High-Dimensional Stochastic Design
Optimization by Adaptive-Sparse Polynomial
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Abstract This paper presents a novel adaptive-sparse polynomial dimensional de-
composition (PDD) method for stochastic design optimization of complex systems.
The method entails an adaptive-sparse PDD approximation of a high-dimensional
stochastic response for statistical moment and reliability analyses; a novel integra-
tion of the adaptive-sparse PDD approximation and score functions for estimating
the first-order design sensitivities of the statistical moments and failure probability;
and standard gradient-based optimization algorithms. New analytical formulae are
presented for the design sensitivities that are simultaneously determined along with
the moments or the failure probability. Numerical results stemming from mathemat-
ical functions indicate that the new method provides more computationally efficient
design solutions than the existing methods. Finally, stochastic shape optimization of
a jet engine bracket with 79 variables was performed, demonstrating the power of
the new method to tackle practical engineering problems.

1 Introduction

Uncertainty quantification of complex systems, whether natural or man-made, is
an important ingredient in numerous fields of science and engineering. For practi-
cal applications, encountering hundreds of input variables or more is not uncommon,
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where an output function of interest, often defined algorithmically via finite-element
analysis (FEA), is all too often expensive to evaluate. Modern surrogate methods,
comprising stochastic collocation [1], polynomial chaos expansion [13], and sparse-
grid quadrature [3], are known to offer significant computational advantages over
crude Monte Carlo simulation (MCS). However, for truly high-dimensional systems,
they require astronomically large numbers of terms or coefficients, succumbing to
the curse of dimensionality. Therefore, alternative computational methods capable
of exploiting low effective dimensions of multivariate functions, such as the poly-
nomial dimensional decomposition (PDD) methods [7, 9], including a recently de-
veloped adaptive-sparse PDD method, are desirable [15]. Although PDD and PCE
contain the same measure-consistent orthogonal polynomials, a recent work reveals
that the error committed by the PDD approximation cannot be worse than that per-
petrated by the PCE approximation for identical expansion orders [9].

An important application of uncertainty quantification is stochastic design opti-
mization, which can be grouped in two principal classes: (1) design optimization
for robustness [10], which minimizes the propagation of input uncertainty to output
responses of interest, leading to an insensitive design; and (2) design optimization
for reliability [11], which concentrates on attaining an optimal design by ensuring
sufficiently low risk of failure. Depending on the objective set forth by a designer,
uncertainty can be effectively mitigated by either class of design optimization. In-
deed, with new formulations and methods appearing almost every year, stochastic
design optimization in conjunction with FEA are becoming increasingly relevant
and perhaps necessary for realistic design of complex structures and systems.

This paper presents an adaptive-sparse PDD method for stochastic design opti-
mization of complex systems. The method is based on (1) an adaptive-sparse PDD
approximation of a high-dimensional stochastic response for statistical moment and
reliability analyses; (2) a novel integration of the adaptive-sparse PDD approxima-
tion and score functions for calculating the first-order sensitivities of the statistical
moments and failure probability with respect to the design variables; and (3) stan-
dard gradient-based optimization algorithms. Section 2 formally defines two general
variants of stochastic design optimization, including their concomitant mathematical
statements. Section 3 starts with a brief exposition of the adaptive-sparse PDD ap-
proximation, leading to statistical moment and reliability analyses. Exploiting score
functions, the section explains how the effort required to perform stochastic analy-
ses also delivers the design sensitivities, sustaining no additional cost. The section
also describes a coupling between stochastic analyses and design sensitivity analy-
sis, resulting in an efficient optimization algorithm for solving both variants of the
design optimization problem. Section 4 presents two numerical examples, including
solving a large-scale shape design optimization problem. Finally, the conclusions
are drawn in Sect. 5.
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2 Stochastic Design Optimization

Consider a measurable space (2q4,-%q), where Qq is a sample space and %4 is a
o-field on Qq. Defined over (Qq,%q), let {Py : F#q — [0,1]} be a family of prob-
ability measures, where for M € Nand N € N, d = (dy, - ,dy) € Z is an R-
valued design vector with non-empty closed set 2 C RM and let X := (X1,---,Xy) :
(Q4,Fa) — (RN, 2N) be an RN -valued input random vector with 2" representing
the Borel o-field on RY, describing the statistical uncertainties in input variables of
a complex system. The probability law of X is completely defined by a family of
the joint probability density functions { fx(x;d), x € RN, d € &} that are associated
with probability measures {Pyq, d € Z}, so that the probability triple (Qq,.%q,Pa) of
X depends on d. A design variable dy can be any distribution parameter or a statistic
— for instance, the mean or standard deviation — of Xj.

Lety;(X),/=0,1,---,K, be a collection of K + 1 real-valued, square-integrable,
measurable transformations on (Q4,.%4), describing performance functions of a
complex system. It is assumed that y; : (RY, ") — (R, %) is not an explicit func-
tion of d, although y; implicitly depends on d via the probability law of X. This is
not a major limitation, as most design optimization problems involve means and/or
standard deviations of random variables as design variables. There exist two promi-
nent variants of design optimization under uncertainty: (1) design optimization for
robustness and (2) design optimization for reliability. Their mathematical formu-
lations, comprising an objective function ¢ : R¥ — R and constraint functions
cr RM SR, [ = 1,---,K, 1 <K < oo, entail finding an optimal design solution
d* as follows.

e Design for Robustness [10]

E X X
d* = argmin CO(d) =Wy d [yo*( )] +wy varq [ZO( )] ’
de9CRM K Oy (D)

0
subject to ¢;(d) := oy+/varg [y;(X)] —Eq [y;(X)] <0, 1=1,--- K,

where Eq[y;(X)] := [pyyi(X)fx(x;d)dx is the mean of y;(X) with Eq denot-
ing the expectation operator with respect to the probability measure Py,d € 2,
varg[y;(X)] := Eq[{y1(X) — Ea[y:(X)]}?] is the variance of y;(X), w; € R} and
wy € Rar are two non-negative, real-valued weights, satisfying wy +w, = 1,
ug € R\ {0} and o5 € R;j \ {0} are two non-zero, real-valued scaling factors, and
o € Rg ,1=0,1,--- K, are non-negative, real-valued constants associated with
the probabilities of constraint satisfaction. For most applications, equal weights
are chosen, but they can be distinct and biased, depending on the objective set
forth by a designer. By contrast, the scaling factors are relatively arbitrary and
chosen to better condition, such as normalize, the objective function. In (1), co(d)
describes the objective robustness, whereas ¢;(d), / = 1,--- , K, describe the feasi-
bility robustness of a given design. The evaluations of both robustness measures
involve the first two moments of various stochastic responses, consequently de-
manding statistical moment analysis.
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e Design for Reliability [11]

d* = argmin ¢o(d),
deZCRM )
subject to ¢;(d) := Py [X € Qp;(d)] —p; <0, 1=1,--- K,

where Qr; is the /th failure domain, 0 < p; < 1 is the /th target failure probability.
In (2), the objective function cq is commonly prescribed as a deterministic func-
tion of d, describing relevant system geometry, such as area, volume, and mass.
In contrast, the constraint functions ¢;, [ = 1,--- , K, depending on the failure do-
main Qf, require component or system reliability analyses. For a component
reliability analysis, the failure domain is often adequately described by a single
performance function y;(X), for instance, QF; := {x : y;(x) < 0}, whereas mul-
tiple, interdependent performance functions y; ;(x), i = 1,2, - -, are required for
a system reliability analysis, leading, for example, to Qg; := {x: U;y;;(x) < 0}
and Qp; := {X SNiyi(x) < O} for series and parallel systems, respectively.

The solution of a stochastic design optimization problem, whether in conjunction
with robustness or reliability, mandates not only statistical moment and reliability
analyses, but also the evaluations of gradients of moments and failure probability
with respect to the design variables. The focus of this work is to solve a general
high-dimensional design optimization problem described by (1) or (2) for arbitrary
square-integrable functions y;(X), I = 1,2,--- ,K, and for an arbitrary probability
density fx(x;d) of X, provided that a few regularity conditions are met.

3 Adaptive-Sparse Polynomial Dimensional Decomposition
Method

Let y(X) := y(Xj,---,Xn) represent any one of the random functions y;, [ =
0,1,---,K, introduced in Sect. 2 and let % (Qq,%q,Pq) represent a Hilbert space
of square-integrable functions y with respect to the probability measure fx (x;d)dx
supported on RY. Assuming independent coordinates, the joint probability density
function of X is expressed by the product, fx(x;d) = [T'=) fx.(x;;d), of marginal
probability density functions fx, : R — R;{ of X;, each defined on its probability
triple (2;4,-Zia,P.a) with a bounded or an unbounded support on R, i =1,--- ,N.

Then, for a given subset u C {1,--- ,N}, fx,(x,;d) := Hl,?':lfx,-p (xl-p);d) defines the
marginal density function of the subvector X, = {X;,,--- ,X,M M of X.

Let {y;;(X;;d); j=0,1,---} be a set of univariate orthonormal polynomial basis
functions in the Hilbert space .25(;4,-Zia,P;a) that is consistent with the prob-

ability measure P, q of X; for a given design d, where i = 1,--- ,N. For a given
u={iy, iy} S{L,--- N}, 1 <|u| <N, 1 <ip <--- <ip <N, denote by
(XZle'-Qi,,.,d, XZju‘c%,,,d, XZjMPip,d) the product probability triple of the subvec-

tor X,,. Since the probability density function of X,, is separable (independent), the
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product polynomial Vi, (Xy3d) := H‘p“‘:l Vi, i, (Xi,3d), where jj,; = (ji," s Jul) €
Nl)”‘ is a |u|-dimensional multi-index, constitutes an orthonormal basis in % (

p=lul p=lul & p=lul
Xp=t iy ds Xt Fipds Xy Ppa) . . .
The PDD of a square-integrable function y represents a hierarchical expansion

[7,9]

YX)=yod)+ ) Y Gy, (@, (Xu:d) 3)
@#MQ{IN} j‘u‘EN(‘)u‘
Jts Jju 70

in terms of random multivariate orthonormal polynomials, where
Yo(d) = /R LY fx(x;d)dx )
and
Cu @ = [ 300, (i f(xdx, 0 £ {1 N} Gy €N 9)

are various expansion coefficients. The condition ji,---, jj,| # 0 used in (3) and
equations throughout the remainder of this paper implies that j; # O for all k =
1,---,|u|. Derived from the ANOVA dimensional decomposition [4], (3) provides
an exact representation because it includes all main and interactive effects of input
variables. For instance, |u| = 0 corresponds to the constant component function yg,
representing the mean effect of y; |u| = 1 leads to the univariate component func-
tions, describing the main effects of input variables, and |u| = S, 1 < S < N, results
in the S-variate component functions, facilitating the interaction among at most S in-
put variables X; ,---, X;, 1 <ij <--- <ig <N.Further details of PDD are available
elsewhere [7, 9].

Equation (3) contains an infinite number of coefficients, emanating from infinite
numbers of orthonormal polynomials. In practice, the number of coefficients must
be finite, say, by retaining finite-order polynomials and reduced-degree interaction
among input variables. For instance, an S-variate, mth-order PDD approximation

Jsm(X)=yo(d)+ ) Y Gy, (D, (Xe:d) (6)
0£uC{1, N} j‘u‘eN(‘)"‘
1<lul<S Jts i 70

is generated where the integers 0 < § <N and 1 < m < oo define the largest degree of
interactions among input variables and the largest order of orthogonal polynomials
retained in a concomitant truncation of the sum in (3). It is important to clarify
that the right side of (6) contains sums of at most S-dimensional PDD component
functions of y. Therefore, the term “S-variate” used for the PDD approximation
should be interpreted in the context of including at most S-degree interaction of
input variables, even though s ,, is strictly an N-variate function. When § — N and
m — oo, g ,, converges to y in the mean-square sense, generating a hierarchical and
convergent sequence of approximations.
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3.1 Adaptive-Sparse PDD Approximation

For practical applications, the dimensional hierarchy or nonlinearity of a stochastic
response, in general, is not known a priori. Therefore, indiscriminately assigning the
truncation parameters is not desirable. Nor is it possible to do so when a stochastic
solution is obtained via complex numerical algorithms. In which case, one must
perform these truncations automatically by progressively drawing in higher-variate
or higher-order contributions as appropriate. Based on the authors’ past experience,
an S-variate PDD approximation, where S < N, is adequate, when solving real-
world engineering problems, with the computational cost varying polynomially (S-
order) with respect to the number of variables [7, 9]. As an example, consider the
selection of S = 2 for solving a stochastic problem in 100 dimensions by a bivariate
PDD approximation, comprising 100 x 99/2 = 4950 bivariate component functions.
If all such component functions are included, then the computational effort for even
a full bivariate PDD approximation may exceed the computational budget allocated
to solving this problem. But many of these component functions contribute little to
the probabilistic characteristics sought and can be safely ignored. Similar conditions
may prevail for higher-variate component functions. Henceforth, define an S-variate,
partially adaptive-sparse PDD approximation [15]

ys(X):=yo(d)+ ), ) Y Gy, @y, (Xsd) ()
0FuC{L Ny ma=1 [y || _=mus jr .y #0
! S‘M‘SS Gu.mu >E€] aAGu,mu >&

of y(X), where

~ 1

Gum, = C% (d), m, €N, 0 < 6?(d) < oo,

2(d Y Y Uil
31 €N ]| <
jlv,"“j\u\?éo

defines the approximate m,th-order approximation of the global sensitivity index of
y(X) for a subvector X,,, @ # u C {1,--- ,N}, of input variables X and

0 if m,=1or (mu > 2aGu.mu—l = 07G~u,mu # 0)7
0 if m, > 2, Gu,mu—l =0, Gu,mu =0,

Gum, — Gum,—1 . .
”ml:—’“”ul if my >2,Gymy—1 £0
Gu,mufl

AGMMH =

defines the relative change in the approximate global sensitivity index when the
largest polynomial order increases from m,, — 1 to m,,. The non-trivial definition ap-
plies when m,, > 2 and Gu,mrl #0. Whenm, =1 or (m, > 2, Gu,mrl = O,Gu,mu #
0), the infinite value of AGu’mu guarantees that the my,th-order contribution of y,
to y is preserved in the adaptive-sparse approximation. When m,, > 2, Gu,mu—l =0,
and Gu,mu =0, the zero value of AGu,mu implies that there is no contribution of the
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myth-order contribution of y, to y. Here,

co- ¥ L G ®
0#uC{1,- N} j‘u‘GN(‘)u‘
T 20

is the variance of y(X). Then the sensitivity indices G~u7mu and Aéu,mu provide an
effective means to truncate the PDD in (3) both adaptively and sparsely. Equation
(7) is attained by subsuming at most S-variate component functions, but fulfilling
two inclusion criteria: (1) Gy, > € for 1 < |u| < S <N, and (2) AGym, > &
for 1 <|u| <S <N, where & > 0 and & > 0 are two user-defined tolerances. The
resulting approximation is partially adaptive because the truncations are restricted
to at most S-variate component functions of y. When S = N, (7) becomes the fully
adaptive-sparse PDD approximation [15]. The algorithmic details of numerical im-
plementation associated with either fully or partially adaptive-sparse PDD approxi-
mation are available elsewhere [15].

The determination of PDD expansion coefficients yp(d) and Cujy, (d) is vitally im-
portant for statistical moment and reliability analyses, including design sensitivities.
As defined in (4) and (5), the coefficients involve N-dimensional integrals over R".
For large N, a multivariate numerical integration employing an N-dimensional ten-
sor product of a univariate quadrature formula is computationally prohibitive and is,
therefore, ruled out. An attractive alternative approach entails dimension-reduction
integration [14], where the N-variate function y in (4) and (5) is replaced by an
R-variate (1 < R < N) referential dimension decomposition at a chosen reference
point. For instance, given a reference point ¢ = (cq,---,cy) € RV, the expansion
coefficients C”j\u\ are approximated by [14]

& N—-R+i—1
u‘”“\ gz ( . ) / Xy, C II/uJM (Xu, ) X, (X\;,d)dxv,
i=0 l vC{l, I ‘

[v|=R—i, qu

)
requiring evaluations of at most R-dimensional integrals. The estimation of yp(d) is
similar. The reduced integration facilitates calculation of the coefficients approach-
ing their exact values as R — N, and is significantly more efficient than performing
one N-dimensional integration, particularly when R < N. Hence, the computational
effort is significantly lowered using the dimension-reduction integration. For in-
stance, when R = 1 or 2, (9) involves one-, or at most, two-dimensional integrations,
respectively. Nonetheless, numerical integrations are still required for performing
various |v|-dimensional integrals over R, where 0 < [v] < R. When R > 1, the
multivariate integrals involved can be subsequently approximated by a sparse-grid
quadrature, such as the fully symmetric interpolatory rule [5], as implemented by
Yadav and Rahman [15].
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3.2 Stochastic Analysis

3.2.1 Statistical Moments

Applying the expectation operator on ys(X) and recognizing the zero-mean and or-
thogonal properties of PDD component functions, the mean

Ea [75(X)] = yo(d) (10)

of the partially adaptive-sparse PDD approximation agrees with the exact mean
Eq [y(X)] = yp for any €, &, and S [15]. However, the variance, obtained by ap-
plying the expectation operator on (Fs(X) — yp)?, varies according to [15]

o3(d) == Ea [(5s(X) ~E[s(X)])| = ¥ ¥ Yy i@
OFuC{L, N} mu=1 |5 || =my, ji J\u\#o

1<lul<S Gy >€1. MG, >8>
(1)
where the squares of the expansion coefficients are summed following the same
two pruning criteria discussed in the preceding subsection. Equation (11) provides a
closed-form expression of the approximate second-moment properties of any square-
integrable function y in terms of the PDD expansion coefficients. When S = N and
€ = & = 0, the right side of (11) coincides with that of (8). In consequence, the
variance from the partially adaptive-sparse PDD approximation ys(X) converges to

the exact variance of y(X) as S — N, & — 0, and & — 0.

3.2.2 Failure Probability

A fundamental problem in reliability analysis entails calculation of the failure prob-
ability

Pr(d) == Pa[X € Q] = /R T, (x)fx (x:d)dx =: Eq I, (X)),

where I, (X) is the indicator function associated with the failure domain Q¢, which
is equal to one when x € Qf and zero otherwise. Depending on component or system
reliability analysis, let Qg := {x : y5(x) < 0} or Qrs = {x: Ui s(x) < 0} or
Qps = {x:Ni¥is(x) < 0} be an approximate failure set as a result of S-variate,
adaptive-sparse PDD approximations ys(X) of y(X) or y; s(X) of y;(X). Then the
adaptive-sparse PDD estimate of the failure probability Pr(d) is

Pr.s(d) = Eq [IQFS } _ngroloL ZIQFS (x), (12)
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where L is the sample size, x() is the Ith realization of X, and Ig, (x) is another

indicator function, which is equal to one when x € QF,S and zero otherwise.

Note that the simulation of the PDD approximation in (12) should not be con-
fused with crude MCS commonly used for producing benchmark results. The crude
MCS, which requires numerical calculations of y(x()) or y;(x(")) for input samples
x [=1,--- L, canbe expensive or even prohibitive, particularly when the sample
size L needs to be very large for estimating small failure probabilities. In contrast,
the MCS embedded in the adaptive-sparse PDD approximation requires evaluations
of simple polynomial functions that describe yg(x(”) or y',-,g(x(l)). Therefore, a rela-
tively large sample size can be accommodated in the adaptive-sparse PDD method
even when y or y; is expensive to evaluate.

3.3 Design Sensitivity Analysis

When solving design optimization problems employing gradient-based optimization
algorithms, at least the first-order derivatives of the first two moments and failure
probability with respect to each design variable are required. In this subsection, the
adaptive-sparse PDD method for statistical moment and reliability analyses is ex-
panded for design sensitivity analysis. For such sensitivity analysis, the following
regularity conditions are assumed: (1) The domains of design variables d; € Z) C R,
k=1,--- M, are open intervals of R; (2) the probability density function fx(x;d)
of X is continuous. In addition, the partial derivative d fx(x;d)/ddy, k =1,--- M,
exists and is finite for all x € RN and dy € %. Furthermore, the statistical mo-
ments of y and failure probability are differentiable functions of d € 2 C R¥;
and (3) there exists a Lebesgue integrable dominating function z(x) such that
[y (x)0 fx(x;d)/ddy| < z(x) and |Ig, (x)d fx(x;d)/dd| < z(x), where r = 1,2, and
k=1,--- M.

3.3.1 Score Function

Let _
W)= Balg(X))i= [ g(x)fx(xddx (13)

be a generic probabilistic response, where h(d) and g(x) are either the rth-order raw
moment m") (d) := Eq[y4(X)] (r = 1,2) and y"(x) for statistical moment analysis or
Pr(d) and Io, (x) for reliability analysis. Suppose that the first-order derivative of
h(d) with respect to a design variable di, 1 < k < M, is sought. Taking the partial
derivative of h(d) with respect to d; and then applying the Lebesgue dominated
convergence theorem [2], which permits the differential and integral operators to be
interchanged, yields the first-order sensitivity
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oh(d) _ 9Eq[g(X)
ddy 8dk

= 4 / g(x) fx(x:d)dx (14)
81an (x;d)
- / XD o (x;d)dx

= Eq [3(X) ;,3<x,d>},

provided that fx (x;d) > 0 and the derivative d In fx (x;d)/ddj exists. In the last line

of (14), sfll) (X;d) :=dIn fx(X;d)/ddj is known as the first-order score function for
the design variable dy [12, 8]. According to (13) and (14), the generic probabilistic
response and its sensitivities have both been formulated as expectations of stochastic
quantities with respect to the same probability measure, facilitating their concurrent
evaluations in a single stochastic simulation or analysis.

3.3.2 Sensitivity of Statistical Moments

Selecting A(d) and g(x) to be m(") (d) and y" (x), respectively, and then replacing y(x)
with its S-variate adaptive-sparse PDD approximation yg(x) in the last line of (14),
the resultant approximation of the sensitivities of the rth-order moment is obtained
as

Ea |75(X)s!, (X;d)} = /RN F5(x)sty) (x:d) fx (x:d)dx. (15)

The N-dimensional integral in (15) can be estimated by the same or similar dimension-
reduction integration as employed for estimating the PDD expansion coefficients.
Furthermore, if sg}() is square-integrable, then it can be expanded with respect to the
same orthogonal polynomial basis functions, resulting in a closed-form expression
of the design sensitivity [8]. Finally, setting r = 1 or 2 in (15) delivers the approxi-

mate sensitivity of the first or second moment.

3.3.3 Sensitivity of Failure Probability

Selecting i1(d) and g(x) to be Pr(d) and I, (X), respectively, and then replacing y(x)
with its S-variate adaptive-sparse PDD approximation ys(x) in the last line of (14),
the resultant approximation of the sensitivities of the failure probability is obtained

as
L

. .1 Dy (D (D).
Ea |Ig,,(X)s}y (X:d)| = Jim 3. P DRICEH | )
where L is the sample size, x(!) is the /th realization of X, and I o (x) is the adaptive-
sparse PDD-generated indicator function. Again, the sensitivity in (16) is easily
and inexpensively determined by sampling elementary polynomial functions that

describe 5 and sgl) .



Adaptive-Sparse Polynomial Dimensional Decomposition 11

Remark 1. The PDD expansion coefficients depend on the design vector d. Natu-
rally, a PDD approximation, whether obtained by truncating arbitrarily or adaptively,
is also dependent on d, unless the approximation exactly reproduces the function
y(X). It is important to clarify that the approximate sensitivities in (15) and (16)
are obtained not by taking partial derivatives of the approximate moments in (10)
and (11) and approximate failure probability in (12) with respect to dy. Instead, they
result from replacing y(x) with yg(x) in the expectation describing the last line of
(14).

Remark 2. The score function method has the nice property that it requires differenti-
ating only the underlying probability density function fx(x;d). The resulting score
functions can be easily and, in most cases, analytically determined. If the perfor-
mance function is not differentiable or discontinuous — for example, the indicator
function that comes from reliability analysis — the proposed method still allows
evaluation of the sensitivity if the density function is differentiable. In reality, the
density function is often smoother than the performance function, and therefore the
proposed sensitivity methods are able to calculate sensitivities for a wide variety of
complex mechanical systems.

3.4 Optimization Algorithm

The adaptive-sparse PDD approximations described in the preceding subsections
provide a means to evaluate the objective and constraint functions, including their
design sensitivities, from a single stochastic analysis. An integration of statistical
moment analysis, reliability analysis, design sensitivity analysis, and a suitable op-
timization algorithm should render a convergent solution of the design optimization
problems in (1) or (2). Algorithm 1 describes the computational flow of the adaptive-
sparse PDD method for stochastic design optimization.

4 Numerical Examples

Two examples are presented to illustrate the adaptive-sparse PDD method for design
optimization under uncertainty, where the objective and constraint functions are ei-
ther elementary mathematical constructs or relate to complex engineering problems.
Orthonormal polynomials consistent with the probability distributions of input ran-
dom variables were used as bases. The PDD expansion coefficients were estimated
using dimension-reduction integration and sparse-grid quadrature entailing an ex-
tended fully symmetric interpolatory rule [5, 15]. The sensitivities of moments and
failure probability were evaluated using dimension-reduction integration and embed-
ded MCS of the adaptive-sparse PDD approximation, respectively. The optimization
algorithm selected is sequential quadratic programming in both examples.
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Algorithm 1: Proposed adaptive-sparse PDD for stochastic design optimization
Input: an initial design dy, S, € >0,¢& >0,& >0,g=0
Output: an approximation dj of optimal design d*
d@ —dy
repeat
d—d@
Generate adaptive-sparse PDD approximations y; s(X) at current design d of all y;(X)
in(l)or(2),1=0,1,--- K
if design for robustness then
compute moments Eq[; s(X)] and 675(d) of 7,5(X)
/% from (10) and (11) =/

estimate design sensitivity of moments
L /+ from (15) «/
else if design for reliability then
compute failure probability Prg(d) for j s(X)
/* from (12) =/

estimate design sensitivity of failure probability
/+ from (16) =*/

endif
Evaluate objective and constraint functions in (1) or (2) and their sensitivities at d
Using a gradient-based algorithm, obtain the next design d(@+!)

Setg=q+1
until |d@) —d@-V||, < ¢
d; «d@

4.1 Example 1: Mathematical Functions

The first example entails design optimization for robustness, which calls for finding

d* = argmin c¢p(d) := 0.5IEd Lﬁ(gx)] +0.5- VaIdZ[yO(X)]

de2CRM
subject to ¢1(d) := 34/varq [y1 (X)] — Ea [y1 (X)] <
ca(d) := 3/ varq [y2(X)] — Eq [y2(X)] <

where d € Z = [0.00002,0.002] x [0.1,1.6] and

y0(X) =X3X11/14+ X}
5X4\/1+X2 8 1
YI(X)=1—2< +(—1)’“),l=1,2,

V65Xs X; Xi1Xo

are three random response functions of five independent random variables. The
first two variables X; and X, follow Gaussian distributions with respective means

?

b

0
0,

and
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dy =Eq[X)] and dy = Eq[X»] and coefficients of variations both equal to 0.02. The
remaining variables, X3, X4, and X4, follow Beta, Gumbel, and Lognormal distribu-
tions with respective means of 10,000, 0.8, and 1050 and respective coefficients of
variations of 0.2, 0.25 and 0.238. The initial design vector is dg = (0.001, 1). In this
example, N =5, M =2,and K = 2.

Table 1 presents detailed optimization results from two distinct adaptive-sparse
PDD approximations, entailing univariate (S = 1) and bivariate (S = 2) truncations,
employed to solve this optimization problem. The optimal solutions by these two
approximations are close to each other, both indicating that the first constraint is
nearly active (c; = 0). The results of the bivariate approximations confirm that the
univariate solution is adequate. However, the total numbers of function evaluations
step up for the bivariate approximation, as expected.

Since this problem can also be solved by the non-adaptively truncated PDD [10]
and tensor product quadrature (TPQ) [6] methods, comparing their solutions, listed
in the last three columns of Table 1, with the adaptive-sparse PDD solutions should
be intriguing. It appears that the existing PDD truncated at the largest polynomial or-
der of the adaptive-sparse PDD approximation, which is four, and TPQ methods are
also capable of producing a similar optimal solution, but by incurring computational
cost far more than the adaptive-sparse PDD methods. For instance, comparing the
total numbers of function evaluations, the univariate adaptive-sparse PDD method
is more economical than the existing univariate PDD and TPQ methods by factors
of 1.5 and 37.7, respectively. The new bivariate adaptive-sparse PDD is more than
twice as efficient as the existing non-adaptively truncated bivariate PDD.

Table 1 Optimization results for Example 1
Adaptive-Sparse PDD Truncated PDD [10]

Results Univariate Bivariate Univariate Bivariate TPQ [6]
dy (x107%) 11.3902  11.5753 11.3921 11.5695 11.6476
d; 0.3822 0.3780 0.3817 03791 0.3767
co(d*) 1.2226 1.2408 1.2227  1.2406  1.2480
c1(d*) 0.0234 0.0084 0.0233  0.0084  0.0025
c2(d*) -0.4810  -0.4928 -0.4816 -0.4917 -0.4970
No. of iterations 12 13 12 14 10
Total no. of function evaluations 465 2374 696 6062 17,521

4.2 Example 2: Shape Optimization of a Jet Engine Bracket

The final example demonstrates the usefulness of the adaptive-sparse PDD method
in designing for reliability an industrial-scale mechanical component, known as a jet
engine bracket, as shown in Fig. 1(a). Seventy-nine random shape parameters, X;, i =
1,---,79, resulting from manufacturing variability, describe the shape of a jet engine
bracket in three dimensions, including two quadrilateral holes introduced to reduce
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the mass of the jet engine bracket as much as possible. The design variables, d; =
Ea[Xi],i=1,---,79, are the means (mm) of these 79 independent random variables,
with Figures 1(b)-(d) depicting the initial design of the jet engine bracket geometry
at mean values of the shape parameters. The centers of the four bottom circular holes
are fixed; a deterministic horizontal force, F = 43.091 kN, was applied at the center
of the top circular hole with a 48° angle from the horizontal line, as shown in Fig.
1(c), and a deterministic torque, T = 0.1152 kN-m, was applied at the center of the
top circular hole, as shown in Fig. 1(d). The jet engine bracket is made of Titanium
Alloy Ti-6Al-4V with deterministic material properties described elsewhere [11].
Due to their finite bounds, the random variables X;, i = 1,---,79, were assumed to
follow truncated Gaussian distributions [11].

(c) side view (d) top view

Fig. 1 A jet engine bracket; (a) a jet engine; (b) isometric view; (c) lateral view; (d) top view.

The objective of this example is to minimize the mass of the engine bracket by
changing the shape of the geometry such that the fatigue life y(u(&;X), 6(&;X)) ex-
ceeds a million loading cycles with 99.865% probability. The underlying stochastic
differential equations call for finding the displacement u(§;X) and stress 6(&;X)
solutions at a spatial coordinate & = (&1,&,,&3) € Q C R, satisfying Py-almost
surely

V.6(&:X)+b(€;X) =0in Q C R,
6(&:X) -n(&:;X) =t(&;X) on 0€2, 17
u(§;X) = u(§;X) on0Q,,
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such that 0Q, UdQ, = dQ and 02, N IR, =0 with V := (d/0&1,0/9&;,0/0&3)
and b(&;X), t(€;X), a(€;X), and n(&;X) representing the body force, prescribed
traction on d£2;, prescribed displacement on d£2,, and unit outward normal vector,
respectively. Mathematically, the problem entails finding an optimal design solution

d* = argmin co(d) := p [, dR2
de2CR™
subject to ¢(d) := Py [ymin(u(§:X),0(§ ;X)) < 10°] < 1—-0.99865,

where the objective function co(d), with p representing the mass density of the
material, describes the overall mass of the bracket; on the other hand, the constraint
function ¢(d) quantifies the probability of minimum fatigue crack-initiation life yyp,
attained at a critical spatial point & ., failing to exceed a million loading cycles to be
less than (1 —0.99865). Here, ymin depends on displacement and stress responses
u(€;X) and 0(€_;X), which satisfy (17). An FEA comprising 341,112 nodes and
212,716 ten-noded, quadratic, tetrahedral elements, was performed to solve the vari-
ational weak form of (17). Further details are available elsewhere [11].

The univariate (S = 1) adaptive-sparse PDD method was applied to solve this
shape optimization problem. Figures 2(a) through (d) show the contour plots of the
logarithm of fatigue life at mean shapes of several design iterations, including the ini-
tial design, throughout the optimization process. Due to a conservative initial design,
with fatigue life contour depicted in Fig. 2(a), the minimum fatigue crack-initiation
life of 6.65 x 10 cycles is much larger than the required fatigue crack-initiation
life of a million cycles. For the tolerance and subregion size parameters selected,
14 iterations and 2,808 FEA led to a final optimal design with the corresponding
mean shape presented in Fig. 2(d). The total run time, including performing all
2808 FEA in a desktop personal computer (8 cores, 2.3 GHz, 16 GB RAM), was
about 165 hours. Most design variables have undergone significant changes from
their initial values, prompting substantial modifications of the shapes or sizes of the
outer boundaries, quadrilateral holes, and bottom surfaces of the engine bracket. The
mean optimal mass of the engine bracket is 0.48 kg — an almost 84 percent reduction
from the mean initial mass of 3.02 kg. At optimum, the constraint function ¢(d) is
practically zero and is, therefore, close to being active.

This example shows some promise of the adaptive-sparse PDD methods in solv-
ing industrial-scale engineering design problems with an affordable computational
cost. However, an important drawback still persists: given the computer resources
available at the time of this work, only the univariate adaptive-sparse PDD approx-
imation is feasible. The univariate result has yet to be verified with those obtained
from bivariate or higher-variate adaptive-sparse PDD approximations. Therefore,
the univariate “optimal” solution reported here should be guardedly interpreted.

Finally, it is natural to ask how much the bivariate adaptive-sparse PDD approxi-
mation will cost to solve this design problem. Due to quadratic computational com-
plexity, the full bivariate PDD approximation using current computer resources of
this study is prohibitive. However, a bivariate adaptive-sparse PDD approximation
with a cost scaling markedly less than quadratic, if it can be developed, should be
encouraging. In which case, a designer should exploit the univariate solution as the
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initial design to seek a better design using the bivariate adaptive-sparse PDD method,
possibly, in fewer design iterations. The process can be repeated for higher-variate
PDD methods if feasible. Clearly, additional research on stochastic design optimiza-
tion, including more efficient implementation of the adaptive-sparse PDD methods,
is required.

(b) iteration 3

(a) initial design

(c) iteration 6 (d) iteration 14

Fig. 2 Contours of logarithmic fatigue life at mean shapes of the jet engine bracket by the adaptive-
sparse PDD method; (a) initial design; (b) iteration 3; (c) iteration 6; (d) iteration 14 (optimum).

5 Conclusion

A new adaptive-sparse PDD method was developed for stochastic design optimiza-
tion of high-dimensional complex systems commonly encountered in applied sci-
ences and engineering. The method is based on an adaptive-sparse PDD approxima-
tion of a high-dimensional stochastic response for statistical moment and reliability
analyses; a novel integration of the adaptive-sparse PDD approximation and score
functions for estimating the first-order sensitivities of the statistical moments and
failure probability with respect to the design variables; and standard gradient-based
optimization algorithms, encompassing a computationally efficient design process.
When blended with score functions, the adaptive-sparse PDD approximation leads
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to analytical formulae for calculating the design sensitivities. More importantly, the
statistical moments, failure probability, and their respective design sensitivities are
all determined concurrently from a single stochastic analysis or simulation. Numer-
ical results stemming from a mathematical example indicate that the new method
provides more computationally efficient design solutions than the existing methods.
Finally, stochastic shape optimization of a jet engine bracket with 79 variables was
performed, demonstrating the power of the new methods to tackle practical engi-
neering problems.
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