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Multi-scale fracture of random heterogeneous materials
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This article presents new probabilistic models for generating microstructures and multi-scale fracture analysis of a random
heterogeneous material. The microstructure model involves a level-cut, inhomogeneous, filtered Poisson field comprising a
sum of deterministic kernel functions that are scaled by random variables and centred at Poisson points. The fracture model
involves stochastic description of the particle volume fraction and locations and constituent material properties, two-scale
algorithms including micro-scale and macro-scale analyses, and dimensional decomposition or Monte Carlo simulation for
reliability analysis. Numerical results demonstrate that the random field model is capable of producing a wide variety of two-
and three-dimensional microstructures containing particles of various sizes, shapes, densities, gradations and orientations.
The results of fracture analysis indicate that the concurrent model developed is sufficiently accurate, gives probabilistic
solutions very close to those generated from the micro-scale model and can reduce the computational effort of the latter
model by more than a factor of two. In addition, the concurrent multi-scale model predicts crack trajectory as accurately
as the micro-scale model. The stochastic models presented have the potential to fundamentally change the way advanced
materials in high-technology applications, including the maritime industry, can be applied in the future.
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Nomenclature

�,F , P = probability space, σ -field, measure
R

d = d-dimensional real vector space
D, D̄ = domain and subdomain
Dp,Dm = subdomains of particle and matrix
N = Poisson random variable
λ (x) = intensity function
� i , �i = Poisson point and rotation matrix
Zi = random scaling variable
h = kernel function
Z(x) = filtered Poisson field
Y (x) = level-cut filtered Poisson field
I (z; a), a = indicator function and level
p1 = volume fraction
p11 = two-point correlation function
Ep, Em = elastic moduli of particle and matrix
νp, νm = Poisson’s ratios of particle and matrix
C(x) = elasticity tensor at point x
C(p),C(m) = elasticity tensors of particle and matrix
C̄(x) = effective elasticity tensor
u, σ , ε = displacement, stress, and strain fields
R, N = input random vector and its dimension
fR(r) = joint probability density of R
KI , KII = modes-I and -II stress-intensity factors
KIc = mode-I fracture toughness
y(R) = function for fracture initiation

∗Email: rahman@engineering.uiowa.edu

PF (KIc) = conditional failure probability
M̃ (1,2) = interaction integral (inhomogeneous)
M (1,2) = interaction integral (homogeneous)

1. Introduction

Research in heterogeneous materials has a long and revered
history, involving the work of luminaries such as Maxwell
(1873), Rayleigh (1892) and Einstein (1906), and has im-
portant ramifications in numerous fields, including engi-
neering, material science, rheology, geophysics, statistical
physics, chemical physics, colloid science, oil and gas ex-
ploration, and biology (Torquato 2002). An important class
of heterogeneous media comprises composite materials, of-
ten manufactured by combining two or more constituent
materials with significantly different physical, mechanical
or chemical properties. In the maritime industry, an en-
gineered composite material may exhibit superior fatigue
and fracture characteristics than traditional materials (e.g.
steel or aluminium) used in ships and offshore structures
(Gillespie 1991). Additionally, compared with the tradi-
tional materials, composites have lower thermal conductiv-
ity, lighter weight, higher strength or stiffness and higher
resistance to corrosion (Dutta 1994). However, the extent to
which a composite material can be tailored to produce tar-
get mechanical performance depends on a sound theoretical
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262 S. Rahman

understanding of the fracture behaviour and reliability of
heterogeneous materials.

Many natural and man-made heterogeneous materials
have a random internal structure comprised of two or more
phases. There are two challenging problems in the study of
a heterogeneous material: (1) modelling the microstructure
of the material (Quintanilla and Torquato 1997; Roberts
1997; Grigoriu 2003; Rahman 2008); and (2) predicting
the effective properties, such as transport, thermal, mechan-
ical properties (Ferrante and Graham-Brady 2005; Rahman
and Chakraborty 2007), including fracture performance
(Chakraborty and Rahman 2008), from this microstructural
information. Although research in solving these problems
has exploded in recent years, fundamental progress in this
field has been slow, if not hampered, due to, first, a lack
of rigorous mathematical models capable of characteris-
ing complex microstructures. Second, most heterogeneous
materials have multi-scale features; calculating their effec-
tive properties from rules of mixture, variational bounds
or classical micromechanics can lead to inadequate or mis-
leading measures of fracture performance. Therefore, new
mathematical models that can accurately represent random
microstructure and new multi-scale simulations that can
render computationally expedient yet sufficiently accurate
prediction of fracture response and reliability of a generic
heterogeneous material are highly desirable.

This paper presents new stochastic models for ran-
dom microstructure and multi-scale fracture analysis of
heterogeneous materials. The microstructure model is
based on a level-cut, inhomogeneous, filtered Poisson field
comprising a sum of deterministic kernel functions that are
scaled by random variables and centred at Poisson points.
The fracture model involves stochastic description of the
particle volume fraction, particle locations and constituent
material properties; a two-scale algorithm including
micro-scale and macro-scale analyses for determining
crack-driving forces; and Monte Carlo simulation for
reliability analysis. Section 2 presents the microstructure
model, including an algorithm for generating samples of
synthetic microstructures. Section 3 describes a fracture
problem in functionally graded materials (FGMs), defines
random input parameters and discusses crack-driving
forces and reliability. Several multi-scale and micro-scale
models for calculating various fracture response character-
istics are proposed in Section 4. Two numerical examples
of FGMs, one illustrating random microstructures and
the other employing multi-scale and micro-scale fracture
analyses, are presented in Section 5. Finally, Section 6
provides conclusions and outlook from this work.

2. Random microstructure

2.1. Level-cut, filtered Poisson field

Let (�,F , P ) be a probability space, where � is the sample
space, F is the σ -algebra of subsets of � and P is the

probability measure. Defined on the probability triple and
indexed by a spatial coordinate x ∈ D ⊂ R

d , where d ≥ 1
is an integer and D is a bounded subset of R

d , consider a
real-valued inhomogeneous random field (Grigoriu 2003,
Rahman 2008)

Z(x) :=
N (D′)∑
i=1

Zih (�i(x − �i)), (1)

where N (D′) is an inhomogeneous Poisson field with spa-
tially varying intensity function λ(x) on D′ such that Pois-
son points {�i} falling on the set difference R

d\D′ do not
contribute to the value of Z, h is a non-negative kernel
function, {Zi} is a collection of independently distributed
real-valued random variables and {�i} is a collection of
independently distributed rotation matrices in R

d . The fil-
tered Poisson field Z(x) can be viewed as the response of
a filter with a transfer function at point x that is subjected
to a collection of random pulses arriving at Poisson points
{�i}.

For an increasing function g : R → R, consider a real-
valued translation field (Grigoriu 2003)

Y (x) := g (Z(x)) , (2)

which describes a memoryless, measurable, non-linear
transformation of Z(x). The translation field Y (x) is com-
pletely determined by g and Z(x), and can follow any
marginal distribution, although its correlation structure de-
pends on its marginal distribution and correlation properties
of Z(x). Suppose that the mapping in Equation (2) has the
form (Grigoriu 2003)

g (z) = I (z; a) :=
{

1, z > a

0, z ≤ a
, (3)

where a is a deterministic constant, known as level, and
I (z; a) denotes an indicator function. The translation field
Y in Equation (2) with g in Equation (3) is referred to
as a level-cut random field. The random field Y (x) :=
I (Z(x); a) provides a convenient model for two-phase com-
posites, for example, the subsets {x ∈ D : Y (x) = 1} and
{x ∈ D : Y (x) = 0} define particles (phase 1) and matrix
(phase 2), respectively, that can be derived from a d-1-
dimensional contour of Z(x) at level a. Figure 1 depicts
a schematic illustration of the two subsets when d = 2
(Figure 1b), obtained from a cut of a generic random field
Z(x) (Figure 1a). The dark (charcoal) phase indicates par-
ticles embedded in the light (light blue) phase representing
the matrix. The model results from a direct extension of the
level-cut, homogeneous, filtered poisson field developed by
Grigoriu (2003).
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Figure 1. Schematic illustration of a level-cut random field: (a)
sample of Z with a cut at level a; (b) two subsets of Y obtained
from the contour of the sample of Z at level a.

2.2. Correlation functions

The second-moment characteristics of the level-cut field
Y (x) in Equations (1–3) are

E [Y (x)] = P [Z(x) > a] = p1(x) (4)

and

E [Y1(x)Y2(x)] = P [Z(x1) > a,Z(x2) > a]

= p11(x1, x2), (5)

where E is the expectation operator, p1(x) is the spatially
variant volume fraction of phase 1 and p11(x1, x2) denotes
the translationally variant two-point correlation function.
Higher-order moments of Y (x), defined by

E [Y1(x) · · · Yk(x)] = P [Z(x1) > a, . . . , Z(xk) > a]

= p1···1(x1, . . . , xk), (6)

can also be related to the k-point correlation function
p1···1(x1, . . . , xk), where k ≥ 1. Since Y (x) is an inhomo-
geneous field, the correlation function p1···1(x1, . . . , xk)

is also spatially variant, i.e. it explicitly depends on
the arguments x1, . . . , xk . It is not possible to ana-
lytically derive the second- or higher-order moments of
Y (x) in a general setting, i.e. when h, {Zi} and {�i}
are arbitrarily prescribed. However, these moments are di-
rectly related to finite-dimensional distribution functions
of Z(x). For instance, when the characteristic function of
{Z(x1), . . . , Z(xn)}; n ≥ 1 undergoes Fourier transforma-
tion, the probability density function of {Z(x1), . . . , Z(xn)}
is obtained. Subsequently, the moments of the random fields
Z(x) and Y (x) := I (Z(x); a) can be derived from the den-
sity function. See Grigoriu (2003) for further details.

2.3. Model calibration

Consider a two-phase particle-matrix microstructure, which
can be modelled by Y in Equation (2), where Z is defined
in Equation (1). Suppose, estimates of some features of
Y are available − for instance, the functions p1(x) and
p11(x1, x2) and information on the number of particles and
particle geometry. The objective of calibration is to deter-
mine parameters of the proposed model such that the second
moments of Y in Equations (4) and (5), which are also the
first- and second-order probability distributions of Z, match
known target statistics p̄1(x) and p̄11(x1, x2). If estimates
of higher-order moments, such as k-point correlation func-
tions p̄1···1(x1, . . . , xk); k ≥ 3, are available, they can also
be incorporated into the calibration process.

Let θ define a vector of parameters comprising λ(x), h,
a, Zi and �i , which are embedded in the proposed random
field model. Using any admissible values of these parame-
ters, Monte Carlo simulation can be employed to generate
samples of the random field Y and hence calculate its de-
sired moments. Let p1···1(·; θ) represent the k-point corre-
lation function of Y corresponding to a selected value of θ .
Denote by θ∗ the value of θ that minimises the difference
between p1···1(·; θ) and the target p̄1···1(x1, . . . , xk) for all
k = 1, . . . , K in the least squares or other sense, where K

is a user-selected positive integer. The optimisation process
must consider only feasible values of θ for which p1···1(·; θ)
constitutes a legitimate correlation function. The subspace
of feasible values of θ also depends on the indicator function
defined in Equation (2). Most existing models entail cali-
bration processes that are based on matching only the first
moment (K = 1), i.e. p̄1(x), and sometimes also on match-
ing the second moment (K = 2), i.e. p̄11(x1, x2). The pro-
posed model permits a calibration process that can match
up to K-point correlation functions for any k ≥ 1 with their
corresponding estimates, if available.

Microstructural reconstruction of random heteroge-
neous materials using specified yet limited correlation
functions constitutes an intriguing inverse problem. Since
Y (x) is non-Gaussian, the statistics p1···1(x1, . . . , xk); k =
1, . . . , K , i.e. its 1- to K-point correlation functions, only
partially describe its probability law. Consequently, there
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264 S. Rahman

may exist a collection of random fields, referred to as the
class of competing models, that have the same aforemen-
tioned statistics. The number of competing models can be
reduced if K is theoretically made a large number; how-
ever, from a practical viewpoint, the value of K is usually
decided based on the available information. Nonetheless, a
finite value of K , no matter how large, will yield a class
of competing models with two or more members. If these
members have different sample properties, they will gen-
erate microstructures with distinct morphological features,
pointing to a lack of uniqueness in any reconstruction algo-
rithm.

2.4. Algorithm

Once the parameters of the level-cut field Y (x) have been
optimised from the calibration process described in the pre-
vious subsection, samples of synthetic microstructures can
be generated based on the following algorithm:

� Step 1: Define subsets D and D′ of R
d . Specify the

kernel h and define its parameters.
� Step 2: Generate a sample n∗ of the homogeneous Pois-

son random variable N (D′), which has a constant inten-
sity λ∗ = maxx∈Rd λ(x). Generate n∗ independent uni-
formly distributed points in D′. Denote these points by
xi , i = 1, . . . , n∗.

� Step 3: Perform thinning of the point set obtained in
Step 2. In so doing, each point xi , independently of
the other, is kept with probability λ(x)/λ∗, which is
equivalent to discarding the point with probability 1 −
λ(x)/λ∗. The resulting point pattern of size n∗∗ ≤ n∗

follows the inhomogeneous Poisson field N (D′) with
intensity function λ(x). Denote these points by �i , i =
1, · · · , n∗∗ .

� Step 4: Generate n∗∗ independent samples of random
rotation matrices {�i} and random variables {Zi}. Cal-
culate the corresponding samples of the random fields
Z(x) from Equation (1) and Y (x): = I (Z(x); a) for a
specified level a. The sample of Y (x) yields a statisti-
cally inhomogeneous microstructure.

Further details are available elsewhere (Grigoriu 2003,
Rahman 2008).

3. Stochastic fracture of FGM

Consider a two-phase, functionally graded, heterogeneous
solid with a rectilinear crack and domain D ⊂ R

2 and a
schematic illustration of its microstructure, as shown in
Figure 2. The microstructure includes two distinct material
phases, phase p (green or dark) and phase m (white or light),
denoting particle and matrix constituents, respectively. Both
constituents represent isotropic and linear-elastic materials,
and the elasticity tensors of the particle and matrix, respec-

Figure 2. A crack in a functionally graded composite.

tively denoted by C (p) and C (m), are

C (i) = νiEi1 ⊗ 1

(1 + νi)(1 − 2νi)
+ Ei

1 + νi

I ; i = p,m, (7)

where the symbol ⊗ denotes tensor product; Ei and νi are
respectively elastic modulus and Poisson’s ratio of phase
i; and 1 and I are respectively second- and fourth-rank
identity tensors. The superscripts or subscripts i = p and
i = m refer to particle and matrix, respectively. At a spatial
point x ∈ D in the macroscopic length scale, let φp(x) and
φm(x) respectively denote the volume fractions of particle
and matrix. Each volume fraction is bounded between 0
and 1 and satisfies the constraint: φp(x) + φm(x) = 1. The
crack faces are traction-free, and there is perfect bonding
between matrix and particles.

For a quasi-static problem with small displacements
and strains, the variational or weak form of equilibrium
equations and boundary conditions is

∫
D

(C (x) : ε) : δεdD −
∫
D

b · δudD −
∫

�t

t̄ · δud�

−
∑

xK∈�u

f (xK ) · δu (xK )

−
∑

xK∈�u

δ f (xK ) · [u (xK ) − ū (xK )] = 0, (8)

where u : D → R
2 is the displacement vector; σ = C(x) :

ε is the Cauchy stress tensor with C(x) and ε denoting the
spatially variant elasticity tensor and strain tensor, respec-
tively; �t and �u are two disjoint portions of the bound-
ary, where the traction vector t̄ and displacement ū are
prescribed; f T (xK ) is the vector of reaction forces at the
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constrained node K on �u ; and symbols ‘.’ and ‘:’ de-
note dot product and tensor contraction, respectively. The
discretisation of the weak form, Equation (8), depends on
how the elasticity tensor C(x) is defined, i.e. how the elastic
properties of constituent material phases and their grada-
tion characteristics are described. In a following subsection,
various multi-scale and uniscale models are presented to ap-
proximate C(x). Nonetheless, a numerical method, e.g. the
finite-element method (FEM), is generally required to solve
the discretised weak form, providing various response fields
of interest.

3.1. Statistical models of random input

Uncertainties in FGM fracture can come from a variety
of sources − for instance, the FGM microstructure, con-
stituent material properties, boundary conditions, crack
geometry and structural geometry. Microstructural uncer-
tainty includes randomness in particle volume fractions,
spatial arrangements of particles, and size, shape and ori-
entation properties of particles. In this work, however, the
sources of uncertainties are limited to particle volume frac-
tion, particle location and constituent material properties.
Further details of uncertainty modelling in FGM are given
by Chakraborty and Rahman (2008).

The total number of random variables depends on the
multi-scale or micro-scale analysis described in the follow-
ing section. In general, the random variables include: (1) M

random variables {Zp,1, . . . , Zp,M} due to the discretisation
of the random field φp(x); (2) a Poisson random variable
N and resulting 2N random coordinates {Ui,1, Ui,2}; i =
1, . . . ,N of the centroids of particles in D; and (3) four
random constituent properties {Ep,Em, νp, νm}. Depend-
ing on the multi-scale or micro-scale model, some or all of
these random variables are required for stochastic fracture
analysis. Nevertheless, the maximum number of random
variables is N = M + 2N + 5. In other words, a vector
R ∈ R

N , comprising random variables from all possible
sources, characterises input uncertainty in an FGM and is
completely described by its joint probability density func-
tion (PDF) fR(r), where r is a realisation of R.

3.2. Crack-driving forces and reliability

A major objective of stochastic fracture-mechanics analy-
sis is to find probabilistic characteristics of stress-intensity
factors (SIFs) KI (R) and KII (R) for modes I and II, re-
spectively, due to uncertain input R. For a given input,
the standard FEM can be employed to solve the discre-
tised weak form (Equation (8)), leading to the calculation
of SIFs and other crack-driving forces. Let y(R) describe
a generic crack-driving force or a relevant performance
function involving crack-driving forces for a given frac-
ture problem of interest. In general, the multivariate func-
tion y : R

N → R is implicit, is not analytically available
and can only be viewed as a high-dimensional input-output

mapping, where the evaluation of the output function y for
a given input r requires expensive finite-element analysis.
Therefore, methods employed in stochastic analysis must
be capable of generating accurate probabilistic character-
istics of y(R) with an acceptably small number of output
function evaluations.

Suppose that a failure is defined when the crack prop-
agation is initiated at a crack tip, i.e. when Keff(R) :=
hm(KI (R),KII (R)) > KIc , where Keff (R) is an effective
SIF with hm depending on a selected mixed-mode theory,
and KIc is a relevant mode-I fracture toughness of the ma-
terial measured in terms of SIF. This requirement cannot
be satisfied with certainty, since KI (R) and KII (R) are
both dependent on R which is random, and KIc itself may
be a random variable or field. Hence, the performance of
a cracked FGM should be evaluated by the reliability or
its complement, the conditional probability of failure PF ,
defined as the multi-fold integral

PF (KIc) := P [y(R) < 0] :=
∫

RN

Iy(r)fR(r)d r (9)

where

y(R) = KIc − hm (KI (R),KII (R)) (10)

is a multivariate performance function that depends on the
random input R and Iy(r) is another indicator function, tak-
ing values of one when y(r) < 0 and zero when y(r) > 0.
In this work, the maximum circumferential stress theory
was invoked to describe mixed-mode fracture initiation
(Anderson 2005).

The evaluation of the multi-dimensional integral in
Equation (9), either analytically or numerically, is not pos-
sible because the total number of random variables N is
large, fR(r) is generally non-Gaussian, and y(r) is a highly
non-linear function of r. In this work, the recently devel-
oped dimensional decomposition method (Xu and Rahman
2005) and direct Monte Carlo simulation were employed for
calculating the probabilistic characteristics of crack-driving
forces and the probability of fracture initiation.

4. Multi-scale and micro-scale analyses

The FGM microstructure schematically illustrated in
Figure 2 contains discontinuities in material properties at
the interfaces between the matrix and particles. However, it
is unclear how such discontinuities will affect the calcula-
tion of a SIF. In addition, a mathematically sharp crack tip,
which has no geometric dimensions, is located in either the
matrix or the particle phase. By employing an effective elas-
tic modulus, commonly used for deriving the energy release
rate of a cracked solid, may yield inadequate estimates of the
resultant SIFs, particularly if there exists a significant mis-
match between the matrix and particle properties. However,
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266 S. Rahman

far away from the crack tip, where the effect of the crack-tip
singularity dies off rapidly, individual constituent material
properties may not be needed, and an appropriately derived
effective material property should suffice. From the above
discussion, there exist two major approaches with respect
to defining the material property for fracture analysis of an
FGM cracked structure (Chakraborty and Rahman 2008).
One approach involves multi-scale analysis, which requires
performing stress analysis in both microscopic and macro-
scopic length scales. The other approach entails a uniscale
analysis that is solely based on the microscopic length scale.
The words ‘micro-scale’ and ‘macro-scale’ analyses refer to
stress analyses entailing presence and absence, respectively,
of explicit particle geometry in the domain of the solid.
In this work, three multi-scale and a micro-scale models,
schematically illustrated in Figure 3, were examined.

4.1. Multi-scale models

The multi-scale analysis can be conducted in several ways
depending on how the information derived from the lower
scale (micro-scale) transfers to or interacts with the analysis
in the higher scale (macro-scale). However, the mechanics
and stochastics involved vary depending on the multi-scale
model selected, and are described as follows.

All multi-scale models presented here require contin-
uously varying effective properties, defined either com-
pletely or partially in the domain of the solid. Typically,
a micromechanical analysis is performed to predict re-
sponse fields of interest in the micro-scale, followed by a
homogenisation to produce the continuously varying effec-
tive properties. Let C̄(x) denote the continuously varying
effective elasticity tensor of the FGM at a point x ∈ D,

Figure 3. Schematics of various models: (a) sequential; (b) invasive; (c) concurrent; (d) micro-scale.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
h
m
a
n
,
 
S
.
]
 
A
t
:
 
2
2
:
0
1
 
1
4
 
O
c
t
o
b
e
r
 
2
0
0
9



Ships and Offshore Structures 267

expressed by

C̄(x) = ν̄(x)Ē(x)1 ⊗ 1

[1 + ν̄(x)][1 − 2ν̄(x)]
+ Ē(x)

1 + ν̄(x)
I, (11)

where the effective elastic modulus Ē(x) and effective Pois-
son’s ratio ν̄(x) both depend on x ∈ D. Using classical
micromechanics − for instance, the self-consistent model,
the Mori–Tanaka model, the mean-field theory and others
(Mura 1991) − the effective elasticity tensor C̄(x) can be
readily calculated.

4.1.1. Sequential multi-scale model

The sequential or hierarchical multi-scale model adopted
in the present work includes a three-step serial process
(Figure 3a). First, the effective tensor C̄(x) is calculated
using micromechanics based homogenisation. Second, a
macromechanical stress analysis based on the effective elas-
ticity tensor is conducted to generate the field solutions. In
this step, the weak form, described by Equation (8), is dis-
cretised using

C(x) ∼= C̄(x), x ∈ D (12)

and then solved by the FEM, leading to stress, strain and
displacement fields in the macroscopic length scale.

Third, a macromechanical fracture-mechanics analy-
sis using an interaction integral M̃ (1,2) for inhomogeneous
materials yields the mixed-mode SIFs (Rao and Rahman
2003). The SIFs can be obtained from (Rao and Rahman
2003)

Ki
∼= 1

2
M̃ (1,i)Ē∗

tip; i = I,II, (13)

where Ē∗
tip , equal to Ē(xtip) for the plane stress and

Ē(xtip)
/

[1−ν̄2
tip(xtip)] for the plane strain conditions, is the

effective generalised modulus of the FGM at the crack tip
xtip, and M̃ (1,I ) and M̃ (1,II) are two interaction integrals for
modes I and II, respectively.

4.1.2. Invasive multi-scale model

The invasive multi-scale model also involves a three-step
serial process: (1) a micromechanical analysis to predict re-
sponse fields of interest in the micro-scale, followed by a ho-
mogenisation to produce smoothly varying effective proper-
ties in the macro-scale; (2) a micro-macromechanical stress
analysis based on locally homogeneous material properties
to generate the field solutions; and (3) a macromechanical
fracture analysis based on locally homogeneous material
properties to calculate the mixed-mode SIFs.

In the invasive multi-scale model, the effective elastic-
ity tensor is also calculated from a micromechanical ho-

mogenisation, as in the sequential model. However, the
weak form, Equation (8), is discretised and then solved
using

C(x) ∼=

⎧⎪⎨
⎪⎩

C (p), if x ∈ Dε and xtip ∈ Dp

C (m), if x ∈ Dε and xtip ∈ Dm

C̄(x), if x ∈ D\Dε

, (14)

where Dε ⊂ D is a small bounded sub-domain surround-
ing the crack tip, and Dp ⊂ D and Dm ⊂ D are particle
and matrix sub-domains, respectively. According to Equa-
tion (14), discrete material properties of either the particle
(C (p)) or the matrix (C (m)) are assigned to a small sub-
domain surrounding the crack tip and continuously varying
effective material properties (C̄(x)) are defined on else-
where, as shown in Figure 3b. Therefore, discontinuities in
material properties exist at the boundary of Dε.

Since the material representation is locally homoge-
neous, but constant for x ∈ Dε, the mixed-mode SIFs
can be calculated from the interaction integral applica-
ble to homogeneous materials. If the crack-tip contour is
restricted to lie inside Dε, the interaction integral for a
locally homogeneous material (Rao and Rahman 2003),
M (1,2), can be easily calculated. The integral M (1,2) is dif-
ferent when C(x) = C (p); x ∈ Dε , e.g. M

(1,2)
p and when

C(x) = C (m); x ∈ Dε , e.g. M
(1,2)
m . Then, the SIFs can be

calculated from

Ki
∼=

⎧⎪⎨
⎪⎩

1

2
M (1,i)

p E∗
p, if xtip ∈ Dp

1

2
M (1,i)

m E∗
m, if xtip ∈ Dm

; i = I, II. (15)

Compared with the sequential (Equation (13)) model,
the invasive model (Equation (15)) utilises more accurate
crack-tip conditions and hence should provide improved
estimates of SIFs over the former model. However, it is
unclear whether the improvements in the invasive model
are adequate for calculating the failure probability.

4.1.3. Concurrent multi-scale model

The concurrent model includes both continuous and
discrete material representations and requires a combined
micromechanical and macromechanical stress analysis. De-
picted in Figure 3c, consider an arbitrary bounded sub-
domain D̄ ⊆ D, which contains a finite number of particles
embedded in the matrix. The number of particles falling
in D̄′ is N̄ = N (D̄′), where D̄′ ⊂ R

2 is a bounded subset
such that points of N̄ falling in R

2\D̄′ do not contribute
to particles in D̄. The integer-valued random variable N̄
also follows a Poisson distribution with the same intensity
function λ(x). The sub-domain D̄, once defined, is statisti-
cally filled with particles in the matrix, and the remaining
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268 S. Rahman

sub-domain D\D̄ is assigned a continuously varying ef-
fective elasticity tensor C̄(x), derived from a suitable
micromechanical homogenisation as in previous multi-
scale models. According to the concurrent model, Equation
(8) is discretised and solved using

C(x) ∼=

⎧⎪⎨
⎪⎩

C (p), if x ∈ D̄ and x ∈ Dp

C (m), if x ∈ D̄ and x ∈ Dm

C̄(x), if x ∈ D\D̄
. (16)

Therefore, discontinuities in material properties exist at
the interfaces between D̄ and D\D̄ and between Dp and
Dm.

Since the material representation in D̄ is discrete, the
calculation of the resulting SIFs in the concurrent model
is not straightforward. The interaction integral M̃ (1,2) or
M (1,2), conveniently exploited in the former multi-scale
models, requires either continuously varying or constant
material properties inside the domain of a crack-tip contour.
However, if the idea of the small sub-domain Dε ⊂ D̄ ⊆ D,
introduced in the previous subsection, is borrowed in
slightly modifying the elasticity tensor, for instance,

C(x) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C (p),
if (x ∈ Dε and xtip ∈ Dp) or

if (x ∈ D̄\Dε and x ∈ Dp)

C (m),
if (x ∈ Dε and xtip ∈ Dm) or

if (x ∈ D̄\Dε and x ∈ Dm)

C̄(x), if x ∈ D\D̄,

(17)

the material representation in the concurrent model remains
locally homogeneous, rendering the interaction integral
method applicable. Applying Equation (17) in solving the
discretised weak form yields the M-integrals, M

(1,2)
p and

M
(1,2)
m , when C(x) = C (p); x ∈ Dε and C(x) = C (m); x ∈

Dε , respectively. The SIFs are subsequently calculated us-
ing Equation (15). Although the same fracture-mechanics
equations are used, the SIFs obtained from the concur-
rent model should be different than those from the inva-
sive model. This is because the M-integrals resulting from
Equation (17) (concurrent model) are different than those
calculated from Equation (14) (invasive model). The dis-
crete particles in D̄, if they produce any effect, should in-
fluence the M-integrals obtained in the concurrent model.
No such effect is accounted for in the invasive model. The
magnitude of the effect, however, depends on the relative
size of D̄. If the size of D̄ is shrunk to approach the size
of Dε , the concurrent model degenerates to the invasive
model. If the size of D̄ is expanded to approach the size of
D, the model no longer remains a multi-scale model, but
becomes a uniscale model, which is explained in the next
subsection.

4.2. Micro-scale model

The micro-scale model is a straightforward uniscale model,
where N discrete particles are dispersed in the matrix, as
shown in Figure 3d. The number of particles falling in
D′ is N (D′), where D′ ⊂ R

2 is a bounded subset such
that the points of N falling in R

2\D′ do not contribute
to the particles in D. For the particle-matrix composite
system, a micro-scale stress analysis is performed, where
by introducing the small sub-domain Dε ⊂ D, as done in
the concurrent model, the modified elasticity tensor

C(x) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C (p),
if (x ∈ Dε and xtip ∈ Dp) or

if (x ∈ D\Dε and x ∈ Dp)

C (m),
if (x ∈ Dε and xtip ∈ Dm) or

if (x ∈ D\Dε and x ∈ Dm)

(18)

also leads to a local homogenisation; therefore, the M-
integrals can be readily calculated. Subsequently, the SIFs
are calculated by invoking Equation (15). The effect of
discrete particles in the entire domain D is propagated to
the M-integrals obtained in the micro-scale model. Such
effect is also accounted for in the concurrent multi-scale
model, but only from particles embedded in the sub-domain
D̄.

In summary, three multi-scale models and a micro-scale
model have been presented to solve the stochastic fracture-
mechanics problem described in Section 3. The multi-scale
models employ effective material properties whenever pos-
sible and include further assumptions or approximations to
help solve the problem economically. In contrast, the micro-
scale model constitutes a brute-force approach that employs
a discrete particle-matrix system to solve the problem as ac-
curately as possible, considered in the present work. There-
fore, the micro-scale model is the most expensive model
studied, but it is required to evaluate the accuracy and effi-
ciency of the multi-scale models.

5. Numerical examples

5.1. Microstructures of FGM

Consider a 10 × 10, two-dimensional, FGM specimen,
where fully penetrable elliptical or circular particles with
random lengths and widths are embedded in the matrix.
For the inhomogeneous Poisson field, two types of intensity
function associated with diagonal and centrifugal variations
of the particle locations were defined. The kernel function
was chosen such that the particles have elliptical shapes
for the diagonal variation or circular shapes for the cen-
trifugal variation. Figure 4a shows three samples of the
level-cut, filtered Poisson field obtained from three distinct
levels, a = 0.1, 1 and 5, representing synthetic samples of
FGM microstructures with a diagonally varying intensity
function, where the particles have a target aspect ratio of
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Figure 4. Samples of two-dimensional FGM microstructures: (a) diagonal intensity; (b) centrifugal intensity.

two, but their sizes are random. Figure 4b demonstrates
the versatility of the proposed random field model by de-
picting FGM microstructures derived from the centrifugal
intensity function. In both variations, the number and sizes
of the particles in these composites decrease when the mag-
nitude of the level a increases. Therefore, it is possible to
calibrate a, leading to a synthetic microstructure with the
desired statistical properties.

Consider a 10 × 10 × 10, three-dimensional, FGM
specimen, where fully penetrable spherical or disk-shaped
particles entailing random sizes and/or orientations are
embedded in the matrix. A diagonally varying intensity
function characterises the inhomogeneous Poisson field,
where two values of the Poisson intensity parameter
c, 0.0005 and 0.005, were selected to represent low
and high intensities, respectively. Figures 5a–5d exhibit
four samples of two-phase FGMs, obtained for level
a = 0.1. The microstructures in Figures 5a and 5b, which
include spherical particles, respectively, correspond to low
(c = 0.0005) and high (c = 0.005) values of the Poisson
intensity. The higher the value of the Poisson intensity,
the higher the particle density, resulting in frequent
intersections among particles. The samples in Figures 5c
and 5d contain disk-shaped particles, also generated
using the same two intensities. The significant difference
between particle properties in Figures 5a–5d demonstrates
once again the capability of the proposed model in

generating a broad range of two-phase inhomogeneous
microstructures.

5.2. Fracture of FGM

Consider a 16 cm × 16 cm, two-dimensional, square, FGM
specimen, which contains randomly dispersed, fully pen-
etrable, circular, silicon carbide (SiC) particles (radius =
0.48 cm) in an aluminium (Al) matrix, as shown in Figure
6. The specimen contains an 8-cm long edge crack that is
subjected to two far-field stresses σ∞ = τ∞ = 1 kN/cm2.
The sub-domain D̄ = 16κ cm × 16κ cm, where κ = 0.25
or 0.5. The particle volume fraction, which varies only
along the horizontal coordinate, is an inhomogeneous,
Beta, random field (Chakraborty and Rahman 2007). The
material phases SiC and Al are both linear-elastic and
isotropic. However, their elastic moduli ESiC and EAl and
the Poisson’s ratios νSiC and νAl are random variables; their
means, coefficient of variations (COV) and probability
density functions are listed in Table 1. For the sequential
and invasive multi-scale models an efficient stochastic
method, known as the dimensional decomposition method
(Xu and Rahman 2005), was employed, while the direct
Monte Carlo simulation was used for the concurrent
multi-scale and micro-scale models. The sample size for
both the decomposition and direct Monte Carlo simulation
is 10,000. The finite-element analyses were performed by
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270 S. Rahman

Figure 5. Samples of three-dimensional FGM microstructures with diagonally varying intensity functions: (a) spherical (c = 0.0005),
(b) spherical (c = 0.005); (a) disk-shaped (c = 0.0005), (b) disk-shaped (c = 0.005).

the commercial code ABAQUS (2006). The effective prop-
erties required by all multi-scale models were calculated
using the Mori-Tanaka approximation.

5.2.1. Results

Figures 7a–7d plot von Mises stress contours for the same
FGM sample, generated from the sequential, invasive, con-
current and micro-scale models, respectively. The overall

Figure 6. An edge-cracked FGM specimen under mixed-mode
loading and deformation (particle radius = 0.48 cm).

stress responses from all multi-scale and micro-scale mod-
els, indicated by the contour patterns, are similar. However,
there are also differences in the local stress fields that may
have significant implications in determining crack-driving
forces and eventually in reliability predictions by various
models. The results pertaining to fracture reliability are
presented next.

Table 2 lists the second-moment statistics of KI and KII

by various multi-scale and micro-scale models examined
in this work. Among various models, the statistics from the
micro-scale model, which requires the fewest approxima-
tions, were treated as the reference solutions. From Table 2,
the sequential and invasive models show reasonably good
agreement when comparing the mean values of KI and KII

with those of the reference model. The concurrent model
with κ = 0.25 or κ = 0.5 provides better estimates of the

Table 1. Statistical properties of constituents.

Elastic property(a) Mean COV (%) PDF

ESiC, GPa 419.2 15 Lognormal
EAl, GPa 69.7 10 Lognormal
νSiC 0.19 15 Lognormal
νAl 0.34 10 Lognormal

(a)Ep = ESiC; Em = EAl; νp = νSiC; νm = νAl.
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Figure 7. von Mises stress contours: (a) sequential; (b) invasive; (c) concurrent; (d) micro-scale.

means of SIFs than any other multi-scale models. The supe-
rior accuracy of the concurrent model extends to evaluating
the standard deviations of SIFs, which are significantly
under-predicted by all other multi-scale models except the
invasive model, which predicts the standard deviation of KI

Table 2. Statistics of SIFs by various models.

KI , MPa
√

m KII , MPa
√

m

Model Mean St. Dev. Mean St. Dev.

Sequential 28.604 1.609 2.77 0.263
Invasive 29.887 13.28 2.487 0.939
Concurrent (κ = 0.25) 30.095 13.083 2.2 2.25
Concurrent (κ = 0.5) 30.961 13.469 2.232 2.306
Micro-scale 32.213 13.998 2.191 2.391

Figure 8. Conditional probability of fracture initiation.
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272 S. Rahman

accurately. The accuracy of the concurrent models slightly
improves when κ is larger, e.g. κ = 0.5, as expected.

A more meaningful stochastic response is the fracture
reliability. Based on the maximum circumferential theory,
Figure 8 plots how PF (KIc), the conditional probability of
fracture initiation, varies as a function of the fracture tough-
ness KIc of the FGM by the multi-scale models, including
the reference solution from the micro-scale model. The re-
sults indicate that the sequential model not only fails to cap-
ture the effect of material property at the crack tip, but also
gives misleading information about the failure probability
curve. For PF (KIc) < 0.5, the sequential model signifi-
cantly under-predicts the probability of fracture initiation

and is, therefore, unconservative. The invasive model gives
a better estimate of the failure probability curve than those
two aforementioned models, but still under-predicts failure
probabilities less than 0.5. If further accuracy is desired,
the concurrent model, which provides more accurate pre-
diction of the probability of fracture initiation than all other
multi-scale models, can be employed. The accuracy of the
concurrent model improves when κ is increased from 0.25
to 0.5, as expected.

For simulating crack-propagation, two deterministic
samples of the FGM specimen in conjunction with the con-
current model (κ = 0.5) and the micro-scale model were
examined. The deterministic boundary conditions are the

Figure 9. Simulation of crack propagation by concurrent multi-scale and micro-scale models: (a) sample 1; (b) sample 2.
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Table 3. CPU times by various models.

Relative CPU Relative CPU
Model (single sample) (full stochastic)

Sequential 0.18 0.02
Invasive 0.193 0.044
Concurrent (κ = 0.25) 0.255 0.255
Concurrent (κ = 0.5) 0.419 0.419
Micro-scale 1 1

same as before. For both samples, the crack trajectories
were determined based on the maximum circumferential
stress theory. Figure 9a shows the crack propagation paths
in one sample generated from the concurrent multi-scale
and micro-scale models, where the initial propagation di-
rection is downward. For the other sample, where the initial
propagation direction is upward, the propagation paths are
presented in Figure 9b, again obtained from both models. It
is observed that the concurrent multi-scale model (κ = 0.5)
gives almost identical crack propagation paths compared
with the micro-scale model.

5.2.2. Computational effort

Table 3 lists the relative computational effort by the dif-
ferent multi-scale and micro-scale models examined in this
work. The relative CPU time associated with a particular
model is defined as the absolute CPU time required by that
model divided by the absolute CPU time required by the
micro-scale model. The second column of Table 3 displays
the relative CPU time required for a single sample calcula-
tion that involves one deterministic finite-element analysis
including all pre-processing efforts. The third column of
Table 3 describes the relative CPU time for a complete
stochastic fracture analysis that leads to the conditional
failure probability curve in Figure 8. In both analyses, the
micro-scale model is not only the most expensive, but also
the most accurate. The sequential model is the most com-
putationally inexpensive model, but they do not produce
acceptable results. The invasive model, which gives mixed
results, exhibits a similar computational efficiency to that
of the sequential model. The concurrent multi-scale model,
which produces sufficiently accurate results, is more expen-
sive than other multi-scale models, but is still less expensive
than the micro-scale model.

6. Conclusions and outlook

New stochastic models were developed for generating
microstructures and multi-scale fracture analysis of ran-
dom heterogeneous materials. The microstructure model
is based on a level-cut inhomogeneous, filtered Poisson
field comprising a sum of deterministic kernel functions
that are scaled by random variables and centred at Pois-
son points. The fracture model involves stochastic descrip-

tion of the particle volume fraction and locations and con-
stituent material properties; a two-scale algorithm includ-
ing micro-scale and macro-scale analyses for determining
crack-driving forces; and dimensional decomposition or
Monte Carlo simulation for reliability analysis. Numer-
ical results demonstrate that the random field model is
capable of producing a wide variety of two- and three-
dimensional microstructures containing particles of various
sizes, shapes, densities, gradations and orientations. The re-
sults from an edge-cracked, functionally graded specimen
under a mixed-mode deformation indicate that (1) the sim-
pler multi-scale models, the sequential and the invasive
models are the most computationally inexpensive models
available, but they do not produce acceptable probabilistic
characteristics of stress-intensity factors or accurate prob-
ability of fracture initiation; and (2) the concurrent model
is sufficiently accurate, gives probabilistic solutions very
close to those generated from the micro-scale model and
can reduce the computational effort of the latter model by
more than a factor of two. Finally, a limited yet demonstra-
tive study on crack-propagation simulation indicates that
the concurrent multi-scale model can also predict crack
trajectory accurately.

The stochastic modelling of multi-scale fracture pre-
sented in this paper has the potential to fundamentally
change the way advanced materials in high-technology ap-
plications, including the maritime industry, can be applied
in the future. The ability to model microstructure and sim-
ulate the structure–property relationship of advanced com-
posites should pave the way for a new design paradigm.
The associated numerical tools developed are expected to
reduce the need for costly experimentation, create new in-
formation not evident through experimentation alone and
lead to designing lighter, stronger, tougher composites.
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