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Abstract A hybrid method for robust and efficient optimiza-
tion process is developed by integrating a new response sur-
face method and pattern search algorithm. The method is
based on: (1) multipoint approximations of the objective and
constraint functions, (2) a multiquadric radial basis function
(RBF) for the zeroth-order function approximation and a new
RBF plus polynomial-based moving least-squares approxi-
mation for the first-order enhanced function approximation,
and (3) a pattern search algorithm to impose a descent con-
dition and applied adaptive subregion management strategy.
Several numerical examples are presented to illustrate accu-
racy and computational efficiency of the proposed method
for both function approximation and design optimization. To
demonstrate the effectiveness of the proposed hybrid method,
it is applied to obtain optimum designs of a microelectronic
packaging system. A two-stage optimization approach is pro-
posed for the design optimization. The material properties of
microelectronic packaging system and the shape parameters
of solder ball are selected as design variables. Through design
optimization, significant improvements of durability perfor-
mances are obtained using the proposed hybrid optimization
method.

Keywords Radial basis function · Moving least-squares
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x A vector of design variables
F0(x) Objective function
Fj(x) jth constraint function
Ai Lower bound of the ith design variable
Bi Upper bound of the ith design variable
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F̃k
0 Approximation of the original objective

function at iteration k
F̃k

j Approximation of the jth constraint function
at iteration k

A(k)
i Lower bound of the subregion at iteration k

B(k)
i Upper bound of the subregion at iteration k

x(k)
∗ Optimum solution at iteration k

r (k)
j Error measure for jth function at iteration k

φ Radial basis function
λj Associated radial basis coefficient corre-

sponding to the jth data point
ũ(x) Approximation by moving least-squares

method
pi(x) Basis function of moving least-squares

method
bi(x) Coefficient for the basis function of moving

least-squares method
ε Error measurement for the function

approximation
m(u) Total mass of the torque arm
1ui Global relative displacements in x, y, and z

directions
α Coefficients of thermal expansion of selected

materials
D Shape parameters of solder ball
Nf Fatigue crack-initiation life of the electronic

packaging system

1 Introduction

Modern design, engineering analysis, and optimization prob-
lems involve computationally expensive physics-based sim-
ulation, in which the simulation of one design can consume
a significant amount of computational time and require a
large amount of human effort. Thus, efficient and systematic
methods for performing design studies to find an optimum
design or select the best compromise between competing ob-
jectives can yield significant improvement in design cycles.
For design optimization, design sensitivity analysis (Choi
and Kim 2004) is an important and costly procedure in the
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conventional gradient-based algorithm. Recently, significant
progress has been made in linear and nonlinear sensitivity
analysis of engineering structures (Choi and Kim 2002; Kim
et al. 2000, 2001). However, the sensitivity analysis of non-
linear and path-dependent structural systems is still a very
much challenging problem. To address this problem, alterna-
tive methods such as response surface methodology (RSM)
(Myers and Montgomery 1995) and direct search methods
(Lewis et al. 1998; Box 1957) have been developed.

RSM approximates the relationship between a response
(dependent variables) and a vector of input variables (inde-
pendent variables) by constructing smooth functions of ob-
jective and constraints using limited sample points. RSM is
effective when the function evaluation is computationally ex-
pensive and the calculation of the design sensitivity informa-
tion is difficult. As a result of necessity, there is growing
interest in using response surface techniques in design opti-
mization. Two major trends have emerged in the use of RSM:
(1) the use for global approximations (Giunta et al. 1994; Liu
et al. 2004; Venter et al. 1998), where response surfaces are
constructed on the entire design space; and (2) the use for
local approximations (Toropov et al, 1993; Youn and Choi
2004), where response surfaces are built on a local subre-
gion around the current design. The cost of developing an
accurate global response surface function is higher than that
for local responses because it is more expensive to sample
in the whole design space for the global accuracy of non-
linear response. Response surface functions are usually only
accurate over a part of the design space called the subregion.
Hence, local sequential response surface models need to be
developed for multipoint approximations. The objective and
constraint functions in each iteration are approximated by re-
sponse surface functions. The solution of the approximated
optimization problem becomes the starting point for the next
step, until an optimum design is reached. The response sur-
face approximations are updated with new information in the
neighborhood of the current design. A primary concern in
developing such an approximation optimization procedure
is the proper choice of the subregion management strategy.
Indeed, inappropriate strategies can result in premature con-
vergence, often leading to inaccurate solutions. An important
consideration is the strategy used to find an effective size and
location of this region.

The direct methods, developed since the 1950s (Lewis
et al. 1998; Box 1957), are also known as zeroth-order meth-
ods because no function derivatives are used. Pattern search
method is a class of direct search methods. Since the in-
troduction of the pattern search method, the method has re-
mained popular with users. Recently, the fact that they are
proven to be convergent has generated renewed interest in
the nonlinear programming community (Lewis and Torczon
2000). However, all these advantages do not come without a
price. Because the pattern search method is a discrete search
algorithm, they do not entail rapid convergence properties
(Frank et al. 1992). Furthermore, because pattern search can
be viewed as sampling methods, they are less efficient for
large-dimensional problems (Glowinski and Kearsley 1995).

In addition, it is difficult to find the search direction for gen-
eral nonlinear constrained optimization problems (Lewis and
Torczon 2000).

In this paper, a new hybrid method is presented by in-
tegrating the merits of RSM and pattern search methods
for design optimization. The method is based on multipoint
approximations of the objective and constraint functions, a
multiquadric radial basis function (RBF) for zeroth-order
function approximation or RBF plus polynomial-based mov-
ing least-squares (MLS) approximation for first-order func-
tion approximation, and a pattern search algorithm to impose
a descent condition and applied adaptive subregion manage-
ment strategy. The accuracy and efficiency of the proposed
method are illustrated by several numerical examples.

Electronic assemblies are used in many applications with
increased reliability expectations in more severe operating
environments. The effect of temperature cyclic load on the
reliability of electronic packaging has been the subject of
much work (Lau 1991; Ohring 1998; Lau 1995). Under tem-
perature cycles, a mismatch of the coefficients of thermal ex-
pansion (CTE) in the assembly can induce repeated stresses,
resulting in fatigue damage accumulation in the solder joints.
Progressive damage in solder joints eventually leads to de-
vice failure. Due to the increasingly competitive market pres-
sures, more reliable and robust microelectronic designs are
desirable. To resolve this issue, optimization of the whole as-
sembly of microelectronic packaging systems becomes nec-
essary. The proposed hybrid method is employed for design
optimization of ASAT 144 fine-pitch ball-grid array (fpBGA)
electronic packaging. The fatigue life is selected as the ob-
jective function, and the material properties of the printed
circuit board (PCB) and package and the shape parameters
of the solder joint are selected as the design variables. Differ-
ent combinations of material properties and shape parameters
are evaluated in several case studies. Through design opti-
mization, the durability performance of the microelectronic
packaging system is improved significantly.

2 A hybrid optimization method

In this paper, a hybrid method is proposed for solving the
general constrained optimization problem, which is to

minimize F0(x), x ∈ <
n

subject to F j (x) ≤ 0, j = 1, · · · , l

and Ai ≤ xi ≤ Bi , i = 1, · · · , n (1)

where x is a vector of n design variables, F0(x) is the objective
function, F j (x), j = 1, · · · , l are the constraint functions,
and Ai and Bi are lower and upper bounds, respectively, of
the ith design variable xi. The hybrid optimization method in-
volves: (1) RBFs for approximating objective and constraints
functions in a subregion, (2) subregion movement obtained
by both of RSM and pattern search, and (3) pattern search
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algorithms for imposing descent condition explicitly and ap-
plied adaptive subregion management strategy.

2.1 Response surface-based design optimization

Using multipoint approximations (Toropov et al. 1993), the
problem in (1) can be approximated to

minimize F̃k
0 (x), x ∈ <

n

subject to F̃k
j (x) ≤ 0, j = 1, · · · , l

and A(k)
i ≤ xi ≤ B(k)

i , i = 1, · · · , n

A(k)
i ≥ Ai ; B(k)

i ≤ Bi , i = 1, · · · , n (2)

where k is the current iteration number, F̃k
0 (x) and F̃k

j (x) are
explicit local response surface approximations of the original
objective and constraints functions, respectively, at iteration
k, and A(k)

i and B(k)
i are lower and upper bounds, respectively,

of the subregion at iteration k. (2) can be solved using conven-
tional gradient-based method. Let x(k)

∗ denote the solution of
(2) at iteration k. To evaluate the adequacy of response surface
approximations, corresponding error measures are defined as

r (k)
j =

∣∣∣∣∣∣
F j

(
x(k)

∗

)
− F̃ (k)

j

(
x(k)

∗

)
F j

(
x(k)

∗

)
∣∣∣∣∣∣, j = 0, 1, · · · , l (3)

The next (k+1)th iteration is started from x(k)
∗ . However,

the size and location of the next subregion, i.e., the move
limits A(k+1)

i and B(k+1)
i at the k+1th iteration, depend on

error estimates at the kth iteration, described as follows. Let

r (k)
j ≤ ε j , j = 0, 1, · · · , l (4)

define conditions of satisfactory response approximations at
x(k)

∗ , where ε j , j = 0, 1, · · · , m are given small positive num-
bers. If (4) does not hold even for any of the active constraints
or the objective function, then the size of the search subregion
at the (k+1)th iteration is reduced. When (4) is satisfied for
all constraints and the objective function, the size of search
subregion needs to be decided based on the location. If x(k)

∗ is
located inside the kth subregion (i.e., none of the move limits
is active), the size of the next subregion is reduced. Other-
wise, the search subregion must be moved in the direction
x(k)

∗ − x(k−1)
∗ with keeping its size or enlarging the size ac-

cording to the accuracy. The iteration is terminated when: (1)
(4) is satisfied for all j = 0, 1, · · · , l, (2) move limits of the
subregion are not active, and (3) the subregion has reached a
required size, i.e.,

max

[
Bk

i − Ak
i

Bi − Ai

]
≤ δ, i = 1, · · · , n (5)

where δ is a given small positive number.
The response surface model used in multipoint approxi-

mation provides a more accurate or efficient means of solving

optimization problems than global response surface models.
However, there are several important aspects, which may in-
fluence the accuracy and convergence rate of local response
surface methods. They involve: (1) the choice of function ap-
proximation methods and (2) the move limit strategy. First,
the approximate response functions need to be accurate. It
should be noted that the accuracy requirements in local ap-
proximations can be achieved more easily than global ones,
and obviously, more accurate function approximations would
yield a faster convergence. Second, current response surface
models do not incorporate descent conditions explicitly. This
lack of descent condition can lead to unnecessary iterations
or even to inaccurate solutions.

2.1.1 Zeroth-order function approximation

The RBF interpolation is a well-known method for function
approximation of multivariate scattered data (Franke 1982).
RBF provides interpolants to function values given at ir-
regularly positioned data points and can be applied to any
dimension. This makes RBF attractive in the theory of com-
putational mathematics. Several types of RBFs are developed
in the current literature. Among all methods tested, the multi-
quadric method ranks highest in accuracy (Franke 1982) and
for this reason generated a great deal of interest among math-
ematicians (Light 1992; Wang and Liu 2002). Wang (2004)
investigated the influence of shape parameter to the accuracy
of function interpolation. Many researches are still under way.

The RBF interpolation is based on forming linear com-
binations of radial functions centered at each data point. For
scattered data F (i)

j = F j (xi ), which is available at xi ∈ <
n

for i = 1, · · · , N ( j=0,..., l are the objective and constraint
functions in (1); xi is a design point, i is the index of design
points, n is the dimension of the design space, while N is the
number of design points), RBF employs a “radial” function
φ : <

n
→ < to construct the interpolant

F̃ j (x) =

N∑
i=1

λiφ(‖x − xi‖) (6)

where ‖·‖ is the Euclidean norm, φ(‖x − xi‖) is a suitably
chosen RBF centered at xi , and λi ∈ < is the associated radial
basis coefficient corresponding to the ith data point. Requir-
ing F̃ j (xi ) = F (i)

j , the coefficients can be obtained by solving
a system of linear equations (Light 1992).

In optimization problems, each RBF can be used to cre-
ate response surface F̃ j (x) that interpolates the true response
function F j (x). The construction of such a response guaran-
tees that the function value of F̃ j (x) is identical to the val-
ues of both objective and constraint functions at the sample
points. Alternative RBFs based on compact supports have
been developed (Wendland 1995). The “compact support”
is a term related to the weight function, which is nonzero
only over a small subdomain around the sample point. To
date, compactly supported positive-definite RBFs are avail-
able only for low-dimensional problems (n≤3), which is a
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major limitation for realistic structural optimization prob-
lems. Moreover, the accuracy of the compactly supported
RBF is not very good when compared with the results of
globally supported RBF (Zhang et al. 2000). Indeed, devel-
opment of compactly supported positive-definite RBFs in a
high dimension is still an active research topic in the mathe-
matical community. Nonetheless, RBF is an attractive choice
for response surface approximation.

2.1.2 First-order enhanced function approximation

In some cases, sensitivity information can be obtained ef-
ficiently, and it can be used to improve the constructed re-
sponse function. A polynomial-based response surface was
proposed by van Keulen (Van Keulen et al. 2000). Chung
and Alonso (2002) used gradients to construct the approxi-
mation by Kriging models. Liu and Batill (2000) developed a
gradient-enhanced neural network response surface approx-
imation. For the conventional polynomial bases, the basis
selection is user dependent, while a large number of training
points (sample points) are needed if the gradient-enhanced
neural network is applied; for the gradient-based approxi-
mation by Kriging model, the most suitable design of ex-
periments is still the ongoing research. Because of the good
performance of RBF in zeroth-order function approximation,
it is desirable to construct a first-order enhanced response sur-
face function by using RBF. One inherent feature of RBF is
that the number of total bases is equal to the number of sample
points; each sample point is associated with an RBF. For the

interpolation of a zeroth-order, a given number of N sample
points will result in N function values. Hence, N bases appear
in the function approximation. In other words, the number of
unknown coefficients is equal to the number of zeroth-order
function values. However, if both function values and cor-
responding sensitivities are given at N sample points for an
n-dimensional problem, then the total amount of information
available is N (1 + n), much greater than the information of
function values. Because the conventional RBF is for zeroth-
order function interpolation and the basis number is N, inter-
polation causes overdetermined system equations, a situation
which has no solution. Therefore, it is necessary to use a least-
squares-type technique to account for combined function and
sensitivity information at all sample points. With the success
of moving least squares (MLS) (Choi and Kim 2002; Kim
et al. 2000) in computational mechanics and function ap-
proximation (Youn and Choi 2004), the MLS approximation
is used in this paper.

Given N as the number of sample points with n as the num-
ber of design variables, there is N (1 + n) amount of known
information available. An approximation F̃(x) of the func-
tion F(x) in a domain � is defined as

F̃(x) = pT (x)b(x) =
m∑

i=1

pi (x)bi (x) (7)

In (7), pi (x) is the basis, m is the number of bases, and
bi (x) is the corresponding coefficient. To best fit F(x), the
coefficient vector b(x) is selected as the one that minimizes
the error

J (b(x)) =

N∑
I=1

{
w

(0)
I (x)

[
pT (xI )b(x) − FI

]2
+w

(1)
I (x)

[
dpT (xI )

dx1
b(x) −

d FI

dx1

]2

+· · · + w
(n)
I (x)

[
dpT (xI )

dxn
b(x) −

d FI

dxn

]2
}

=

[
Qb(x) − F̂

]T
W(x)

[
Qb(x) − F̂

]
(8)

where

Q =


P

Px1

...

Pxn


M×m

(9)

and P is the basis matrix with dimension N×m, Pxi is the ma-
trix with dimension N×m such that each entry is the deriva-
tive of each entry of P with respect to design variable xi, W(x)
is an M×M matrix (cubic spline weight function is used in
this paper), and each entry is the weight function with com-
pact support (influence domain, which is nonzero only over a
small subdomain around the sample point). The cubic spline
weight function is defined as

w(r) =


2

3
− 4r2

+ 43, r ≤
1

2
4

3
− 4r + 4r2

−
4

3
r3, r <

1

2
≤ 1

0, r > 1

(10)

Define dI = ‖x − xI ‖, r=dI/dmI, where dmI is the size of the
domain of influence of the I-th point. The row number M is
equal to N (1 + n). In (8), F̂ is defined as

F̂ =


F

Fx1

...
Fxn


M×1

(11)

where F is the column vector of function values with di-
mension N, and Fxi is the sensitivity vector with respect to
design variable xi. By applying the stationary condition to
the weighted discrete error norm, the coefficient vector can
be obtained by solving

A(x)b(x)= B(x)F̂ (12)

which can be inverted to obtain the following explicit form

b(x)= A−1(x)B(x)F̂ (13)
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where b(x) is an m-dimensional column vector and F̂ is an
M-dimensional column vector, and A and B are the m×m and
m×M matrices, respectively, defined by

A(x) = QTW(x)Q (14)

B(x) = QTW(x) (15)

In general, the accuracy of the approximation is decided
by how the bases are selected and how many terms of the
bases are selected. In the case of one-design variable, the basis
definition is straightforward. However, if there is more than
one-design variable, the interaction terms will arise. In a two-
design variable case, bilinear term x1x2 has to be included,
while both bilinear and biquadratic terms need to be included
for cubic bases. For example, the set of cubic bases is

P =


1, x1, x2, · · · , xn, x1x2, x1x3, · · · , x1xn, x2x3, · · · , x2xn, · · · xn−1xn, x2

1 , x2
2 , · · · ,

x3
2 , x1x2x3, x1x2x4, · · · , x1x2xn, x1x3x4, · · · , x1x3xn, · · · , x1xn−1xn,

x2x3x4, · · · , x2x3xn, · · · , x2xn−1xn, · · · , xn−2xn−1xn, x2
1 x2, x2

1 x3, · · · , x2
1 xn,

x2
2 x1, x2

2 x3, · · · , x2
2 xn, · · · , x2

n−1x1, x2
n−1x2, · · · , x2

n−1xn, x2
n x1, x2

n x2, · · · , x2
n xn−1, x3

1 , x3
2 , · · · , x3

n

 (16)

The number of constant and linear terms is (n+1), the
number of bilinear terms is (n!1)n/2, and the number of
quadratic terms is n. In addition, there are (n!2)(n!1)/2+
(n!3)(n!2)/2+...+[n!(n!2)][n!(n!1)]/2 triple linear terms and
n(n!1) biquadratic terms, and the number of cubic terms is n.

The fundamental rule of bases selection is that the num-
ber of bases terms should not be larger than N for the case of
zeroth-order and N(1+n) for a first-order case. Moreover, the
system equation, (12), must maintain nonsingularity. Due to
the large number in polynomial basis combination discussed
above, no clear approach yet exists for how to efficiently se-
lect the bases and maintain the accuracy of the approximation.
In general, the selection of the basis is problem dependent and
based on the users’ experience.

To overcome the difficulty in bases selection, new types
of bases are proposed in this paper that combines the mul-
tiquadric radial bases functions and the polynomial bases.
The quadratic terms and the multiquadric RBF are not lin-
early independent and thus the system equation, (12), cannot
maintain nonsingularity. Therefore, the proposed bases in-
clude constant, linear terms, bilinear terms, and cubic terms.
The rest of the interaction terms in conventional polynomial
basis are replaced by the RBF. These types of bases overcome
the heuristics and uncertainty in selecting the bases. Using
a systematic way for choosing bases, RBF can be applied
in first-order function approximation. The generalized bases
vectors in an n-dimension problem is defined as

pT (x) =
[
1, x1, · · · , xn, x1x2, · · · , x1xn, x2x3, · · · , x2xn, · · · , xn−1xn, x3

1 , · · · , x3
n , p1(x), p2(x), · · · , pN (x)

]
(17)

where

pi (x) =

√
‖x − xi‖

2
+ c2 (18)

From (17), it is seen that the proposed bases are compact
and systematic. The accuracy of the proposed bases will be
demonstrated in forthcoming numerical examples.

2.2 Pattern search method

The pattern search method (Lewis et al. 1998) is character-
ized by a series of exploratory moves that consider the be-
havior of the objective function in a pattern of points, all of
which lie on a rational lattice. For simplicity, first consider
an unconstrained minimization problem, given by

Minimize F0(x), x ∈ <
n (19)

where F0 : <
n

→ < is a continuous and differentiable func-
tion, but the sensitivity (gradient) of F0 is either unavailable or
unreliable, and x = [x1, · · · , xn]T

∈ <
n is an n-dimensional

real vector of the design variables. The pattern search algo-
rithm involves three steps to solve (19). First, at iteration k,
start with a point xk ∈ <

n and a corresponding step-length
parameter 1k > 0. Second, if ei , i = 1, · · · , n denote stan-
dard n-dimensional unit basis vectors, points x+ = xk ± 1kei

are successively examined to determine if F0(x+) < F0(xk).
Figure 1 illustrates a set of such points among which x+ is
searched for when n=2. This set of points constitutes a pat-
tern. If there is no point such that F0(x+) < F0(xk), 1k is re-
duced and continued; otherwise, the step-length parameter is
left unchanged or increased if a longer step is justified. Third,
by setting 1k+1=1k and xk+1=x+, the iteration in the second
step is repeated until 1k≤1c is sufficiently small, where 1c

is a preselected tolerance defined by the user. The final value
of x+ represents the solution. This simple illustration suggests
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xk

∆
k

Fig. 1 A typical example of pattern search method

that there is a great deal of flexibility in pattern search algo-
rithms, depending on how one specifies the pattern of points
to be searched for in the next iteration. Despite their seem-
ing simplicity and heuristic nature, as well as the fact that
they do not have explicit recourse to the sensitivity of F0(x),
pattern search algorithms possess global convergence prop-
erties. It has been shown that pattern search algorithms are
globally convergent in unconstrained minimization, bound-
constrained minimization, and linear-constrained minimiza-
tion (Lewis and Torczon 2000).

If the objective F0 is continuously differentiable, then a
subsequence of the iteration produced by a pattern search
method for bound and linearly constrained minimization
converges to a Karush–Kuhn–Tucker point. For linear con-
strained problems, the geometry of nearby constraints has to
be taken into account. If the problem is not at a constrained
stationary point, at least one feasible descent direction with
a sufficiently long distance needs to be ensured. However, it
is challenging to design such types of patterns. For a general
constrained problem, the augmented Lagrangian approach
is developed (Lewis and Torczon 2002). The formulation
assumes that any general inequality constraints have been
converted into equality constraints by the introduction of non-
negative slack variables. The algorithms include inner iter-
ation, updated Lagrange multiplier estimates, and reduced
penalty parameters. However, numerical study and applica-
tion still appear rarely in the literature.

Although direct search methods have a special niche in
modern optimization, two issues have often been cited as
unavoidable concerns for any direct search method. No one
would disagree that direct search is slow. Direct search meth-
ods are, in a precise sense, asymptotically slower than the
steepest descent method. The other concern is the limitation
on the problem size. Even in the early days of direct search
methods, they were best suited for problems with a small
number of variables. To overcome this drawback, this study
will extend the existing pattern search algorithm by introduc-
ing the preselected response surface model to find the descent
direction for iteration. This is a proper choice to set up a con-

nection of pattern search with the response surface method
as an additional trial step.

2.3 Hybrid optimization method

The goal of the optimization process is to reach a feasible
minimum point for the objective function. If x(k)

∗ is not a
minimum point, another point x(k+1)

∗ with a smaller objective
function value should be obtained. In conventional RSM-
based optimization procedure, reduction of the subregion size
is initiated when x(k)

∗ is located inside the subregion of the kth
iteration, or the accuracy condition of (4) does not hold. To
increase the accuracy of the response surface, a smaller sub-
region size is needed. In this way, a preselected convergence
condition could be reached before an actual optimum point is
obtained. Moreover, many original function evaluations are
also added to the resulting optimization process because of
the smaller subregion size of each iteration. Alexandrov et al.
(1998) used a criterion based on the ratio of predicted im-
provement in the objective (or augmented objective for con-
strained problems) for managing the use of approximation
models in optimization. The size of the subregion for the it-
eration is based on the predicted improvement. Essentially,
it is a criterion based on the accuracy of the approximation.
During optimization procedure especially at early stage, the
size of subregion needs to be maintained big enough to locate
the optimum area quickly. In other words, predicting descent,
i.e., simple decrease is the focus rather than the quality of
the approximations. In the proposed hybrid method, the size
of each subregion is significantly reduced only when neces-
sary, i.e., when no simple decrease is found in the iteration,
which is a necessary condition for the convergence property
of the pattern search method. During each iteration of the hy-
brid method, a numerical experiment is conducted at x(k)

∗ and
compared with original function values at all sample points
in the feasible domain. By performing this experiment, an ex-
plicit descent condition is implemented to avoid the infeasi-
ble region and further improve the reduction of the objective
function. By imposing the descent condition in the hybrid
method, premature convergence and slow optimization can
be avoided.

The proposed method is outlined as follows. A flow chart
is shown in Fig. 2.

Step 1: Set the initial conditions and convergence criteria
by defining the following parameters: (1) initial de-
sign vector x0, (2) sample pattern, (3) accuracy cri-
teria r (k)

j ≤ ε j , (4) minimum size of subregion 1c

for convergence, and (5) convergence criteria. Set
iteration number k=0.

Step 2: The iteration is terminated when the following con-
vergence criteria are satisfied: (1) (4) is satisfied for
all j = 0, 1, · · · , l, (2) none of the move limits are
active, and (3) the subregion has reached a required
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Fig. 2 Flow chart of the hybrid method

size. If convergence criteria are satisfied, then stop.
Otherwise, let k=k+1 and go to the next step.

Step 3: Evaluate the objective and constraint function val-
ues at all sample points, as well as the gradients
of objective and constraint functions if they can be
readily obtained. The sampling method, which is
used for function approximation and optimization,
is coordinate sampling (axial star, 2n+1).

Step 4: Determine the coefficients for RBF interpolation
(or RBF plus polynomial terms in a gradient-
enhanced function for the approximation problem)
by solving a set of linear system equations. This
step needs to be performed for all objective and
constraint functions.

Step 5: Develop an RBF interpolation (or RBF plus
polynomial-based MLS approximation) of objec-
tive and constraint functions.

Step 6: Solve the associated approximated problem by con-
ventional gradient-based optimization method.

Step 7: Conduct numerical experiment at the optimum
point obtained in step 6 to check feasibility and

record the objective function and all constraint
function values. If it is feasible, go to step 8. Other-
wise, go to step 10 (pattern search) to find a new trial
point (minimum feasible point from pattern points)
using pattern search.

Step 8: Compare the actual objective function value at x(k)
∗

with those obtained at all feasible sample points
in a given pattern. The minimum feasible point be-
comes the new trial point. If the new trial point with
simple decrease is predicted by the response surface
function, then go to step 9 to check if the subregion
is active. Otherwise, go to step 10 to use pattern
search to locate minimum feasible point as the new
trial point.

Step 9: If the subregion is active (i.e., the new trial point
is located on the boundary of the subregion), then
check the accuracy of the response surface ap-
proximations. If the accuracy of the response sur-
face approximation is satisfied, then the size of the
subregion for the next iteration is enlarged, other-
wise, keep the size of the subregion as it is. On the
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Fig. 3 Plots of the peak function (a) and exact function (b) (zeroth-
order) by RBF

other hand, if the subregion is not active (i.e., the
new trial point is located inside the subregion), then
the size of the subregion for the next iteration should
be shrunk. Under this circumstance, if the response
surface approximation is accurate, then the size of
the subregion for the next iteration can be shrunk
aggressively, compared to the case if the response
surface approximations are not accurate. Set up a
new pattern and go to step 2.

Step 10: The sampling points, which are the axial star, are
used for the pattern search. If the new trial point
obtained by the pattern search is a simple decrease,
then the size of the subregion should be kept as it
is. On the other hand, if a new trial point with a
smaller objective function value cannot be found in
this iteration, shrink the size of the new subregion
according to the pattern search. Set up a new pattern
and go to step 2.

Fig. 4 Plots of approximation by a RBF+polynomial-based MLS and
b polynomial-based MLS (first-order)

3 Numerical examples

3.1 Example 1—function approximation

Consider a two-dimensional peak function (MATLAB 2004)
defined as

F(x1, x2) = 3(1 − x1)
2

exp
[
−x2

1 − (x2 + 1)2
]
− 10

(
1

5
x1 − x3

1 − x5
2

)
exp

[
−x2

1 − x2
2

]
-

1

3

exp
[
−(x1 + 1)2

− x2
2

]
,

0 < x1 < 1, 0 < x2 < 1 (20)
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Table 1 Error of response with five samples, percent [%]

RBF MLS

RBF+polya Polyb

Function, f 29.21 6.85 8.8
∂ f/∂x1 55.09 15.71 27.73
∂ f/∂x2 47.87 16.78 13.59
aRBF+poly RBF+polynomial
bPoly Polynomial

The zeroth-order interpolation and first-order enhanced
function approximations are studied. Because response func-
tion accuracy is an important aspect for either global or local
sequential approximation optimization, various function ap-
proximations are studied and compared using the same error
measurement ε, defined by

ε =

√√√√√∫
�

[
F(x1, x2) − F̃(x1, x2)

]2
d�∫

�
F(x1, x2)2d�

× 100 (21)

where F(x1, x2) is the exact value of the function, and
F̃(x1, x2) is the response surface approximation of the func-
tion. For the zeroth-order interpolation, RBF is implemented.
Because the coordinate sampling (axial star, 2n+1) is used, for
two-dimensional problem, there are five sample points. For
the first-order enhanced approximation, MLS using conven-
tional polynomial bases (cubic) and proposed RBF (c is equal
to the minimum distance of the samples multiplied by factor
1.1, the same value is used in optimization) plus polynomial
bases are employed to verify the accuracy. Figure 3a shows

the exact function plot in the given space. The zeroth-order
interpolation plot is displayed in Fig. 3b. Although zeroth-
order RBF can capture the overall character of the peak func-
tion, the amount of error at the four corners is still large. The
three-dimensional plots of approximations with sensitivities,
using proposed RBF plus polynomial MLS and conventional
polynomial-based MLS, are given in Fig. 4a,b.

Table 1 lists numerical errors given for RBF, RBF plus
polynomial-based MLS, and polynomial-based MLS. A con-
siderable improvement is gaine*d over the interpolation
based exclusively on function values. The proposed RBF
plus polynomial-based MLS shows better accuracy for this
example.

The example presented shows that a considerable im-
provement is gained by including sensitivities and using the
proposed procedure over zeroth-order interpolation. Both
RBF plus polynomial-based MLS and polynomial-based
MLS performed well in approximation when incorporating
sensitivities. It can be seen that both RBF plus polynomial-
based MLS and polynomial-based MLS lead to similar
accuracy levels in response surface approximation. The ad-
vantage of RBF plus polynomial-based MLS is that it pro-
vides a more systematic way of choosing bases, while
conventional polynomial-based MLS requires user’s expe-
rience and understanding of the nature of the system, which
can be somewhat difficult in some applications.

3.2 Example 2—constrained problem

A constrained problem in two-dimensional space taken from
Schittkowski (Schittkowski 1987) was originally formulated

Fig. 5 Iteration history by conventional response surface and hybrid method
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Table 2 The history of objective
function for the constrained
problem

aRSM Response surface method,
PS pattern search

Iteration Conventional response surface method (RBF) Hybrid methoda (RBF)

Objective history Objective history Active information

0 24.479 24.479
1 18.851 18.851 RSM
2 10.278 10.261 PS
3 5.785 1.334 RSM
4 3.610 −8.816 RSM
5 1.519 −19.123 RSM
6 −0.489 −28.633 PS
7 −2.562 −38.620 RSM
8 −4.799 −48.898 PS
9 −7.074 −56.136 RSM
10 −9.360 −58.928 PS
11 −11.633 −58.928 PS
.
.
.

18 −24.640
19 −24.774
20 −24.804
Total analyses 101 56

by G. Barnes. It is highly nonlinear and therefore suitable as
a test problem. The optimization problem is defined to

minimize F0(x) = −75.196 + 3.8112x1 − 0.12694x2
1

+2.0567 × 10−3x3
1 − 1.0345 × 10−5x4

1

+6.8306x2 − 0.030234x1x2

+1.28134 × 10−3x2x2
1

−3.5256 × 10−5x2x3
1

+2.266 × 10−7x2x4
1 − 0.25645x2

2

+3.4604 × 10−3x3
2 − 1.3514 × 10−5x4

2

+
28.106

x2 + 1
+ 5.2375 × 10−6x2

1 x2
2

+6.3 × 10−8x3
1 x2

2 − 7 × 10−10x3
1 x3

2

−3.4054 × 10−4x1x2
2

+1.6638 × 10−6x1x3
2

+2.8673 exp (0.0005x1x2)

subject to F1(x) = −x1x2/700 + 1 ≤ 0

F2(x) = −x2 + 5
( x1

25

)2
≤ 0

F3(x) = −(x2 − 50)2
/

100 + (x1 − 55)
/

20 ≤ 0

and 0 ≤ x1 ≤ 75

0 ≤ x2 ≤ 65 (22)

Due to the limitation in developing patterns for non-
linear problems, the conventional response surface method
and the proposed hybrid method are employed. The solu-
tion to this problem is x∗ = [75, 65]T , with the optimum
cost value of F0(x∗) = −58.928. For both methods, opti-
mization starts from an infeasible point x0

= [30, 20]T , as
illustrated in Fig. 5 and Table 2. In the conventional response
surface method (history marked as circle), the optimum re-
sult is F0(x) = −24.804 which is premature and inaccurate.
On the other hand, in the proposed hybrid method (history
marked with star), optimization iteration takes advantage of
the prediction of the RBF, as well as the information of sam-
ple points around the staring point to reduce the objective
value. From Table 2, it is seen that RSM and pattern search
method are activated during the optimization in the hybrid

Table 3 The history of objective
function for the constrained
problem (first-order)

aRSM Response surface method,
PS pattern search
bRBF+poly RBF+polynomial

Iteration Function value (zeroth-order)a Function value and sensitivities (first-order)

Objective (RBF) Activea information Objectiveb (RBF+poly) Activea information

0 24.479 24.479
1 18.851 RSM 18.733 RSM
2 10.261 PS 9.685 RSM
3 1.334 RSM −5.252 PS
4 −8.816 RSM −11.783 PS
5 −19.123 RSM −32.450 RSM
6 −28.633 PS −51.292 RSM
7 −38.620 RSM −58.928 RSM
8 −48.898 PS −58.928 PS
9 −56.136 RSM

10 −58.928 PS
11 −58.928 PS

Total analyses 56 49
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Fig. 6 Design parameters of torque arm

method and yield fast (56 function analyses) and accurate
solution.

In some cases, it is desirable to incorporate sensitivi-
ties to construct the response surface function if they can
be obtained readily. Hence, the gradient-enhanced function
approximation in optimization is also studied (the computa-
tional effort for generating the gradient is assumed to be 10%
of that for function evaluation.). To have a consistent com-
parison, the same test problem is employed and the same
coordinate sampling is also utilized. The history of objective
functions is presented in Table 3 when sensitivity information
is available. It is also observed that RSM and pattern search
method are activated during the optimization iterations. From
Table 3, it is noted that the objective value reduces rapidly
when the first-order enhanced function approximations are
used. The optimization procedure using gradient-enhanced
approximation shows a rapid convergence rate, as compared
to zeroth-order response function-based optimization.

3.3 Example 3—structural optimization

A torque-arm design optimization problem is solved by the
proposed hybrid method without sensitivities. Eight shape
design parameters (ui, i=1,..,8) are chosen to perturb the
outer/inner boundary curves of the torque arm. The shape
and design parameters are shown in Fig. 6. The domain of
the torque arm is discretized by 657 nodes and 177 plane
stress elements. The boundary condition is imposed to fix
the left hole. Young’s modulus E, Poisson’s ratio ν, the yield
stress Sy, density ρ, and thickness t are given in Table 4.
The design optimization problem is formulated such that the
total mass of the structure is to be minimized, with design

Table 4 Material properties of torque arm

Property Value

E 207 GPa
ν 0.3
Sy 800 MPa
ρ 7,800 kg/m3

t 3 mm

constraints defined for the second invariant of stress tensors
(von Mises stress). Mathematically, the problem is to

minimize m(u)

subject to σe ≤ 800 MPa

4.303 mm ≤ u1 ≤ 8.303 mm

4.709 mm ≤ u2 ≤ 6.209 mm

34.84 mm ≤ u3 ≤ 36.84 mm

1.68 mm ≤ u4 ≤ 5.38 mm

6.5 mm ≤ u5 ≤ 13.0 mm

0.0 mm ≤ u6 ≤ 3.0 mm

26.0 mm ≤ u7 ≤ 34.0 mm

0.0 mm ≤ u8 ≤ 2.0 mm (23)

The total mass m(u) of the structure is computed from the
area of the structure multiplied by the thickness and density.
Shape design parameters at the initial design are u0 =

[7.303, 5.209, 35.84, 4.38, 12.0, 1.0, 27.0, 1.0]. The mesh
at the initial design and the stress contour are plotted in Fig. 7.
The highest stress of 430 MPa (node 98) occurs at the upper
left of the frame. At iteration 2, mesh distortion occurred.
Remeshing was carried out to continue the optimization pro-
cedure. After remeshing, there are 713 nodes and 201 plane
stress elements in the domain of the torque-arm. The history
of the total mass of the structure is presented in Table 5.
The highest stress at the optimum design is increased to
799 MPa (node 250 in Fig. 8), which occurs at the upper right
frame. Shape design parameters at the optimum are u∗ =

[6.896, 4.709, 35.651, 1.68, 10.211, 3.0, 28.654, 1.298].
The structural mass is reduced from 0.875 to 0.498 kg
(43.02%) through optimization by the proposed hybrid
method.

4 Application to microelectronic packaging system

4.1 Fatigue durability analysis of microelectronic
packaging systems

The low-cycle fatigue is a common failure mechanism in
solder joints in the electronic packaging systems. The cyclic
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Fig. 7 Initial stress distribution

thermal loading combined with the mismatch in thermal ex-
pansion properties of various components of the assembly
leads to stress reversals and accumulation of inelastic strain
in solder joints. Because the solder material exhibits creep de-
formation characteristics, nonlinear viscoelastic or viscoplas-
tic finite element analysis (FEA) is often needed to calculate
the fatigue life. However, such a detailed analysis can be-
come computationally demanding and even prohibitive. To
overcome this problem, The University of Iowa and Rockwell
Collins team developed a novel global–local methodology to
predict mechanical deformation and fatigue durability of sol-
der joints for a given design (Zhang et al. 2006). The method-
ology involves three major steps: (1) a global deformation
analysis employing an optimal geometry of equivalent sol-
der joints derived from nonlinear load-deformation response,
(2) a local critical solder-joint analysis involving rigorous
application of nonlinear submodeling technique, and (3) a
fatigue life analysis including fatigue crack-initiation and/or
crack-propagation. Further details of the methodology and its
experimental validation are available in the work of Zhang
et al. (2006).

4.1.1 ASAT 144 fpBGA packaging system and initial design

The global–local analysis methodology was applied to the
ASAT 144 fine-pitch ball-grid array (fpBGA) package, as

Table 5 Objective history of the total mass

Iteration Total mass Active informationa

0 0.875
1 0.746 RSM
2 0.646 RSM
3 0.590 PS
4 0.552 RSM
5 0.532 PS
6 0.514 RSM
7 0.503 RSM
8 0.498 RSM
9 0.498 PS

10 0.498 PS
Total analyses 171
aRSM Response surface method, PS pattern search

shown in Fig. 9. The printed circuit board is made of FR4
material with its time-dependent elastic material properties
defined in Table 6. The time-independent elastic material
properties of package components (rigid carrier, die chip, die
attachment, and molding compound) and solder are defined
in Table 7. The solder material is eutectic 63Sn-37Pb, which
follows a hyperbolic-sine law (Pan 1991). The thermal load
profile for both packages involves temperature cycles varying
from −55 to 125◦C.

Figure 10a displays a global model (quarter) of the fp-
BGA package. The FEA discretization by ABAQUS (version
6.5) (ABAQUS 2005) consists of 4,663 eight-noded solid el-
ements and 6,408 nodes. All solder joints were replaced by
an equivalent two-parameter diamond model (Zhang et al.
2006). Figure 10b shows a local model of the critical solder
joint that consists of 2,432 eight-noded solid elements and
2,707 nodes.

For the initial design, the fatigue crack-initiation life, cal-
culated using the local model (Fig. 10b) and Coffin–Manson
equation (Zhang et al. 2006), was predicted to be 144 cycles.
Figure 11 presents the fatigue-life contour plots of the solder
joints for crack initiation. The top view is given in Fig. 11a,
and the bottom view is given in Fig. 11b. Figure 12 shows
the plot of global relative displacements 1ui,i=1,2,3,which
represents the global relative displacements in the x, y, and z
directions for three thermal cycles.

4.2 Optimization of ASAT 144 fpBGA packaging system

It is well known that thermal cyclic failure is a serious con-
cern in the electronic packaging system. Under temperature
cycles, a mismatch of the coefficients of thermal expansion
(CTE) in the assembly can induce repeated stresses, result-
ing in fatigue damage accumulation in the solder joints. The
objective is to select proper mechanical properties of the
package and solder-joint geometrical parameters to improve
solder-joint fatigue life and thus obtain a more reliable design.
To resolve this issue, optimization of the whole assembly of
microelectronic packaging becomes necessary. In general,
the design parameters of such complicated electronic pack-
ages are CTE of assembly materials, and solder ball shape
parameters. The optimization problem can be formulated to
maximize fatigue crack-initiation life with respect to the de-
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Fig. 8 Stress distribution at optimum design

sign variables i.e., the selected parameters. Mathematically,
it is to

maximize N f (‖1u(α; D)‖, D)

subject to:
αl ≤ α ≤ αu

Dl ≤ D ≤ Du
(24)

where α is the vector of selected material properties
(CTE), αl and αu are the lower and upper bounds, respec-
tively, D is the vector of solder ball shape parameters, and
Dl and Du are the lower and upper bounds, respectively.
The exact optimum solution of the packaging system should
be obtained directly from (24). However, due to the com-

Fig. 9 ASAT 144 fpGBA package a front view, b top view, c solder ball shape



340 T. Zhang et al.

Table 6 Elastic properties of FR4 material(a)

Properties Temperature (◦C)

−55 30 95 125

Ex, GPa 22.4 22.4 20.7 19.3
Ey, GPa 22.4 22.4 20.7 19.3
Ez, GPa 1.6 1.6 1.2 1.0
νxy 0.02 0.02 0.02 0.02
νyz 0.143 0.143 0.143 0.143
νyz 0.143 0.143 0.143 0.143
Gxy, GPa 0.63 0.63 0.6 0.5
Gyz, GPa 0.199 0.199 0.189 0.167
Gzx, GPa 0.199 0.199 0.189 0.167
αx, /◦C 15.85×10−6 15.85×10−6 15.85×10−6 15.85×10−6

αy, /◦C 19.14×10−6 19.14×10−6 19.14×10−6 19.14×10−6

αz, /◦C 80.46×10−6 80.46×10−6 80.46×10−6 80.46×10−6

(a) Symbols E, ν, α, and G denote elastic modulus, Poisson’s ratio,
coefficients of thermal expansion, and shear modulus, respectively. The
subscripts indicate components for orthotropic properties.

plicated nature of the problem, it is generally prohibitively
expensive to perform optimization in a single procedure. A
more effective alternative is proposed, which implements
a two-stage optimization approach: (1) optimization of
global relative displacements and (2) shape optimization
of local solder joint. This decomposition assumes that the
changes of local solder ball shape do not significantly affect
the global relative displacements, which is dominantly
controlled by the thermal mismatch of the packaging
assembly. In the conventional, gradient-based optimization
procedure, sensitivities (derivatives) with respect to design
parameters should be obtained. Because of the nonlinearity,
creep behavior, and path-dependent nature of the electronic
packaging analysis, it is very difficult to calculate design
sensitivities. In this paper, the proposed hybrid method is
applied to the two-stage optimization process.

4.2.1 Optimization of global relative displacements

Essentially, shorter fatigue life of the solder ball is due to large
relative deformations of the packaging systems. Because the
package and PCB transmit the displacement as the boundary
condition to the local model, the global relative displacements

Table 7 Other material properties of package and solder ball

Material Young’s
modulus (E ),
GPa

Poisson’s ratio
(ν)

Coefficient of
thermal
expansion (α),
/C

Solder 24.83 0.4 21×10−6

Rigid carrier 26 0.39 13×10−6

Die attachment 16 0.25 14×10−6

Die chip 131 0.3 4.1×10−6

Molding
compound

16 0.25 14×10−6

Fig. 10 A schematic of the global–local methodology a global model
and b local model

are selected in the first stage as the objective function, with
the CTE of materials selected as design variables. Because
the components of the flip chip assembly have different CTE,
the thermomechanical fatigue failure of the solder joints will
occur under cyclic thermal loading. CTE of various compo-
nents such as PCB, rigid carrier, and molding compound are
considered as design variables in this study. Different com-
binations of design variables are studied for the ASAT 144
fpBGA packaging system. The optimization formulation is
to

minimize ‖1u(α; D0)‖
2

subject to: αl ≤ α ≤ αu (25)

where 1ui = ui,top − ui,bottom (i=1,..,3) represents the rel-
ative displacements in the x, y, and z directions; α are the
CTE of materials, which are considered as design variables;
α1 and αu are the lower and upper bounds of material prop-
erties, respectively; and D0 is the parameter of initial solder
ball shape.

Different cases of combination of design variables, which
are defined in Table 8, are studied. In case G1, the CTE of
PCB (in x, y, and z directions) are selected as design variables;
in case G2, the CTE of rigid carrier and molding compound in
the package are selected as design variables; for case G3, the
CTE of PCB (in x, y, and z directions), rigid carrier, and mold-
ing compound of the whole electronic packaging assembly
are considered.

Case G1 In this case, CTE of PCB are selected as de-
sign variables. PCB is modeled as an orthotropic material



A hybrid surrogate and pattern search optimization method and application to microelectronics 341

Fig. 11 The strain-based crack-initiation life contour plots at the initial design a top view and b bottom view

with mechanical properties that exhibit dependence on tem-
perature. The design bounds of αx, αy, and αz in three di-
rections are defined as 11.10 × 10 - 6

≤ αx ≤ 20.62 × 10 - 6,
13.40 × 10 - 6

≤ αy ≤ 24.88 × 10 - 6, and 56.32 × 10 - 6
≤

αz ≤ 104.6 × 10 - 6.
Applying the proposed hybrid optimization method, it is

found that the global relative displacements are reduced when
CTE in the x and y directions are reduced. The coefficient of
thermal expansion in the z direction has no significant influ-
ence to the global relative displacement. Figures 12 and 13
show the global relative displacement histories at the initial
design and optimum design of CTE of PCB, respectively.
At the optimum design, the CTE values are [12.0178×10−6,
13.5302×10−6, 80.4496×10−6], and at the initial design,
they are [15.85×10−6, 19.14×10−6, 80.46×10−6]. It can be
seen that the global relative displacements in x and y di-
rections are reduced significantly, while the global relative
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Fig. 12 The global relative deformation at initial design

displacement in z direction exhibits almost no change. The
fatigue life for the initial CTE of PCB is 144 cycles, while
the fatigue life for the optimum CTE of PCB is 2,756 cycles,
as shown in Table 8, a 19-time improvement. The optimum
results also show that the global relative displacements in x
and y directions play a critical role in affecting the fatigue
life.

Case G2 In this case, CTE of package including both
of rigid carrier (αrc) and molding compound (αmc) are se-
lected as design variables. They are modeled as isotropic
materials. The design bounds of αrc and αmc are defined
as 9.10 × 10 - 6

≤ αrc ≤ 16.9 × 10 - 6 and 9.00 × 10 - 6
≤

αmc ≤ 20.0 × 10 - 6.
At the optimum design, the CTE values are [14.8576×

10−6, 20.0000×10−6], and at the initial design are [13.0×

10−6, 14.0×10−6]. It is noted that αrc and αmc need to be
increased to reduce global relative displacements. Figure 14
shows the global relative displacement histories at the opti-
mum of CTE of the package. Compared to Fig. 12, it can be
observed that the global relative deformation in the z direction
is reduced significantly, and the global relative displacements
in the x and y directions have also decreased. The fatigue life
at the initial CTE of the package is 144 cycles, whereas the fa-
tigue life at the optimum CTE of the package is 1,914 cycles,
as shown in Table 8, a 13-time improvement. The optimum
results show that the global relative deformation in z direction
does not play a significant role in determining the fatigue life
as the x and y direction displacements.

Case G3 In this case, CTE of the assembly (including
PCB, rigid carrier, and molding compound) are selected as
design variables. The same design bounds as in case G1 and
case G2 are applied here.

Utilizing the hybrid optimization method, the optimum
CTE values are obtained as [11.896×10−6, 13.4×10−6,
80.4532×10−6, 13.5971×10−6, 18.7216×10−6]. Figure 15
shows the global relative displacement histories at the op-
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Table 8 Case study for
optimization of global
displacements

timum CTE of the assembly. Because case G3 includes all
CTEs, the global relative displacements in all three direc-
tions are expected to be significantly reduced. The fatigue
life at the optimum CTE of the assembly is 20,483 cycles,
as shown in Table 8, a 142-time improvement, compared to
the initial CTE with 144 cycles. The optimum results show
that the CTE of the assembly have significant influence to the
thermal fatigue life.

The summary of these case studies is given in Table 8.
From the above case studies, it is noted that the CTE of mate-
rials in package have significant influence in the deformation

0 2500 5000 7500 10000 12500

Time (Sec)

-7

-4

-1

1

4

7

G
lo

ba
l R

el
at

iv
e 

D
is

pl
ac

em
en

t, 
µm

u
x

u
y

u
z

Fig. 13 The global relative deformation at optimum design of CTE of
PCB

of z direction, while the CTE of PCB has an effect to the
deformation in x and y directions.

4.2.2 Shape optimization of solder ball

In the local analysis, shape optimization of the solder ball is
carried out using the global displacement response as bound-
ary condition. For this, two extreme cases, i.e., case G1 (CTE
of PCB as design variables) and case G3 (CTE of PCB, rigid
carrier, and molding compound as design variables) of the
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Fig. 14 The global relative deformation at optimum design of CTE of
package
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Fig. 15 The global relative deformation at optimum design of CTE of
assembly

optimization of the global relative displacements, are
used as input for the shape optimization of the solder ball.
The solder ball shape parameters, such as the diameters of the
top surface (D1, mm), middle surface (D2, mm), and bottom
surface (D3, mm), are selected as design variables, as shown
in Fig. 16. The optimization formulation is to

maximize N f (‖1u(α∗; D0)‖, D)
subject to: 0.2850 ≤ D1 ≤ 0.6651

0.3537 ≤ D2 ≤ 0.8252
0.1803 ≤ D3 ≤ 0.4207

D1 ≤ D2
D3 ≤ D2 (26)

where Nf is the fatigue crack-initiation life, α* is the optimum
results from the global model, D0 is the initial value of design
variables, D is the vector of design variables, and Dl and Du

are the vectors of lower and upper bounds, respectively, of
design variables. D2 needs to be larger than D1 and D3 to
avoid a concave solder ball shape.

Case G1-L In this case, the solder ball shape optimization
is carried out using the boundary conditions obtained from
the optimum CTE of PCB in case G1. Using the proposed
hybrid optimization method, the design variables D1, D2, and
D3 at optimum are obtained as [0.3040, 0.5187, 0.4087] mm
from the initial design [0.4750, 0.5894, 0.3005] mm.
Figure 17 shows the fatigue life contour at the optimum de-
sign. The diameter of the top surface decreases significantly,
while the diameter of the bottom surface is increased. The
fatigue life improves from 2,756 cycles to 40,736 cycles, a
15-time improvement, as shown in Table 9.

Case G3-L In this case, the solder ball shape optimization
is carried out using the boundary conditions obtained from
the optimum CTE of PCB, rigid carrier and molding com-
pound in Case G3. Through design optimization, the design
variables D1, D2 and D3 at optimum are obtained as [0.4715,
0.5423, 0.3354] mm from the initial design [0.4750, 0.5894,
0.3005] mm. In this case, the diameters of the top, middle,

and bottom surfaces change very slightly. Figure 18 shows
the fatigue life contour at the optimum design. The fatigue life
is improved from 20,483 cycles to 46,899 cycles, a 2.29-time
improvement, as shown in Table 9.

The summary of these case studies for solder ball shape
optimization is given in Table 9. From these results, it is
observed that solder ball shape parameters significantly in-
fluence durability performance of the electronic packaging
system when global relative deformations due to thermal mis-
match are large.

5 Conclusions

This paper presents a new hybrid optimization method and its
application to find optimum designs of the microelectronic
packaging system. In this method, the gradient-based algo-
rithm and pattern search algorithm are integrated for robust
and efficient optimization process. The method is based on
multipoint interpolations of the objective and constraint func-
tions, a multiquadric RBF (or RBF plus polynomial-based
moving least-squares method if sensitivities are available)
for function approximation, and a pattern search algorithm
to impose a descent condition. Numerical examples are pre-
sented to illustrate the accuracy and computational efficiency
of the proposed method for both function approximation and
design optimization. A global–local optimization approach
is proposed for design optimization of ASAT 144 fpBGA
microelectronic packaging system to increase fatigue life.
Different combinations of material properties and shape de-
sign parameters are evaluated in several case studies. It is
observed that material properties of the packaging assembly
and solder ball shape parameters have significant influences
to the thermal fatigue life of solder joints. Through design
optimization, the durability performance of the microelec-
tronics packaging system is improved significantly.

D1 

D2 

D3 

rigid
carrier

solder
ball

PCB

Fig. 16 Design parameters of local model
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Fig. 17 The strain-based crack-initiation life contour plots at the optimum local shape design of case G1-L a top view and b bottom view

Table 9 Case study for
shape optimization of
solder ball

Shape optimization of solder ball Boundary condition transformed
from case G1 (PCB)

Boundary condition transformed
from case G3 (PCB+package)

Case G1-L Case G3-L

Design variables D1, D2, D3 D1, D2, D3
Initial fatigue life (global optimum,
cycles)

2,756 20,483

Design changes (mm) D1: 0.4750 → 0.3040 D1: 0.4750 → 0.4715
D2: 0.5894 → 0.5187 D2: 0.5894 → 0.5423
D3: 0.3005 → 0.4087 D3: 0.3005 → 0.3354

Optimum fatigue life (cycles) 40,736 46,899

Fig. 18 The strain-based crack-initiation life contour plots at the shape optimum local design of case G3-L a top view and b bottom view
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