step design process embedded in the
proposed methods facilitates a solution of an RBDO prob-
lem with a large design space. Precisely for this reason,
the AS-PDD-MCS method developed is capable of solv-
ing high-dimensional practical engineering problems, as
demonstrated by the shape design of a jet engine bracket
with 79 design variables.
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