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UNCERTAINTY QUANTIFICATION BY ALTERNATIVE
DECOMPOSITIONS OF MULTIVARIATE FUNCTIONS∗
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Abstract. This article advocates factorized and hybrid dimensional decompositions (FDD/HDD),
as alternatives to analysis-of-variance dimensional decomposition (ADD), for second-moment statis-
tical analysis of multivariate functions. New formulas revealing the relationships between component
functions of FDD and ADD are proposed. While ADD or FDD is relevant when a function is strongly
additive or strongly multiplicative, HDD, whether formed linearly or nonlinearly, requires no specific
dimensional hierarchies. Furthermore, FDD and HDD lead to alternative definitions of effective di-
mension, reported in the current literature only for ADD. New closed-form or analytical expressions
are derived for univariate truncations of all three decompositions, followed by mean-squared error
analysis of univariate ADD, FDD, and HDD approximations. The analysis finds appropriate con-
ditions when one approximation is better than the other. Numerical results affirm the theoretical
finding that HDD is ideally suited to a general function approximation that may otherwise require
higher-variate ADD or FDD truncations for rendering acceptable accuracy in stochastic solutions.
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1. Introduction. Uncertainty quantification of complex systems entails stochas-
tic computing for a large number of random variables. Although the sampling-based
methods can solve any stochastic problem, they generally require numerous determin-
istic trials and are, therefore, cost prohibitive when each analysis demands expensive
finite-element or similar numerical calculations. Existing analytical or approximate
methods require additional assumptions, mostly for computational expediency, that
begin to deteriorate when the input-output mapping is highly nonlinear and the input
variance is arbitrarily large. Furthermore, truly high-dimensional problems are all but
impossible to solve using most existing methods, including numerical integration. The
root deterrence to practical computability is often related to the high dimension of
the multivariate integration or interpolation problem, known as the curse of dimen-
sionality [1]. The dimensional decomposition of a multivariate function [8, 18, 12, 9]
addresses the curse of dimensionality to some extent by developing an input-output
behavior of complex systems with low effective dimension [2], wherein the degrees of
interactions between input variables attenuate rapidly or vanish altogether.

A prominent variant of dimensional decomposition is the well-known analysis-of-
variance or ANOVA dimensional decomposition (ADD), first presented by Hoeffding
in the 1940s in relation to his seminal work on U -statistics [8]. Since then, ADD has
been studied by numerous researchers in disparate fields of mathematics [16, 6, 7],
statistics [10, 3], finance [5], and basic and applied sciences [11], including engineer-
ing disciplines, mostly for uncertainty quantification [21, 15, 13]. However, ADD
constitutes a finite sum of lower-dimensional component functions of a multivariate
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function, and is, therefore, predicated on the additive nature of a function decompo-
sition. In contrast, when a response function is dominantly of a multiplicative nature,
suitable multiplicative-type decompositions, such as factorized dimensional decompo-
sition (FDD) [20], should be explored. But existing truncations of FDD are limited
to only univariate or bivariate approximations, because FDD component functions of
three or more variables have yet to be determined. No error analyses exist comparing
ADD and FDD, even for respective univariate approximations. Nonetheless, ADD
or FDD is relevant as long as the dimensional hierarchy of a stochastic response is
also additive or multiplicative. Unfortunately, the dimensional structure of a response
function, in general, is not known a priori. Therefore, indiscriminately using ADD
or FDD for general stochastic analysis is not desirable. Further complications may
arise when a complex system exhibits a response that is dominantly neither additive
nor multiplicative. In the latter case, hybrid approaches coupling both additive and
multiplicative decompositions, preferably selected optimally, are needed. For such
decompositions, it is unknown which truncation parameter should be selected when
compared with that for ADD or FDD. Is it possible to solve a stochastic problem by
selecting a lower truncation parameter for hybrid decompositions than for ADD or
FDD? If the answer is yes, then a significant, positive impact on high-dimensional
uncertainty quantification is anticipated. These enhancements, some of which are
indispensable, should be pursued without sustaining significant additional cost.

The purpose of this paper is threefold. First, a brief exposition of ADD and
FDD is given in section 3. A theorem, proven herein, reveals the relationship be-
tween all component functions of FDD and ADD, so far available only for univariate
and bivariate component functions. Three function classes, comprising purely ad-
ditive functions, purely multiplicative functions, and their mixtures, are examined
to illustrate when and how one decomposition or approximation is better than the
other. Second, a new hybrid approach optimally blending ADD and FDD approx-
imations, referred to as hybrid dimensional decomposition (HDD), is presented in
section 4 for second-moment analysis. Both linear and nonlinear mixtures of ADD
and FDD approximations are supported. Gaining insights from FDD and HDD, al-
ternative definitions of effective dimension are proposed. Third, section 5 reports new
explicit formulas for respective univariate approximations derived from ADD, FDD,
and HDD. The mean-squared error analyses pertaining to univariate ADD, FDD, and
HDD approximations are also described. Numerical results from four elementary yet
illuminating examples and a practical engineering problem are reported in sections 3
through 5 as relevant. There are nine new theoretical results stated or proved in
this paper: Theorems 3.4, 4.1, and 5.4, Corollaries 3.5 and 4.2, Propositions 5.1 and
5.2, and Lemmas 3.3 and 5.3. Mathematical notations and conclusions are defined or
drawn in sections 2 and 6, respectively.

2. Notation. Let N, N0, R, and R+
0 represent the sets of positive integer (natu-

ral), nonnegative integer, real, and nonnegative real numbers, respectively. For k ∈ N,
denote by Rk the k-dimensional Euclidean space and by Rk×k the set of k × k real-
valued matrices. These standard notations will be used throughout the paper.

Let (Ω,F , P ) be a complete probability space, where Ω is a sample space, F
is a σ-field on Ω, and P : F → [0, 1] is a probability measure. With BN rep-
resenting the Borel σ-field on RN , N ∈ N, consider an RN -valued random vector
X := (X1, . . . , XN) : (Ω,F) → (RN ,BN), which describes the statistical uncertainties
in all system and input parameters of a high-dimensional stochastic problem. The
probability law of X is completely defined by its joint probability density function
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fX : RN → R+
0 . Assuming independent coordinates of X, its joint probability den-

sity fX(x) = Πi=N
i=1 fi(xi) is expressed by a product of marginal probability density

functions fi of Xi, i = 1, . . . , N , defined on the probability triple (Ωi,Fi, Pi) with a
bounded or an unbounded support on R. For a given u ⊆ {1, . . . , N}, f−u(x−u) :=∏N

i=1,i/∈u fi(xi) defines the marginal density function of X−u := X{1,...,N}\u.

3. ANOVA and factorized dimensional decompositions. Let y(X) :=
y(X1, . . . , XN), a real-valued, measurable transformation on (Ω,F), define a high-
dimensional stochastic response of interest and L2(Ω,F , P ) represent a Hilbert space
of square-integrable functions y with respect to the induced generic measure fX(x)dx
supported on RN . Two useful dimensional decompositions, namely, ADD and FDD
of y, are briefly described as follows.

3.1. ADD. The ADD of y, expressed by the recursive form [12, 9, 16],

y(X) =
∑

u⊆{1,...,N}
yu(Xu),(3.1a)

y∅ =

∫
RN

y(x)fX(x)dx,(3.1b)

yu(Xu) =

∫
RN−|u|

y(Xu,x−u)f−u(x−u)dx−u −
∑
v⊂u

yv(Xv),(3.1c)

is a finite, hierarchical expansion in terms of its input variables with increasing
dimensions, where u ⊆ {1, . . . , N} is a subset with the complementary set −u =
{1, . . . , N}\u and cardinality 0 ≤ |u| ≤ N , and yu is a |u|-variate component function
describing a constant or the interactive effect of Xu = (Xi1 , . . . , Xi|u|), 1 ≤ i1 <
· · · < i|u| ≤ N , a subvector of X, on y when |u| = 0 or |u| > 0. The summation
in (3.1a) comprises 2N terms, with each term depending on a group of variables in-
dexed by a particular subset of {1, . . . , N}, including the empty set ∅. In (3.1c),
(Xu,x−u) denotes an N -dimensional vector whose ith component is Xi if i ∈ u and
xi if i /∈ u. When u = ∅, the sum in (3.1c) vanishes, resulting in the expression of
the constant function y∅ in (3.1b). When u = {1, . . . , N}, the integration in (3.1c)
is on the empty set, reproducing (3.1a) and hence finding the last function y{1,...,N}.
Indeed, all component functions of y can be obtained by interpreting literally (3.1c).
The nonconstant component functions satisfy the annihilating conditions [12, 9, 16]∫

R

yu(xu)fi(xi)dxi = 0 for i ∈ u,

resulting in two remarkable properties described by Propositions 3.1 and 3.2.
Proposition 3.1. The ADD component functions yu, ∅ �= u ⊆ {1, . . . , N}, have

zero means, i.e.,

E [yu(Xu)] =

∫
R|u|

yu(xu)fu(xu)dxu = 0.

Proposition 3.2. Two distinct ADD component functions yu and yv, where
∅ �= u ⊆ {1, . . . , N}, ∅ �= v ⊆ {1, . . . , N}, and u �= v, are orthogonal, i.e., they satisfy
the property

E [yu(Xu)yv(Xv)] =

∫
R|u∪v|

yu(xu)yv(xv)fu∪v(xu∪v)dxu∪v = 0.
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Remark 1. Traditionally, (3.1a)–(3.1c) with Xj , j = 1, . . . , N , following indepen-
dent, standard uniform distributions, has been identified as the ANOVA decomposi-
tion [16]; however, more recent works [15, 13] reveal no fundamental requirement for
a specific probability measure of X, provided that the resultant integrals in (3.1a)–
(3.1c) exist and are finite. In this work, the ADD should be interpreted with respect
to an arbitrary but product-type probability measure, instilling desirable orthogonal
properties.

3.1.1. ADD approximation. The S-variate ADD approximation ỹS(X), say,
of y(X), where 0 ≤ S < N , is obtained by truncating the right side of (3.1a) at
0 ≤ |u| ≤ S, yielding

(3.2) ỹS(X) =
∑

u⊆{1,...,N}
0≤|u|≤S

yu(Xu).

Applying the expectation operator on y(X) and ỹS(X) from (3.1a) and (3.2), respec-
tively, and noting Proposition 3.1, the mean of the S-variate ADD approximation

(3.3) E [ỹS(X)] = y∅

matches the exact mean E[y(X)] :=
∫
RN y(x)fX(x)dx = y∅, regardless of S. Ap-

plying the expectation operator again, this time on (ỹS(X) − y∅)2, and recognizing
Proposition 3.2 results in splitting the variance [12, 17]

(3.4) σ̃2
S := E

[
(ỹS(X)− y∅)

2
]
=

∑
∅
=u⊆{1,...,N}

1≤|u|≤S

σ2
u =

S∑
s=1

∑
∅
=u⊆{1,...,N}

|u|=s

σ2
u

of the S-variate ADD approximation into variances σ2
u := E[y2u(Xu)], ∅ �= u ⊆

{1, . . . , N}, of zero-mean ADD component functions yu. Clearly, the approximate
variance in (3.4) approaches the exact variance

σ2 := E
[
(y(X)− y∅)

2
]
=

∑
∅
=u⊆{1,...,N}

σ2
u =

N∑
s=1

∑
∅
=u⊆{1,...,N}

|u|=s

σ2
u,

the sum of all variance terms, when S → N . A normalized version σ2
u/σ

2 is often
called the global sensitivity index of y for Xu [17].

3.2. FDD. Consider a multiplicative form,

(3.5) y(X) =
∏

u⊆{1,...,N}
[1 + zu(Xu)],

of the dimensional decomposition of y, where zu, u ⊆ {1, . . . , N}, are various compo-
nent functions of input variables with increasing dimensions. Like the sum in (3.1a),
the product in (3.5) comprises 2N terms, with each term depending on a group of vari-
ables indexed by a particular subset of {1, . . . , N}, including the empty set ∅. This
multiplicative decomposition exists and is unique for any square-integrable function
y ∈ L2(Ω,F , P ) with a nonzero mean.

The FDD, originally proposed by Tunga and Demiralp [20] under the name of
factorized high-dimensional model representation, has yet to receive due attention for
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uncertainty quantification of complex systems. A prime reason why FDD is not on a
par with ADD is the lack of explicit relationships between their component functions.
Lemma 3.3 and Theorem 3.4 reveal the desired relationships.

Lemma 3.3. The FDD component functions, zv, ∅ �= v ⊆ {1, . . . , N}, of a
square-integrable function y : RN → R with a nonzero mean E[y(X)] = y∅ �= 0 satisfy

1 + zv(Xv) �= 0.

Proof. Suppose to the contrary that 1 + zv(Xv) = 0 for any ∅ �= v ⊆ {1, . . . , N}.
Then it follows from (3.5) that y(X) = 0 and hence E[y(X)] = 0. This contradicts
the assumption that E[y(X)] = y∅ �= 0, completing the proof.

Theorem 3.4. The recursive relationships between component functions of the
ADD and FDD of a nonzero mean, square-integrable function y : RN → R, represented
by (3.1a) and (3.5), respectively, are

(3.6) 1 + zu(Xu) =

∑
v⊆u

yv(Xv)

∏
v⊂u

[1 + zv(Xv)]
, u ⊆ {1, . . . , N}.

Proof. Since (3.1a) and (3.5) represent the same function y,

(3.7)
∑

u⊆{1,...,N}
yu(Xu) =

∏
u⊆{1,...,N}

[1 + zu(Xu)] ,

which, as is, is unwieldy to solve for zu. Instead, expand the right side of (3.5) to
form

y(X) = 1 + z∅+
∑

u⊆{1,...,N}
|u|=1

ru (zv(Xv); v ⊆ u) +
∑

u⊆{1,...,N}
|u|=2

ru (zv(Xv); v ⊆ u) + · · ·

+ r{1,...,N} (zv(Xv); v ⊆ {1, . . . , N})
=

∑
u⊆{1,...,N}

ru (zv(Xv); v ⊆ u) ,

(3.8)

where ru (zv(Xv); v ⊆ u) is a function of at most |u|-variate multiplicative component
functions of y. For instance, when u = ∅, u = {i}, and u = {i1, i2}, i, i1, i2 = 1, . . . , N ,
i2 > i1, the corresponding ru-functions are r∅(z∅) = 1 + z∅, r{i}(z∅, z{i}(Xi)), and
r{i1,i2}(z∅, z{i1}(Xi1), z{i2}(Xi2), z{i1,i2}(Xi1 , Xi2)), respectively. Comparing (3.1a)
and (3.8) yields the recursive relationship,

(3.9) ru (zv(Xv); v ⊆ u) = yu(Xu),

which, on inversion, expresses zu, u ⊆ {1, . . . , N}, in terms of the additive ANOVA
component functions yv, v ⊆ u. Therefore, all remaining additive or multiplicative
component functions of (3.7) not involved can be ignored. Indeed, setting yv = zv = 0
for all v � u in (3.7) results in

(3.10)
∑
v⊆u

yv(Xv) =
∏
v⊆u

[1 + zv(Xv)] = [1 + zu(Xu)]
∏
v⊂u

[1 + zv(Xv)] ,
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where Lemma 3.3 assures that 1+ zv(Xv) �= 0 for any ∅ �= v ⊆ u. On inversion, (3.10)
yields (3.6), completing the proof.

Corollary 3.5. Recursive evaluations of (3.6) eliminate 1 + zv, v ⊂ u, leading
to an explicit form of

(3.11) 1 + zu(Xu) =

∑
w|u|⊆u

yw|u|
(
Xw|u|

)

∏
w|u|⊂u

∑
w|u|−1⊆w|u|

yw|u|−1

(
Xw|u|−1

)

∏
w|u|−1⊂w|u|

. . .

. . .
∏

w2⊂w3

∑
w1⊆w2

yw1 (Xw1)

∏
w1⊂w2

∑
w0⊆w1

yw0 (Xw0)

1

for any u ⊆ {1, . . . , N}, solely in terms of the ANOVA component functions.
Corollary 3.6. The multiplicative constant, univariate, and bivariate compo-

nent functions of a square-integrable function y : RN → R, obtained by setting u = ∅,
u = {i}; i = 1, . . . , N , and u = {i1, i2}; i1 < i2 = 1, . . . , N , respectively, in (3.6) or
(3.11) are

1 + z∅ = y∅,(3.12)

1 + z{i}(Xi) =
y∅ + y{i}(Xi)

y∅
,(3.13)

and

(3.14) 1 + z{i1,i2}(Xi1 , Xi2) =
y∅ + y{i1}(Xi1) + y{i2}(Xi2) + y{i1,i2}(Xi1 , Xi2)

y∅

[
y∅ + y{i1}(Xi1)

y∅

][
y∅ + y{i2}(Xi2)

y∅

] .

Remark 2. Equations (3.12), (3.13), and (3.14) can also be obtained employ-
ing the identity and first- and second-degree idempotent operators [20]. However, to
obtain similar expressions for trivariate and higher-variate multiplicative component
functions, an extensive amount of algebra associated with third- and higher-degree
idempotent operators will be required. This is a primary reason why component
functions with three or more variables have yet to be reported in the current litera-
ture. Theorem 3.4, in contrast, is simpler and, more important, provides a general
expression—(3.6) or (3.11)—that is valid for a multiplicative component function of
an arbitrary number of variables.

Remark 3. When y∅ is zero or is close to zero, (3.5) through (3.14) may fail or
become ill-conditioned, raising questions about the suitability of an FDD approxima-
tion in such conditions. However, they do not necessarily imply that the FDD cannot
be used. Indeed, all of these problems can be remedied by appropriately conditioning
the function y. For instance, by adding a nonzero constant to y or multiplying y with
a nonzero constant, (3.5) through (3.14) for the preconditioned y remain valid and
well-behaved.
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3.2.1. FDD approximation. The S-variate FDD approximation ŷS(X), say,
of y(X), where 0 ≤ S < N , is obtained by truncating the right side of (3.5) at
0 ≤ |u| ≤ S, yielding

(3.15) ŷS(X) =
∏

u⊆{1,...,N}
0≤|u|≤S

[1 + zu(Xu)].

It is important to note that the right side of (3.15) contains products of at most S-
dimensional ANOVA component functions of y. Therefore, the term “S-variate” used
for the FDD approximation should be interpreted in the context of including at most
S-degree interaction of input variables, even though ŷS(X) is not strictly an S-variate
function.

Unlike (3.3) and (3.4), the mean and variance of ŷS(X), respectively defined as

(3.16) E [ŷS(X)] :=

∫
RN

ŷS(x)fX(x)dx

and

(3.17) σ̂2
S := E

[
(ŷS(X)− E [ŷS(X)])

2
]
:=

∫
RN

(ŷS(x) − E [ŷS(X)])
2
fX(x)dx,

do not produce closed-form or analytic expressions in terms of y∅ and σ2
u if S is selected

arbitrarily. This is one drawback of FDD when compared with ADD. Having said so,
they are easily estimated by sampling methods, such as quasi- and crude Monte Carlo
simulations, or even numerical integration if N is not overly large. Not wishing to
preempt subsequent discussion, these two moments can be obtained in closed form
when S = 1, that is, for the univariate FDD approximation, to be explained in
section 5.

Given a truncation S, which approximation stemming from ADD and FDD is
more precise? The answer depends on the class of multivariate function being ap-
proximated. Indeed, the relative advantage or disadvantage of ADD and FDD should
be judged by examining three special classes of functions: purely multiplicative func-
tions, purely additive functions, and their mixtures, described as follows.

3.3. Purely multiplicative functions. Consider a function of pure multiplica-
tive form

(3.18) y(X) = ν0

N∏
i=1

hi(Xi),

where ν0 ∈ R is a constant and hi : R → R , i = 1, . . . , N , are square-integrable
univariate functions with

νi := E [hi(Xi)] :=

∫
R

hi(xi)fi(xi)dxi,

δ2i := E
[
(hi(Xi)− νi)

2
]
:=

∫
R

(hi(xi)− νi)
2
fi(xi)dxi

denoting their first two moments. For a function y satisfying (3.18), both ADD and
FDD component functions and their respective variances can be determined with little
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effort. Indeed, when (3.1b) and (3.1c) are used, the outcome is

y∅ = 1 + z∅ = ν0

N∏
i=1

νi,(3.19)

yu(Xu) = ν0

(∏
i/∈u

νi

)∏
i∈u

[hi(Xi)− νi], ∅ �= u ⊆ {1, . . . , N},(3.20)

whereas applying (3.19) and (3.20) to (3.6) or (3.11) results in

(3.21) 1 + zu(Xu) =

⎧⎨
⎩

hi(Xi)

νi
if u = {i}, i = 1, . . . , N,

1 if |u| ≥ 2.

The ADD component functions lead to the S-variate variance approximation

(3.22) σ̃2
S =

S∑
s=1

∑
∅
=u⊆{1,...,N}

|u|=s

ν20

(∏
i/∈u

ν2i

)∏
i∈u

δ2i

that approaches the exact variance

(3.23) σ2 = ν20

[
N∏
i=1

(
δ2i + ν2i

)− N∏
i=1

ν2i

]

of y as S → N . In contrast, the FDD component functions, due to their multiplicative
structure, yield the exact variance, that is, σ̂2

S = σ2 for any 1 ≤ S ≤ N . The implica-
tion is that the univariate truncation of FDD is adequate for calculating the variance
or any other probabilistic characteristics of a purely multiplicative function y. This is
because such a function is exactly reproduced by its univariate FDD approximation.
The same does not hold true for an ADD approximation, requiring, therefore, higher-
variate truncations to approximate y progressively accurately. Clearly, FDD is more
relevant than ADD for the multiplicative class of functions.

3.4. Purely additive functions. Now consider a function of purely additive
form

(3.24) y(X) = μ0 +

N∑
i=1

gi(Xi).

Here μ0 ∈ R is another constant and gi : R → R , i = 1, . . . , N , are square-integrable
univariate functions with

μi := E [gi(Xi)] :=

∫
R

gi(xi)fi(xi)dxi,

λ2
i := E

[
(gi(Xi)− μi)

2
]
:=

∫
R

(gi(xi)− μi)
2
fi(xi)dxi

designating their first two moments. Employing (3.1a)–(3.1c) and (3.6), the ADD and
FDD component functions of y in (3.24) are

(3.25) y∅ = 1 + z∅ = μ0 +

N∑
i=1

μi,
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(3.26) yu(Xu) =

{
gi(Xi)− μi if u = {i}, i = 1, . . . , N,

0 if |u| ≥ 2,

and

(3.27) 1 + zu(Xu) =

μ0 +

(
N∑
i=1

μi

)
+
∑
i∈u

[gi(Xi)− μi]

∏
v⊂u

[1 + zv(Xv)]
,

with the nonconstant FDD component functions expressed recursively. In this case,
the variance due to an S-variate ADD approximation yields the exact variance

(3.28) σ̃2
S = σ2 =

N∑
i=1

λ2
i

for any 1 ≤ S ≤ N . However, due to the complicated form of (3.27), an explicit for-
mula for the variance of a generic S-variate FDD approximation is not possible. But
given a truncation S, the corresponding variance can be estimated by sampling meth-
ods or numerical integration. Nonetheless, if a function has a purely additive struc-
ture, the univariate ADD approximation exactly reproduces that function, thereby
needing at most the univariate truncation of ADD. In contrast, FDD will now re-
quire higher-variate truncations for rendering gradually accurate approximations. For
purely additive functions, ADD is, therefore, more appropriate than FDD, turning the
table on the latter decomposition.

3.5. Mixtures of multiplicative and additive functions. Finally, consider
a blended function of the form

(3.29) y(X) = ν0

(
N∏
i=1

hi(Xi)

)
+ μ0 +

N∑
i=1

gi(Xi),

built on adding the purely multiplicative and purely additive pieces from (3.18) and
(3.24). Depending on relative orders of these constituents, y can be dominantly mul-
tiplicative or dominantly additive or neither. Regardless, (3.1a)–(3.1c) result in its
ADD component functions

y∅ = ν0

(
N∏
i=1

νi

)
+ μ0 +

N∑
i=1

μi,(3.30)

(3.31)

yu(Xu) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ν0

⎛
⎝ N∏

j=1,j 
=i

νj

⎞
⎠ [hi(Xi)− νi] + gi(Xi)− μi if u = {i}, i = 1, . . . , N,

ν0

(∏
i/∈u

νi

)∏
i∈u

[hi(Xi)− νi] if |u| ≥ 2,
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lending themselves to calculate the variance

(3.32) σ̃2
S =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

⎡
⎣ν20

⎛
⎝ N∏

j=1,j 
=i

ν2j

⎞
⎠ δ2i + λ2

i + 2ν0

⎛
⎝ N∏

j=1,j 
=i

νj

⎞
⎠ η2i

⎤
⎦ if S = 1,

σ̃2
1 +

S∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

ν20

(∏
i/∈u

ν2i

)∏
i∈u

δ2i if S ≥ 2,

of an S-variate ADD approximation, where

η2i := E [(hi(Xi)− νi) (gi(Xi)− μi)] :=

∫
R

(hi(xi)− νi) (gi(xi)− μi) fi(xi)dxi

is the covariance between hi(Xi) and gi(Xi). The approximate variance approaches
the exact variance

(3.33) σ2 = ν20

[
N∏
i=1

(
δ2i + ν2i

)− N∏
i=1

ν2i

]
+

N∑
i=1

λ2
i + 2ν0

(
N∏
i=1

νi

)
N∑
i=1

η2i
νi

,

where the first two terms are the variances of the purely multiplicative and purely
additive pieces, while the third term represents the covariance between these two
pieces. The formulas for yu(Xu), σ̃

2
S , and σ2 given in (3.30) through (3.33) are slightly

general, shrinking to (3.19) through (3.23) for purely multiplicative functions and to
(3.25) through (3.28) for purely additive functions, as expected. Although the FDD
component functions can be easily derived as per (3.6), again, an explicit formula for
the variance σ̂2

S of FDD approximation remains impalpable for a generic truncation
S. Unlike the two pure function classes discussed in preceding subsections, it is not
obvious which approximation between ADD and FDD is better for this mixed class
of functions.

3.6. Example 1. Consider two functions,

(3.34) y1 = ν0

N∏
i=1

Xi and y2 = μ0 +

N∑
i=1

Xi,

endowed with a purely multiplicative and a purely additive structure, respectively,
where Xi, i = 1, . . . , N , are N independent and identically distributed random vari-
ables, each following uniform distribution over [0,1], ν0 = 100, and μ0 = 0. The mean
and variance of y1(X) are ν0/2

N and ν20/3
N − ν20/2

2N , respectively, and of y2(X) are
μ0 +N/2 and N/12, respectively. The ADD and FDD component functions of y1 or
y2 were obtained using (3.19) through (3.21) or (3.25) through (3.27). The means and
variances of ADD approximations were calculated exactly using (3.19) or (3.25) and
(3.22) or (3.28), whereas the means and variances of FDD approximations [(3.16),
(3.17)] were estimated by a fully symmetric multidimensional integration rule with
nine generators [4]. The purpose of this example is to compare the variances of both
functions obtained using various ADD and FDD approximations.

Tables 3.1 and 3.2, respectively, present the mean-squared errors by univariate
(S = 1) to decavariate (S = 10) truncations of ADD for y1 and by univariate (S = 1)
to pentavariate (S = 5) truncations of FDD for y2 when N = 6, 7, 8, 9, 10. The
error is defined as the absolute difference between the exact (σ2) and approximate
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Table 3.1

ADD approximation errors(a) in variances of y1 in Example 1.

N
S 6 7 8 9 10
1 0.566974 0.640558 0.703332 0.75646 0.801087
2 0.206118 0.281116 0.357219 0.43174 0.502717
3 4.5738 × 10−2 8.1426 × 10−2 0.126477 0.179179 0.237499
4 5.6430 × 10−3 1.4862 × 10−2 3.0335 × 10−2 5.2899 × 10−2 8.2789 × 10−2

5 2.9700 × 10−4 1.5496 × 10−3 4.6969 × 10−3 1.0806 × 10−2 2.0905 × 10−2

6 0 7.0437 × 10−5 4.2391 × 10−4 1.4518 × 10−3 3.7149 × 10−3

7 −(b) 0 1.6956 × 10−5 1.1548 × 10−4 4.4062 × 10−4

8 −(b) −(b) 0 4.1244 × 10−6 3.1328 × 10−5

9 −(b) −(b) −(b) 0 1.0106 × 10−6

10 −(b) −(b) −(b) −(b) 0

(a) The error is defined as the absolute difference between exact and approximate variances,
divided by the exact variance.

(b) Not applicable.

Table 3.2

FDD approximation errors(a) in variances of y2 in Example 1.

N
S 6 7 8 9 10

1 2.3436 × 10−2 2.0641 × 10−2 1.8420 × 10−2 1.6620 × 10−2 1.5134 × 10−2

2 1.1620 × 10−3 9.2133 × 10−4 7.4728 × 10−4 6.1788 × 10−4 5.1923 × 10−4

3 1.0918 × 10−4 7.8170 × 10−5 5.5198 × 10−5 4.2094 × 10−5 3.2728 × 10−5

4 1.7728 × 10−5 1.3099 × 10−5 9.3640 × 10−6 6.7126 × 10−6 4.8768 × 10−6

5 2.5480 × 10−6 2.5579 × 10−6 1.9704 × 10−6 1.4152 × 10−6 9.9971 × 10−7

(a) The error is defined as the absolute difference between exact and approximate variances,
divided by the exact variance.

(σ̃2
S or σ̂2

S) variances, divided by the exact variance. Given a problem size (N), the
errors decay with increasing S for both functions as expected, although the ADD
approximations for a fixed S worsen when N grows larger. This implies that an ADD
approximation becomes less precise for high-dimensional multiplicative functions. No
such degradations are observed for FDD approximations of high-dimensional additive
functions. Both errors vanish altogether when S = N = 10, as the decavariate ADD
and FDD approximations coincide with y1 and y2, respectively. Due to the purely
multiplicative and purely additive functional forms examined, their univariate FDD
and univariate ADD approximations are the same as y1 and y2, producing respective
variances exactly.

4. Hybrid dimensional decomposition. When a desired stochastic response
exhibits neither a dominantly additive nor a dominantly multiplicative nature, then
a mixed approach that optimally combines ADD and FDD approximations is needed.
Three hybrid approximations, employing a nonlinear and two linear mixtures of ADD
and FDD, are proposed.

4.1. Hybrid approximations. Given S-variate ADD and FDD approximations
ỹS(X) and ŷS(X), let

ȳS(X;αS , βS , γS , . . .) :=

⎧⎪⎨
⎪⎩
y∅ if S = 0,

h(ỹS(X), ŷS(X);αS , βS , γS , . . .) if 1 ≤ S < N,

y(X) if S = N,

define a general, S-variate hybrid approximation of y(X), where h is a chosen linear or



ALTERNATIVE DIMENSIONAL DECOMPOSITIONS A3035

nonlinear model function such that E[ȳS(X;αS , βS , γS , . . .)] = y∅ and αS , βS , γS , . . .
are the associated model parameters. With no loss of generality, the zero-mean func-
tions, defined by w(X) := y(X) − y∅, w̃S(X) := ỹS(X) − y∅, ŵS(X) := ŷS(X) −
E[ŷS(X)], and w̄S(X;αS , βS , γS , . . .) := ȳS(X;αS , βS , γS , . . .) − y∅, will be used for
the remainder of this section. It is important to note that the expectation of the
univariate FDD approximation ŷ1(X) is y∅, which is also the mean of y(X). Since
a higher-variate approximation cannot be worse than a lower-variate approxima-
tion, one may conjecture, in the absence of a rigorous proof, that the bivariate and
higher-variate FDD approximations also yield the exact mean. However, such con-
jecture is neither required nor used for hybrid approximations developed here. The-
orem 4.1 and Corollaries 4.2 and 4.3 describe three optimal hybrid approximations
ȳS,n(X;αS,n, βS,n, γS,n), ȳS,l(X;αS,l, βS,l), and ȳS,l′(X;αS,l′) for 1 ≤ S < N , each
producing the exact mean y∅, where the subscripts n, l, and l′ refer to a nonlinear
and two linear models examined in this work. Their zero-mean counterparts are de-
fined as w̄S,n(X;αS,n, βS,n, γS,n) := ȳS,n(X;αS,n, βS,n, γS,n)−y∅, w̄S,l(X;αS,l, βS,l) :=
ȳS,l(X;αS,l, βS,l)− y∅, and w̄S,l′(X;αS,l′) := ȳS,l′(X;αS,l′)− y∅, respectively.

Theorem 4.1. Given an integer 1 ≤ S < N < ∞, let w̃S(X) and ŵS(X)
represent zero-mean, S-variate ADD and FDD approximations with variances σ̃2

S :=
E[ỹS(X) − y∅]2 = E[w̃2

S(X)] and σ̂2
S := E[ŷS(X) − E[ŷS(X)]]2 = E[ŵ2

S(X)], respec-
tively, of a real-valued, zero-mean, square-integrable function w(X). Then an optimal,
nonlinear, S-variate hybrid approximation of w(X), if it exists, is

(4.1)
w̄S,n(X;αS,n, βS,n, γS,n) = αS,nw̃S(X) + βS,nŵS(X)

+ γS,n [w̃S(X)ŵS(X)− E {w̃S(X)ŵS(X)}] ,

where (αS,n, βS,n, γS,n) ∈ R3 is the solution of
(4.2)⎡
⎣ σ̃2

S E [w̃S(X)ŵS(X)] E
[
w̃2

S(X)ŵS(X)
]

σ̂2
S E

[
w̃S(X)ŵ2

S(X)
]

(sym.) E [w̃S(X)ŵS(X)− E {w̃S(X)ŵS(X)}]2

⎤
⎦
⎧⎨
⎩
αS,n

βS,n

γS,n

⎫⎬
⎭

=

⎧⎨
⎩

σ̃2
S

E [w(X)ŵS(X)]
E [w(X)w̃S(X)ŵS(X)]

⎫⎬
⎭ .

Proof. Define

ēS,n := [w(X) − w̄S,n(X;αS,n, βS,n, γS,n)]
2

as the square of the difference between w(X) and its S-variate hybrid approximation
w̄S,n(X;αS,n, βS,n, γS,n). For the mean-squared error of w̄S,n to be minimum, set

(4.3)
∂E [ēS,n]

∂αS,n
=

∂E [ēS,n]

∂βS,n
=

∂E [ēS,n]

∂γS,n
= 0.

Let A be an open subset of R3. Suppose that ēS,n : RN × A → R satisfies
the following regularity conditions: (1) ēS,n is a Lebesgue-integrable function of X
for each (αS,n, βS,n, γS,n) ∈ A; (2) for almost all x ∈ RN , the partial derivatives
∂ēS,n/∂αS,n, ∂ēS,n/∂βS,n, and ∂ēS,n/∂γS,n exist for all (αS,n, βS,n, γS,n) ∈ A; and
(3) there exists an integrable function θ : RN → R such that |∂ēS,n/∂αS,n| ≤ θ(x),
|∂ēS,n/∂βS,n| ≤ θ(x), and |∂ēS,n/∂γS,n| ≤ θ(x) for all (αS,n, βS,n, γS,n) ∈ A. Then
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for all (αS,n, βS,n, γS,n) ∈ A, the differential and expectation (integral) operators in
(4.3) can be interchanged, that is,

(4.4) E

[
∂ēS,n
∂αS,n

]
= E

[
∂ēS,n
∂βS,n

]
= E

[
∂ēS,n
∂γS,n

]
= 0.

Substituting the expression of w̄S,n(X;αS,n, βS,n, γS,n) from (4.1) into (4.4) produces
(4.2), proving the theorem.

Corollary 4.2. Neglecting the nonlinear term in (4.1) through (4.4) creates an
optimal, linear, S-variate hybrid approximation

(4.5) w̄S,l(X;αS,l, βS,l) = αS,lw̃S(X) + βS,lŵS(X)

of w(X), 1 ≤ S < N < ∞, where the optimal model parameters

(4.6) αS,l =
σ̂2
S σ̃

2
S − E [w̃S(X)ŵS(X)]E [w(X)ŵS(X)]

σ̃2
S σ̂

2
S − (E [w̃S(X)ŵS(X)])2

and

(4.7) βS,l =
σ̃2
SE [w(X)ŵS(X)]− σ̃2

SE [w̃S(X)ŵS(X)]

σ̃2
S σ̂

2
S − (E [w̃S(X)ŵS(X)])

2 .

Corollary 4.3. Neglecting the nonlinear term and constraining the sum of two
remaining model parameters to be unity in (4.1) through (4.4) creates yet another
optimal, linear, S-variate hybrid approximation

(4.8) w̄S,l′(X;αS,l′) = αS,l′w̃S(X) + (1− αS,l′)ŵS(X)

of w(X), 1 ≤ S < N < ∞, where the optimal model parameter

(4.9) αS,l′ =
σ̃2
S + σ̂2

S − E [w̃S(X)ŵS(X)] − E [w(X)ŵS(X)]

σ̃2
S + σ̂2

S − 2E [w̃S(X)ŵS(X)]
.

The second linear hybrid approximation w̄S,l′ for S = 1 or 2 presented in Corol-
lary 4.3 coincides with that proposed by Tunga and Demiralp [19]. However, the
results of the first linear hybrid approximation w̄S,l and nonlinear hybrid approxi-
mation w̄S,n—that is, Theorem 4.1 and Corollary 4.2—are new. Furthermore, the
two linear approximations, w̄S,l and w̄S,l′ , are not the same for a general truncation
2 ≤ S < N . Indeed,

αS,l − αS,l′ =(
σ̂2
S − E [w̃S(X)ŵS(X)]

) (
σ̃2
S − E [w̃S(X)ŵS(X)]

)
(E [w̃S(X)ŵS(X)]− E [w(X)ŵS(X)])

(σ̃2
S + σ̂2

S − 2E [w̃S(X)ŵS(X)])
(
σ̃2
S σ̂

2
S − {E [w̃S(X)ŵS(X)]}2

)
does not vanish for arbitrary S. Nor do the model parameters of the first linear hybrid
approximation, which satisfy

αS,l + βS,l = 1−
(
σ̃2
S − E [w̃S(X)ŵS(X)]

)
(E [w̃S(X)ŵS(X)]− E [w(X)ŵS(X)])

σ̃2
S σ̂

2
S − {E [w̃S(X)ŵS(X)]}2 ,

sum to unity, as required in the second linear hybrid approximation. Equation (4.5)
is endowed with two independent parameters and hence more flexibility in forming
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an optimal approximation. Therefore, the first approximation is expected to produce
more accurate results than the second approximation, to be illustrated in Example 2.

Remark 4. The nonlinear hybrid approximation w̄S,n presented in Theorem 4.1 is
motivated on furnishing more precise stochastic solutions than those by either version
of the linear hybrid approximation. This is possible when all higher-order moments
involved in (4.2) exist and the system matrix in (4.2) is invertible. The need for
a nonlinear approximation becomes significant when only a univariate truncation is
feasible, but not necessarily yielding sufficiently accurate statistical solutions by linear
approximations. The numerical results from linear and nonlinear approximations will
be contrasted in section 5.

Remark 5. Since E[w̃S(X)ŵS(X)] ≤ σ̃2
S σ̂

2
S (Cauchy–Schwarz inequality), the

submatrix formed by the first two rows and columns of the system matrix in (4.2) is
invertible. Therefore, the linear hybrid approximations exist for any function y or w
with a finite variance. Under appropriate conditions, the linear approximations, w̄S,l

and w̄S,l′ , for a given 1 ≤ S < N < ∞, are capable of reproducing the exact solution:
(1) If w = w̃S , then (4.6), (4.7), and (4.9) yield αS,l = αS,l′ = 1 and βS,l = 0, and
hence w̄S,l = w̄S,l′ = w̃S = w; (2) if w = ŵS , then (4.6), (4.7), and (4.9) produce
αS,l = αS,l′ = 0 and βS,l = 1, and therefore w̄S,l = w̄S,l′ = ŵS = w. In Example
1, for instance, both functions y1 and y2 and their respective linear, univariate HDD
approximations are coincident, leading to exact variances by the HDD approximation.

4.2. Second-moment properties. Applying the expectation operator on (4.1),
(4.5), and (4.8) yields the exact mean

(4.10) E [ȳS,n(X;αS,n, βS,n, γS,n)] = E [ȳS,l(X;αS,l, βS,l)] = E [ȳS,l′(X;αS,l′)] = y∅,

by all three hybrid approximations. However, their respective variances,
(4.11)
σ̄2
S,n := E

[
w̄2

S,n(X;αS,n, βS,n, γS,n)
]
= α2

S,nσ̃
2
S + β2

S,nσ̂
2
S

+ γ2
S,nE [w̃S(X)ŵS(X)− E {w̃S(X)ŵS(X)}]2 + 2αS,nβS,nE [w̃S(X)ŵS(X)]

+ 2αS,nγS,nE
[
w̃2

S(X)ŵS(X)
]
+ 2βS,nγS,nE

[
w̃S(X)ŵ2

S(X)
]
,

(4.12) σ̄2
S,l := E

[
w̄2

S,l(X;αS,l, βS,l)
]
= α2

S,lσ̃
2
S + β2

S,lσ̂
2
S + 2αS,lβS,lE [w̃S(X)ŵS(X)] ,

and

(4.13)
σ̄2
S,l′ := E

[
w̄2

S,l′(X;αS,l′ , βS,l′)
]

= α2
S,l′ σ̃

2
S + (1− αS,l′)

2σ̂2
S + 2αS,l′(1 − αS,l′)E [w̃S(X)ŵS(X)] ,

while approximate, emerge steadily more accurate as S → N . Compared with ADD
and FDD approximations, the HDD approximations proposed require expectations
of various products of w̃S(X) and ŵS(X) to calculate their variances. They simplify
greatly for the univariate HDD approximation, to be discussed in the following section.

4.3. Example 2. Consider the blended function

(4.14) y = y∅ +

N∑
i=1

Xi − E

[
N∑
i=1

Xi

]
√√√√E

(
N∑
i=1

Xi − E

[
N∑
i=1

Xi

])2
+

N∏
i=1

Xi − E

[
N∏
i=1

Xi

]
√√√√E

(
N∏
i=1

Xi − E

[
N∏
i=1

Xi

])2



A3038 SHARIF RAHMAN

Table 4.1

ADD, FDD, and HDD approximation errors(a) in variances of y in Example 2.

Approximation
S ADD FDD HDD (1st linear model) HDD (2nd linear model)

1 0.139942 9.8251 × 10−2 2.2734 × 10−2 2.2734 × 10−2

2 3.9452 × 10−2 2.8834 × 10−2 1.5503 × 10−3 5.5528 × 10−3

3 5.9550 × 10−3 3.1717 × 10−3 1.8656 × 10−4 5.7923 × 10−3

4 3.7219 × 10−4 3.7008 × 10−4 1.4099 × 10−5 5.0992 × 10−4

(a) The error is defined as the absolute difference between exact and approximate
variances, divided by the exact variance.

of N random variables, Xi, i = 1, . . . , N , which are independent, identical, and uni-
formly distributed over [0,1]. From elementary calculations, the mean and variance of
y(X) are y∅ and 2+ 2

√
N × 3N−1/(22N − 3N ), respectively. Since y in (4.14) follows

the general structure of (3.29), all ADD component functions [(3.30), (3.31)] and the
resultant second-moment statistics [(3.30), (3.32)] of an S-variate ADD approximation
were obtained exactly. However, the mean and variance of an S-variate FDD approx-
imation were estimated by a fully symmetric multidimensional integration rule with
nine generators [4]. The variance of an S-variate HDD approximation was obtained
using (4.12), where the expectation in the last term and those involved in the model
parameters [(4.6), (4.7)] were calculated by the same integration rule. The objective
of this example is to evaluate the accuracy of various ADD, FDD, and HDD (both
linear models) approximations in calculating several probabilistic characteristics of y
for N = 5 and y∅ = 5.

The means of FDD approximations for S = 1, 2, 3, and 4, obtained using the
aforementioned multidimensional rule and retaining five digits after the decimal point,
are 5.00000, 5.00014, 5.00021, and 5.00002. They are practically equal to 5—the value
of y∅—demonstrating that all four FDD approximations also produce the exact mean,
at least in this example. However, a formal proof of this conjecture, applicable to FDD
approximations of arbitrary functions, remains elusive.

Table 4.1 presents the errors in variances of y calculated by univariate (S =
1) to quadrivariate (S = 4) truncations of ADD, FDD, and HDD. The definition
of the error is the same as in Example 1. Both ADD and FDD commit smaller
errors when the truncation S increases, as expected. Since the purely additive and
purely multiplicative pieces of y have been standardized, that is, they have zero means
and unit variances, the ADD and FDD errors have similar orders and trends. In
contrast, the HDD errors from the first linear approximation, given 1 ≤ S ≤ 4, are
consistently lower than the corresponding ADD or FDD errors by almost an order of
magnitude. However, the same observation does not hold true for the second linear
hybrid approximation, which provides more precise results than ADD or FDD only for
S = 1 or 2, but the accuracy does not improve or even degrades for S = 3 and 4. The
superior accuracy of the first linear approximation is attributed to two independent
model parameters, compared with a single model parameter of the second linear
approximation. Nonetheless, the hybrid approximation proposed is more accurate
than the ADD or FDD approximation, at least, for second-moment analysis.

Does the improvement of HDD approximation extend to other probabilistic char-
acteristics of y? Figure 4.1 depicts the probability density functions (PDFs) of y and
its univariate to quadrivariate ADD, FDD, and HDD (first linear model) approxi-
mations. The PDFs, essentially the normalized histograms, were estimated from 106

Monte Carlo simulations of y and their various approximations. At univariate trunca-
tion (S = 1), neither ADD nor FDD provide acceptable results when compared with
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Fig. 4.1. PDFs of y and its ADD, FDD, and HDD approximations in Example 2; note: uni-
variate (top, left); bivariate (top, right); trivariate (bottom, left); quadrivariate (bottom, right).

the PDF of y. In contrast, the PDF derived from the univariate or bivariate HDD
approximation matches with the PDF of y better than the corresponding ADD or
FDD approximation. The discrepancy between the PDFs of y and its approximation,
whether ADD, FDD, or HDD, diminishes as S increases. At quadrivariate truncation
(S = 4), all four PDFs are practically the same, even at the tail regions. Any distinc-
tion, especially between the results of y and its FDD or HDD approximation, is hardly
visible to the naked eye. Judging from the rates at which the PDFs of approximations
are converging to the PDF of y, the HDD approximation may also be beneficial for
calculating the probability distribution of a stochastic response. This in large mea-
sure depends on the smoothness properties of the function chosen. However, strictly
speaking, there does not exist a formal proof yet that an HDD approximation will
always lead to an accurate calculation of probabilities. The topic merits further study.

4.4. Effective dimensions. When employing dimensional decomposition of a
square-integrable function y, an important decision revolves around selecting the trun-
cation parameter S. The truncation can be achieved by the notion of effective dimen-
sion, introduced by Caflisch, Morokoff, and Owen [2], who exploited ADD-based low
effective dimension to explain why the quasi-Monte Carlo method outperforms the
crude Monte Carlo algorithm for evaluating a certain class of high-dimensional inte-
grals. In this subsection, a complete set of definitions, including two new alternative
ones, of effective dimension, stemming from ADD, FDD, and HDD are presented.
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Definition 4.4. A square-integrable multivariate function y with finite variance
0 < σ2 < ∞ has the ADD-based effective dimension 1 ≤ SADD ≤ N if

(4.15) SADD := min
{
S : 1 ≤ S ≤ N such that |σ2 − σ̃2

S | ≤ (1− p)σ2
}
,

the FDD-based effective dimension 1 ≤ SFDD ≤ N if

(4.16) SFDD := min
{
S : 1 ≤ S ≤ N such that |σ2 − σ̂2

S | ≤ (1− p)σ2
}
,

and the HDD-based effective dimension 1 ≤ SHDD ≤ N if

(4.17) SHDD := min
{
S : 1 ≤ S ≤ N such that |σ2 − σ̄2

S | ≤ (1− p)σ2
}
,

where σ̄2
S := E[ȳS(X;αS , βS , γS , . . .)−y∅]2 = E[w̄2

S ] is the variance due to an S-variate
(linear or nonlinear) HDD approximation of w(X) and 0 ≤ p ≤ 1 is a percentile
threshold close to one.

The definitions of effective dimension capture the notion in which y, represented
by its ADD, FDD, or HDD, is almost SADD-, SFDD-, or SHDD-dimensional. The
knowledge of effective dimension, whether rooted in ADD, FDD, or HDD, is valuable,
because ANOVA terms up to the effective dimension contribute most to the function.
Among these three definitions, the ADD approximation results in the effective super-
position dimension (SADD) of Caflisch, Morokoff, and Owen—a concept ideally suited
to a function comprising strongly additive dimensional structure. In contrast, the ef-
fective dimension SFDD proposed is appropriate when the dimensional structure is
strongly multiplicative. However, the dimensional hierarchy of a multivariate function
in general is neither dominantly additive nor dominantly multiplicative. Therefore,
the effective dimension SHDD should be viewed as a generalized effective dimension
that is applicable to a broader class of functions than the ADD- and FDD-based
effective dimensions. Furthermore, given a truncation S, an HDD approximation
can be more precise than both ADD and FDD approximations. In which case, the
HDD-based effective dimension is expected to be lower than or equal to the ADD- or
FDD-based effective dimensions. It is, therefore, possible to optimally blend lower-
variate ANOVA terms in HDD to contribute more to the function than by the same
ANOVA terms in ADD or FDD alone. See Example 3 for numerical results.

Remark 6. Caflisch, Morokoff, and Owen used the 99th percentile for p, but it
can be treated as a threshold parameter linked to the desired accuracy of a stochastic
solution. They also introduced effective dimension in the truncation sense, referred to
as effective truncation dimension, which is appropriate when some variables are more
important than others in an ordered set of the additive decomposition. It is possible
to define similar effective dimensions grounded on FDD and HDD approximations as
well. In contrast, the effective superposition dimensions in (4.15), (4.16), and (4.17)
determine whether the low-variate component functions of dimensional decomposition
dominate the function and are appropriate when all variables are equally important.
For truly high-dimensional problems, all variables contribute to a function value;
therefore, the effective superposition dimensions examined are more useful than the
effective truncation dimension.

4.5. Example 3. Consider the functions y1 and y2 described by (3.34) in Ex-
ample 1 and y described by (4.14) in Example 2. The purpose of this example is
to compare the effective dimensions of these three functions, stemming from various
dimensional decompositions and demonstrate the benefit of the HDD-based effective
dimension.
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Table 4.2

Effective dimensions of functions in Examples 1 and 2 for p = 0.99.

Function y1 in (3.34) Function y2 in (3.34) Function y in (4.14)
N SADD SFDD SHDD SADD SFDD SHDD SADD SFDD SHDD

5 −(a) −(a) −(a) −(a) −(a) −(a) 3 3 2

6 4 1 1 1 2 1 −(a) −(a) −(a)

7 5 1 1 1 2 1 −(a) −(a) −(a)

8 5 1 1 1 2 1 −(a) −(a) −(a)

9 6 1 1 1 2 1 −(a) −(a) −(a)

10 6 1 1 1 2 1 −(a) −(a) −(a)

(a) Not applicable as 6 ≤ N ≤ 10 in Example 1 and N = 5 in Example 2.

Table 4.2 enumerates SADD, SFDD, and SHDD of y1 and y2 for N = 6, 7, 8, 9, 10
and of y for N = 5 when p = 0.99. They are easily obtained from respective definitions
of effective dimensions given by (4.15), (4.16), and (4.17), and the second-moment
errors listed in Tables 3.1 and 3.2. For all functions or problem sizes examined, HDD
leads to least effective dimensions. This is because the variance of a multivariate
function, given the largest dimension of ANOVA component functions retained, is
better estimated by HDD than ADD or FDD approximations.

5. Univariate approximations. The univariate truncation (S = 1) of each
decomposition, whether ADD, FDD, or HDD, constitutes the simplest possible ap-
proximation of y other than its mean. In which case, the approximate solutions of
statistical moments and error analysis simplify and can be obtained or conducted in
closed-form or analytically. They are of huge practical interest, because modeling and
simulation of large-scale complex systems carry a heavy computational price tag, for
which only a univariate truncation is feasible.

5.1. ADD and FDD error analyses. Consider the univariate ADD approxi-
mation

(5.1) ỹ1(X) = y∅ +
N∑
i=1

y{i}(Xi)

and the univariate FDD approximation

(5.2) ŷ1(X) = (1 + z∅)
N∏
i=1

[
1 + z{i}(Xi)

]
= y∅

N∏
i=1

y∅ + y{i}(Xi)

y∅

of y(X), obtained by fixing S = 1 in (3.2) and (3.15), respectively. Applying the
expectation operator on ỹ1(X), ŷ1(X), and their squares, the means

E[ỹ1(X)] = E[ŷ1(X)] = E[y(X)] := y∅

are identical and exact, although the respective variances,

(5.3) σ̃2
1 := E

[
(ỹ1(X)− y∅)

2
]
=

N∑
i=1

σ2
{i} and

(5.4) σ̂2
1 := E

[
(ŷ1(X)− y∅)

2
]
= y2∅

[
N∏
i=1

(
1 +

σ2
{i}
y2∅

)
− 1

]
,
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are approximate, where σ2
{i} := E[y2{i}(Xi)] is the variance of the zero-mean, univariate

ADD component function y{i}, i = 1, . . . , N . The last expression of (5.4) is obtained

from the realization that E[{y∅ + y{i}(Xi)}/y∅] = 1 and E[{y∅ + y{i}(Xi)}2/y2∅] = 1+

σ2
{i}/y

2
∅. Comparing (5.3) and (5.4), σ̂2

1 → σ̃2
1 when σ2

{i}/y
2
∅ → 0 or when σ2

{i}/y
2
∅ < 1

and N → ∞. See the original work of Hoeffding [8] for the existence of ADD for
N → ∞.

Given a general square-integrable function y, are these univariate approximations
adequate? Which approximation between ADD and FDD is more precise? The
resolution of these questions depends on error analysis, where

(5.5) ẽ1 := E [y(X)− ỹ1(X)]
2
and ê1 := E [y(X)− ŷ1(X)]

2

define two second-moment errors, stemming from univariate ADD and FDD approx-
imations of y. Applying (3.1a), (5.1), (5.2) into (5.5) and invoking Propositions 3.1
and 3.2,

(5.6) ẽ1 =
N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

σ2
u

is a sum of variance terms contributed by bivariate and higher-variate component
functions of y, whereas
(5.7)

ê1 =

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

σ2
u + y2∅ E

⎡
⎢⎢⎣

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

y{i}(Xi)

y∅

⎤
⎥⎥⎦
2

− 2y∅
N∑
s=2

E

⎡
⎢⎢⎣
⎧⎪⎪⎨
⎪⎪⎩

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

y{i}(Xi)

y∅

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

yu(Xu)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

includes two additional terms, comprising expectations of products of three or more
component functions of y. Since the first term of (5.7) is the same as ẽ1, the univariate
FDD approximation incurs less (more) error than the univariate ADD approximation
if the second term is smaller (larger) than the third term. Therefore, the condition

E

⎡
⎢⎢⎣

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

y{i}(Xi)

y∅

⎤
⎥⎥⎦
2

<
2

y∅

N∑
s=2

E

⎡
⎢⎢⎣
⎧⎪⎪⎨
⎪⎪⎩

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

y{i}(Xi)

y∅

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

yu(Xu)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

determines when the univariate FDD approximation is more precise than the uni-
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variate ADD approximation and vice versa. When N = 2, for instance, ê1 < ẽ1 if
E[y2{1}(X1)y

2
{2}(X2)] < 2y∅E[y{1}(X1)y{2}(X2)y{12}(X1, X2)] and vice versa.

Remark 7. The ADD approximation ỹ1(X) is called univariate because (5.1)
comprises a sum of at most univariate component functions, describing only the main
effect of X. In contrast, the FDD approximation ŷ1(X) in (5.2) contains products
of various univariate functions. Therefore, some effects of interactions between two
input variables Xi and Xj , i �= j, subsist in ŷ1(X). For example, consider a func-
tion y = y∅+ y{1}(X1)+ y{2}(X2)+ y{1}(X1)y{2}(X2)/y∅ of two variables, containing
a sum and a product of its univariate ANOVA component functions. The univari-
ate ADD approximation, ỹ1,m = y∅ + y{1}(X1) + y{2}(X2), captures only the main
effects of X1 and X2, and may produce nonnegligible errors if the product term
of y is significant. On the other hand, the univariate FDD approximation, ŷ1 =
(1+z∅)[1+z{1}(X1)][1+z{2}(X2)] = y∅+y{1}(X1)+y{2}(X2)+y{1}(X1)y{2}(X2)/y∅,
obtained using the relationships in (3.12) and (3.13), exactly reproduces y, thereby
capturing not only the main effects, but also the interactive effect of input vari-
ables. Similar conditions prevail for a function of an arbitrary, but finite, number of
variables, provided that the higher-variate ANOVA component functions are prod-
ucts of univariate ANOVA component functions. However, the ANOVA component
functions with distinct dimensions are unrelated in general. Therefore, the error com-
mitted by an FDD approximation may or may not be lower than that by an ADD
approximation. Nonetheless, the term “univariate” used in this paper for the FDD
approximation should be interpreted in the context of including at most univariate
component functions, not necessarily preserving only the main effects.

There exist two special cases where one of the two univariate approximations
does not perpetrate any error. First, consider a purely additive function y, where
its zero-variate and univariate component functions are arbitrary, but its bivariate
and higher-variate ANOVA component functions vanish, that is, yu(Xu) = 0 for
2 ≤ |u| ≤ N . In this case, (5.6) and (5.7) yield ẽ1 = 0, while

ê1 = y2∅ E

⎡
⎢⎢⎣

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

y{i}(Xi)

y∅

⎤
⎥⎥⎦
2

> 0,

indicating superiority of univariate ADD over univariate FDD approximations. Sec-
ond, consider a function y, where bivariate and higher-variate ANOVA component
functions are products of zero-variate and univariate component functions, distributed
as follows: yu(Xu) = y∅

∏
i∈u⊆{1,...,N} y{i}(Xi)/y∅] for 2 ≤ |u| ≤ N . In the latter

case, (5.6) and (5.7) deliver

ẽ1 = y2∅

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

E

[∏
i∈u

y2{i}(Xi)

y2∅

]
> 0,

but ê1 = 0, reversing the trend of the previous case.

5.2. HDD. The S-variate hybrid approximations and their statistics proposed
in the preceding section also simplify for univariate truncations of ADD and FDD.
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Both linear and nonlinear hybrid approximations are described by the following two
propositions.

Proposition 5.1. A linear, univariate HDD approximation of w(X), obtained
by setting S = 1 in (4.5) through (4.7), is

(5.8) w̄1,l(X;α1,l, β1,l) = αS,lw̃1(X) + β1,lŵ1(X),

where the model parameters

(5.9) α1,l =
σ̂2
1 − E [w(X)ŵ1(X)]

σ̂2
1 − σ̃2

1

and β1,l =
E [w(X)ŵ1(X)]− σ̃2

1

σ̂2
1 − σ̃2

1

.

The result in Proposition 5.1 is obtained using the relationships, E[w(X)w̃1(X)] =
E[w̃1(X)ŵ1(X)] = E[w̃2

1(X)] =: σ̃2
1 , that stem from Propositions 3.1 and 3.2. The

remaining expectation

(5.10) E [w(X)ŵ1(X)] = E [y(X)ŷ1(X)]− y2∅

cannot be reduced further as it involves the original function y or w, but it can be
estimated by sampling methods or numerical integration.

Remark 8. The two parameters of the first linear model, described by (5.8)
and (5.9), add up to one. This is due to special properties of ỹ1(X) and ŷ1(X)
discussed in subsection 5.1. Therefore, the second linear model, described by (4.8)
and (4.9) at univariate truncation (S = 1), is redundant, as it leads to the same
solution of the first linear model. However, due to complicated forms of ŷS(X), where
2 ≤ S < N , the same relationship does not hold for two generic, linear, S-variate
HDD approximations. See Corollaries 4.2 and 4.3 for further insights.

The mean of w̄1,l(X;α1,l, β1,l) is zero and, therefore, E[ȳ1,l(X;α1,l, β1,l)] = y∅,
matching the exact mean. The variance of w̄1,l(X;α1,l, β1,l) or ȳ1,l(X;α1,l, β1,l) is

(5.11)

σ̄2
1,l := E

[
w̄2

1,l(X;α1,l, β1,l)
]

=
(
α2
1,l + 2α1,lβ1,l

)
σ̃2
1 + β2

1,lσ̂
2
1

=
(
2α1,l − α2

1,l

)
σ̃2
1 + (1− α1,l)

2
σ̂2
1 ,

a linear combination of variances from univariate ADD and FDD approximations.
Proposition 5.2. A nonlinear, univariate HDD approximation of w(X), ob-

tained by setting S = 1 in (4.1) through (4.4), is

w̄1,n(X;α1,n, β1,n, γ1,n) = α1,nw̃1(X) + β1,nŵ1(X) + γ1,n
[
w̃1(X)ŵ1(X)− σ̃2

1

]
,

where the model parameters are the solution of
(5.12)⎡
⎢⎣

σ̃2
1 σ̃2

1 E
[
w̃2

1(X)ŵ1(X)
]

σ̂2
1 E

[
w̃1(X)ŵ2

1(X)
]

(sym.) E
[
w̃2

1(X)ŵ2
1(X)

] − σ̃4
1

⎤
⎥⎦
⎧⎪⎨
⎪⎩
α1,n

β1,n

γ1,n

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

σ̃2
1

E [w(X)ŵ1(X)]

E [w(X)w̃1(X)ŵ1(X)]

⎫⎪⎬
⎪⎭ .
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Starting from (5.1) and (5.2) and applying Propositions 3.1 and 3.2, the additional
expectations involved in (5.12) are

E
[
w̃2

1(X)ŵ1(X)
]
=

2

y∅

N−1∑
i1=1

N∑
i2=i1+1

σ2
{i1}σ

2
{i2} +

N∑
i=1

E
[
y3{i}(Xi)

]
,

E
[
w̃1(X)ŵ2

1(X)
]
=
(
σ̂2
1 + y2∅

) N∑
i=1

2y∅σ2
{i} + E

[
y3{i}(Xi)

]
σ2
{i} + y2∅

− 2y∅σ̃2
1 ,

E
[
w̃2

1(X)ŵ2
1(X)

]
=
(
σ̂2
1 + y2∅

)⎛⎝ N∑
i=1

y2∅σ
2
{i} + 2y∅E

[
y3{i}(Xi)

]
+ E

[
y4{i}(Xi)

]
σ2
{i} + y2∅

+ 2

N−1∑
i1=1

N∑
i2=i1+1

(2y∅σ2
{i1}+E[y3{i1}(Xi1)])(2y∅σ

2
{i2}+E[y3{i2}(Xi2)])

(σ2
{i1} + y2∅)(σ

2
{i2} + y2∅)

)

+ y∅σ̃2
1 − 2y∅

N∑
i=1

E
[
y3{i}(Xi)

]
− 4

N−1∑
i1=1

N∑
i2=i1+1

σ2
{i1}σ

2
{i2},

and

(5.13) E [w(X)w̃1(X)ŵ1(X)] = E [y(X)ỹ1(X)ŷ1(X)] − y∅E [y(X)ŷ1(X)]− 2y∅σ̃2
1 ,

expressed in terms of y∅ and various moments of univariate ANOVA component func-
tions. Compared with the linear, hybrid model, however, they require third- and
fourth-order moments that must be furnished. Similar to (5.10), (5.13) also involves
w or y and cannot be reduced further.

Since the mean of w̄1,n(X;α1,n, β1,n, γ1,n) is zero, E[ȳ1,n(X;α1,n, β1,n, γ1,n)] = y∅,
matching the exact mean as well. However, the variance of w̄1,n(X;α1,n, β1,n, γ1,n)
or ȳ1,n(X;α1,n, β1,n, γ1,n) is

(5.14)

σ̄2
1,n := E

[
w̄2

1,n(X;α1,n, β1,n, γ1,n)
]

= α2
1,nσ̃

2
1 + β2

1,nσ̂
2
1 + γ2

1,n

(
E
[
w̃2

1(X)ŵ2
1(X)

] − σ̃4
1

)
+ 2α1,nβ1,nσ̃

2
1

+2α1,nγ1,nE
[
w̃2

1(X)ŵ1(X)
]
+ 2β1,nγ1,nE

[
w̃1(X)ŵ2

1(X)
]
,

a nonlinear combination of variances and higher-order moments from univariate ADD
and FDD approximations. It is trivial to show that (5.14) reduces to (5.11) if α1,n =
α1,l, β1,n = β1,l, and γ1,n = 0.

5.3. HDD error analysis. For the univariate truncation, which approximation
stemming from ADD, FDD, and HDD is most accurate? Lemma 5.3 and Theorem 5.4
demonstrate that the HDD approximation commits the lowest error.

Lemma 5.3. The variance of the univariate FDD approximation is greater than
or equal to the variance of the univariate ADD approximation, that is, σ̂2

1 ≥ σ̃2
1.

Proof. From (5.4),

σ̂2
1 = y2∅

[
N∏
i=1

(
1 +

σ2
{i}
y2∅

)
− 1

]

=

N∑
i=1

σ2
{i} + y2∅

N∑
s=2

∑
∅
=u⊆{1,...,N}

|u|=s

∏
i∈u

σ2
{i}
y2∅

≥ σ̃2
1 ,
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where the last line follows from (5.3) and the recognition that the second term of the
second line is nonnegative.

Theorem 5.4. Let ẽ1 := E [y(X)− ỹ1(X)]2, ê1 := E [y(X)− ŷ1(X)]2, and

ē1,l := E [y(X)− ȳ1,l(X;α1,l, β1,l)]
2
define the mean-squared errors committed by the

univariate ADD, univariate FDD, and univariate HDD (linear) approximations, re-
spectively, of a real-valued, square-integrable function y. Then

ē1,l ≤ ẽ1, ē1,l ≤ ê1.

Proof. From (5.3) and (5.6),

(5.15) ẽ1 = σ2 −
N∑
i=1

σ2
{i} = σ2 − σ̃2

1 .

Since y, ŷ1, and ȳ1,l have the same mean,

ê1 = E [w(X) − ŵ1(X)]
2

(5.16)

= σ2 + σ̂2
1 − 2E [w(X)ŵ1(X)]

= σ2 − 2α1,lσ̃
2
1 − (1− 2α1,l) σ̂

2
1 ,

ē1,l = E [w(X) − w̄1,l(X;α1,l, β1,l)]
2

(5.17)

= σ2 + σ̄2
1,l − 2E [w(X)w̄1,l(X; ;α1,l, β1,l)]

= σ2 +
(
2α1,l − α2

1,l

)
σ̃2
1 + (1− α1,l)

2
σ̂2
1

− 2E [w(X) {α1,lw̃1(X) + (1− α1,l)ŵ1(X)}]
= σ2 − (2α1,l − α2

1,l

)
σ̃2
1 − (1− α1,l)

2
σ̂2
1 .

The third line of (5.16) is obtained using (5.9). In (5.17), the third line is derived
using (5.8), (5.9), and (5.11), whereas the fourth line is attained using (5.9) and the
understanding that E[w(X)w̃1(X)] = σ̃2

1 . Subtracting each of (5.15) and (5.16) from
(5.17) yields

ē1,l − ẽ1 = − (1− α1,l)
2 (

σ̂2
1 − σ̃2

1

) ≤ 0,

ē1,l − ê1 = −α2
1,l

(
σ̂2
1 − σ̃2

1

) ≤ 0,

where the inequalities follow from Lemma 5.3, completing the proof.
Although the result of Theorem 5.4 is expected, presenting the theorem and a

formal proof is appropriate, given that such a result has yet to appear in the literature.
It is less simple to follow suit for the univariate nonlinear hybrid approximation or
for a general S-variate hybrid approximation.

5.4. Example 4. Consider the function

(5.18) y =

[
2

N

N∑
i=1

Xi

]m

of N independent, identical, and uniformly distributed random variables Xi, i =
1, . . . , N over [0,1], where N = 10 and m ∈ N is an exponent. The function y
in (5.18) is purely additive when m = 1, but it transitions from strongly additive
to strongly multiplicative as m grows larger. The objective of this example is to
compare univariate ADD, univariate FDD, and univariate HDD (linear and non-
linear) approximations, that is, ỹ1(X), ŷ1(X), ȳ1,l(X;α1,l, β1,l) = ȳ1,l′(X;α1,l′), and
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Fig. 5.1. Results of univariate ADD, FDD, and HDD approximations of y in Example 4; note:
mean-squared errors (left); complementary CDF (right).

ȳ1,n(X;α1,n, β1,n, γ1,n) in calculating the variance and rare-event probabilities of y(X)
for m = 2, 3, 4, 5, 6, 7, 8. The second-moment properties of y(X), given m, were cal-
culated exactly. The variances of ỹ1(X) [(5.3)], ŷ1(X) [(5.4)], and ȳ1,l(X;α1,l, β1,l)
[(5.11)], including all univariate ADD and FDD components functions, were calcu-
lated analytically. The expectations E[w(X)ŵ(X)] and E[w(X)w̃(X)ŵ(X)], involved
in determining the optimal model parameters [(5.9), (5.12)] and the variance of
ȳ1,n(X;α1,n, β1,n, γ1,n) [(5.14)], were estimated by a fully symmetric multidimensional
integration rule with nine generators [4].

Figure 5.1 (left) plots the respective errors in calculating the variance of y by four
univariate (S = 1) truncations of ADD, FDD, HDD (linear), and HDD (nonlinear)
against m. The definition of the error is the same as in Example 1 or 2. When
m = 2 or 3, the function is still strongly additive and, therefore, the univariate
ADD approximation is better than the univariate FDD approximation. But the trend
reverses when 4 ≤ m ≤ 8, the range of higher values examined. This is because the
function switches from dominantly additive (m ≤ 3) to dominantly multiplicative
(m > 3) as m increases. Nonetheless, for all values of m considered, the univariate
HDD approximation, whether linear or nonlinear, commits lower errors than either
univariate ADD or univariate FDD approximation. The nonlinear version of the
univariate HDD approximation is even more precise than its linear counterpart—a
trend that becomes pronounced when m is larger. However, the improvement of
the nonlinear model comes with a price, as the model requires calculations of higher-
order moments, alluded to in the preceding subsection. Nonetheless, the HDD models
proposed provide a means to calculate the second-moment properties more accurately
than ADD and FDD approximations.

Figure 5.1 (right) displays the complementary cumulative distribution functions
(CDFs) of y for m = 8 and its four univariate approximations, each obtained by 10
million Monte Carlo samples. The chosen scale of the vertical axis is logarithmic to
delineate rare-event probabilities that are commonly used for reliability analysis of
complex systems. Compared with univariate ADD and FDD approximations, both
variants of the univariate HDD approximation developed provide better estimates
of the tail probabilistic characteristics of y. The ADD approximation significantly
underestimates the tail behavior, whereas the FDD approximation overestimates the
complementary CDF by a moderate amount. The nonlinear HDD approximation is
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Fig. 5.2. A piezoelectric transducer; note: geometry (left); finite-element discrete model (right).

more precise than the linear version, especially when the probabilities are very low.
Indeed, an HDD approximation is desirable for uncertainty quantification of high-
dimensional, complex systems, where only univariate truncations are feasible, but not
necessarily producing adequate accuracy by either ADD or FDD approximation alone.

5.5. Example 5. The final example is motivated on solving a practical engi-
neering problem, which entails eigenspectrum analysis of a piezoelectric transducer
commonly used for converting electrical pulses to mechanical vibrations, and vice
versa. Figure 5.2 (left) shows a 25-mm-diameter cylinder made of a piezoelectric ce-
ramic PZT4 (lead zirconate titanate) with brass end caps. The thicknesses of the
transducer and end caps are 1.5 mm and 3 mm, respectively. The cylinder, 25 mm
long, was electroded on both the inner and outer surfaces. The random variables
include (1) ten nonzero constants defining elasticity, piezoelectric stress coefficients,
and dielectric properties of PZT4; (2) elastic modulus and Poisson’s ratio of brass;
and (3) mass densities of brass and PZT4 [14]. The statistical properties of all 14
random variables are listed in Table 5.1. The random variables are independent and
follow lognormal distributions. Due to axisymmetry, a 20-noded finite-element dis-
crete model of a slice of the transducer, shown in Table 5.2 (right), was created. The
objective is to evaluate various univariate approximations in calculating the second-
moment properties of the natural frequencies of the transducer. For this problem, the
ANOVA component functions of each natural frequency response were approximated
by third-order polynomial (Hermite) expansions in terms of orthogonal polynomials
[15], where the expansion coefficients were estimated by dimension-reduction integra-
tion [21].

Tables 5.2 and 5.3 present the means and standard deviations, respectively, of the
first six natural frequencies, Ωi, i = 1, . . . , 6, of the transducer by four dimensional
decomposition methods: univariate ADD, univariate FDD, univariate HDD (linear),
and bivariate ADD approximations; and crude Monte Carlo simulation. The second-
moment properties by decomposition methods, obtained by four-point Gauss–Hermite
quadrature rules for estimating the expansion coefficients, are judged to be converged
responses, as their changes due to further increases in polynomial order or number of
quadrature nodes are negligibly small. Therefore, the univariate and bivariate approx-
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Table 5.1

Statistical properties of the random input for the piezoelectric transducer.

Random variable Property(a) Mean
Coefficient of

variation
X1, GPa D1111 115.4 0.15
X2, GPa D1122, D1133 74.28 0.15
X3, GPa D2222, D3333 139 0.15
X4, GPa D2233 77.84 0.15
X5, GPa D1212,D2323,D1313 25.64 0.15

X6, Coulomb/m2 e111 15.08 0.1
X7, Coulomb/m2 e122, e133 −5.207 0.1
X8, Coulomb/m2 e212, e313 12.71 0.1

X9, nF/m D11 5.872 0.1
X10, nF/m D22, D33 6.752 0.1
X11, GPa Eb 104 0.15

X12 νb 0.37 0.05
X13, g/m3 ρb 8500 0.15
X14, g/m3 ρc 7500 0.15

(a) Dijkl are elastic moduli of ceramic; eijk are piezoelectric stress coefficients
of ceramic; Dij are dielectric constants of ceramic; Eb, νb, ρb are elastic
modulus, Poisson’s ratio, and mass density of brass; ρc is mass density of ceramic.

Table 5.2

Means of natural frequencies of the piezoelectric transducer.

Approximation

Frequency
Univariate

ADD
Univariate

FDD
Univariate

HDD
Bivariate
ADD

Crude
Monte
Carlo

Ω1, kHz 19.45 19.45 19.45 19.38 19.35
Ω2, kHz 42.31 42.31 42.31 42.27 42.25
Ω3, kHz 59.23 59.23 59.23 59.42 59.33
Ω4, kHz 67.45 67.45 67.45 67.21 67.23
Ω5, kHz 90.57 90.57 90.57 90.60 90.62
Ω6, kHz 101.69 101.69 101.69 101.66 101.57

Table 5.3

Standard deviations of natural frequencies of the piezoelectric transducer.

Approximation

Frequency
Univariate

ADD
Univariate

FDD
Univariate

HDD
Bivariate
ADD

Crude
Monte
Carlo

Ω1, kHz 2.30 2.30 2.68 2.54 2.66
Ω2, kHz 7.03 7.06 7.08 7.09 7.11
Ω3, kHz 6.65 6.66 6.74 6.82 6.83
Ω4, kHz 6.94 6.95 7.00 7.09 7.00
Ω5, kHz 7.37 7.38 7.48 7.58 7.51
Ω6, kHz 9.42 9.43 9.35 9.29 9.29

imations require 14×(14−1)+1 = 43 and 14×(14−1)(4−1)2/2+(14×(4−1)+1 = 862
finite-element analyses, respectively [15]. Due to expensive finite-element analysis,
crude Monte Carlo simulation was conducted only up to 50,000 realizations, which
should be adequate for providing benchmark solutions of the second-moment char-
acteristics. The agreement between the means by approximate and Monte Carlo
methods in Table 5.2 is excellent. A comparison of standard deviations in Table 5.3
reveals superiority of the bivariate ADD approximation over univariate ADD and FDD
approximations, as expected, but at a computational cost markedly higher than the
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univariate approximations. More important, the univariate HDD approximation pro-
posed is better than either univariate ADD or univariate FDD approximation and pro-
duces standard deviations very close to those by the bivariate ADD and crude Monte
Carlo methods without carrying the computational burden of the latter methods.

6. Conclusions and outlook. It is time to take stock and recap what has been
accomplished so far and what remains to be done.

Two dimensional decompositions, namely, FDD and HDD, of a multivariate func-
tion, representing finite products and sum-product mixtures of lower-dimensional
component functions, were developed. A theorem, proven herein, reveals the rela-
tionship between all component functions of FDD and ADD, so far available only
for univariate and bivariate component functions. Three function classes, comprising
purely additive functions, purely multiplicative functions, and their mixtures, were
examined to illustrate when and how an FDD approximation is more precise or rel-
evant than an ADD approximation and vice versa. However, when a function is not
endowed with a specific dimensional hierarchy, an HDD approximation, optimally
blending ADD and FDD approximations, is more appropriate than either ADD or
FDD approximation. Furthermore, the FDD and HDD lead to alternative defini-
tions of effective dimension, reported in the literature associated with ADD only.
New closed-form or analytical expressions were derived for calculating the variances
stemming from univariate truncations of all three decompositions. The subsequent
mean-squared error analysis pertaining to univariate ADD, FDD, and HDD approxi-
mations finds appropriate conditions when one approximation is better than the other.
Numerical results from four simple yet insightful examples and a practical engineering
problem indicate that an HDD approximation, when called for, commits lower errors
than does ADD or FDD approximation. Therefore, HDD, whether formed linearly or
nonlinearly, is ideally suited to a general function approximation that may otherwise
require higher-variate ADD or FDD truncations for rendering acceptable accuracy in
stochastic solutions.

Future work involves developing an adaptive strategy for FDD and HDD approx-
imations to solve industrial-scale, stochastic problems encountered in engineering and
applied sciences.
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