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This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity

analysis of stochastic systems subject to independent random input following arbitrary probability

distributions. The method involves Fourier-polynomial expansions of lower-variate component func-

tions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical

formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and

dimension-reduction integration for estimating the expansion coefficients. Due to identical dimen-

sional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates

simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity

indices computed for smooth systems reveal significantly higher convergence rates of the PDD

approximation than those from existing methods, including polynomial chaos expansion, random

balance design, state-dependent parameter, improved Sobol’s method, and sampling-based methods.

However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a

great extent, warranting further improvements. The computational complexity of the PDD method is

polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical modeling of complex systems often requires
sensitivity analysis to determine how an output variable of
interest is influenced by individual or subsets of input variables.
A traditional local sensitivity analysis entails gradients or deriva-
tives, often invoked in design optimization, describing changes in
the model response due to the local variation of input. Depending
on the model output, obtaining gradients or derivatives, if they
exist, can be simple or difficult. In contrast, a global sensitivity
analysis (GSA), increasingly becoming mainstream, characterizes
how the global variation of input, due to its uncertainty, impacts
the overall uncertain behavior of the model. In other words, GSA
constitutes the study of how the output uncertainty from a
mathematical model is divvied up, qualitatively or quantitatively,
to distinct sources of input variation in the model [1].

Almost all GSA are based on the second-moment properties of
random output, for which there exist a multitude of methods or
techniques for calculating the global sensitivity indices. Promi-
nent among them are a random balance design (RBD) method [2],
which integrates its previous version [3] with a Fourier amplitude
sensitivity test [4]; a state dependent parameter (SDP) meta-
model [5] based on recursive filtering and smoothing estimation;
ll rights reserved.
and a variant of Sobol’s method with an improved formula [6–8].
More recent developments on GSA include application of poly-
nomial chaos expansion (PCE) [9] as a meta-model, commonly
used for uncertainty quantification of complex systems [10].
Crestaux et al. [11] examined the PCE method for calculating
sensitivity indices by comparing their convergence properties
with those from standard sampling-based methods, including
Monte Carlo with Latin hypercube sampling (MC-LHS) [12] and
quasi-Monte Carlo (QMC) simulation [13]. Their findings reveal
faster convergence of the PCE solution relative to sampling-based
methods for smoothly varying model responses, but the convergence
rate may degrade markedly when confronted with non-smooth
systems. They also found the PCE method to be cost effective for
low to moderate dimensional systems, even with smooth responses,
imposing a heavy computational burden when there exist a mere
ten variables or more. Indeed, computational research on GSA is far
from complete and, therefore, development of alternative methods
for improving the accuracy or efficiency of existing methods is
desirable.

This paper presents an alternative method, known as the
polynomial dimensional decomposition (PDD) method, for var-
iance-based GSA of stochastic systems subject to independent
random input following arbitrary probability distributions. The
method is based on (1) Fourier-polynomial expansions of lower-
variate component functions of a stochastic response by measure-
consistent orthonormal polynomial bases; (2) analytical formulae
for calculating the global sensitivity indices in terms of the

www.elsevier.com/locate/ress
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expansion coefficients; and (3) dimension-reduction integration
for efficiently estimating the expansion coefficients. Section 2
reviews a generic dimensional decomposition of a multivariate
function, including three distinct variants. Section 3 invokes the
properties of lower-variate component functions of a dimensional
decomposition, leading to a formal definition of the global
sensitivity index. The Fourier-polynomial expansion, calculation
of sensitivity indices, dimension-reduction integration, including
the computational effort, and novelties are described in Section 4.
Five numerical examples illustrate the accuracy, convergence
properties, and computational efficiency of the proposed method
in Section 5. Finally, conclusions are drawn in Section 6.
2. Dimensional decomposition

Let ðO,F ,PÞ be a complete probability space, where O is a
sample space, F is a s-field on O, and P : F-½0,1� is a probability
measure. With BN representing the Borel s-field on RN , consider
an RN-valued independent random vector X ¼ fX1, . . . ,XNg

T :
ðO,F Þ-ðRN ,BNÞ, which describes statistical uncertainties in all
system and input parameters of a given stochastic problem. The
probability law of X is completely defined by the joint probability
density function fXðxÞ ¼

Qi ¼ N
i ¼ 1 fiðxiÞ, where fiðxiÞ is the marginal

probability density function of Xi defined on the probability triple
ðOi,F i,PiÞ. Let yðXÞ :¼ yðX1, . . . ,XN), a real-valued, square-integr-
able, measurable transformation on ðO,F Þ, define a relevant
response of the stochastic system. A general dimensional decom-
position of yðXÞ, described by [14–20]

yðXÞ ¼ y|þ
X

uD f1,...,Ng

yuðXuÞ, ð1Þ

can be viewed as a finite, hierarchical expansion of an output
function in terms of its input variables with increasing dimen-
sions, where |auDf1, . . . ,Ng is a subset with the complementary
set �u¼ f1, . . . ,Ng�u and cardinality 1r jujrN, y| is a constant,
and yuðXuÞ is a juj-variate component function describing the
cooperative influence of Xu, a subvector of X, on y. The summa-
tion in Eq. (1) comprises 2N

�1 terms, with each term depending
on a group of variables indexed by a particular subset of f1, . . . ,Ng.
The origin of dimensional decomposition can be traced to the
work of Hoeffding [14] in the 1940s and is well known in the
statistics literature as analysis of variance (ANOVA) [15]. This
decomposition, later referred to as high-dimensional model
representation (HDMR), was subject to further refinements,
including cut-HDMR [16] and random-sampling (RS)-HDMR [17].
The author’s group examined this decomposition from the
perspective of Taylor series expansion, calculating the statistical
moments [18,19] and reliability [20] of mechanical systems.

An important feature of the decomposition in Eq. (1) is the
selection of the constant y| and component functions yuðXuÞ,
|auDf1, . . . ,Ng. By defining an error functional associated with a
given yðXÞ and an appropriate kernel function, an optimization
problem can be formulated and solved to obtain the desired
constant and component functions. However, different kernel
functions will create distinct yet formally equivalent decomposi-
tions, all exhibiting the same structure of Eq. (1). There exist three
important variants of the decomposition, described as follows.
2.1. Referential dimensional decomposition

The referential dimensional decomposition (RDD) involves the
Dirac measure

QN
i ¼ 1 dðxi�ciÞ at a reference point cARN as the
kernel function, leading to [16,19]

yðXÞ ¼ yðcÞþ
X

uD f1,...,Ng

X
vDu

ð�1Þjuj�jvjyðXv,c�vÞ, ð2Þ

where ðXv,c�vÞ denotes an N-dimensional vector whose ith
component is Xi if iAv and ci if i=2v: Both the recursive form,
presented as the cut-HDMR method [16], and the explicit form, in
conjunction with the dimension-reduction [19] or decomposi-
tion [20] method, of Eq. (2) exist. These two forms, developed
independently, have been proved to be equivalent [21]. None-
theless, the RDD component functions lack orthogonal features,
but are easy to obtain as they only involve function evaluations at
a chosen reference point.

2.2. ANOVA dimensional decomposition

The ANOVA dimensional decomposition (ADD) entails the
probability density function fXðxÞ of X as the kernel function,
which results in [15,22]

yðXÞ ¼ y0þ
X

uD f1,...,Ng

X
vDu

ð�1Þjuj�jvj
Z
RN�jvj

yðXv,x�vÞfX�v
ðx�vÞ dx�v, ð3Þ

where y0 is an expansion coefficient. Again, there exists a
recursive form of Eq. (3) [22]. The ANOVA decomposition also
has a few synonyms, notably, Sobol decomposition, which has
been used by Sudret [9] and Crestaux et al. [11], among others.
While ADD has desirable orthogonal properties, the ANOVA
component functions are difficult to obtain, because they require
calculation of high-dimensional integrals.

2.3. Polynomial dimensional decomposition

If fcijðXiÞ; j¼ 0,1, . . .g is a set of orthonormal polynomial basis
functions in the Hilbert space L2ðOi,F i,PiÞ and is consistent with
the probability measure Pi of Xi, then the ANOVA decomposition
can be extended to generate the PDD of [23,24]

yðXÞ ¼ y0þ
X

u ¼ fi1 ,...,ijujgD f1,...,Ng

X1
jijuj
¼ 1

� � �
X1

ji1
¼ 1

Ci1���ijuj ji1 ���jijuj
ci1ji1
ðXi1 Þ � � �

cijujjijuj
ðXijuj Þ, ð4Þ

where Ci1���ijuj ji1 ���jijuj
, 1r jujrN, are additional expansion coeffi-

cients that also require calculating high-dimensional integrals.
The PDD also has orthogonal component functions and exploits
the smoothness of y, if any, for efficiently calculating its prob-
abilistic characteristics. The author’s recent work reveals that the
measure-consistent PDD [24] leads to faster convergence of
stochastic solutions, when compared with the traditional ANOVA
decomposition employing uniform probability measure, also
known as RS-HDMR [17].
3. Global sensitivity analysis

3.1. Variance decomposition

The ADD in Eq. (3) can be written more explicitly as

yðXÞ ¼ y0þ
XN

i ¼ 1

yiðXiÞþ
XN�1

i1 ¼ 1

XN

i2 ¼ i1þ1

yi1i2 ðXi1 ,Xi2 Þþ � � �

þ
XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1

yi1 ���is ðXi1 , . . . ,Xis
Þþ � � � þy12���NðX1, . . . ,XNÞ,

ð5Þ



1 Since an s-variate component function may contain arbitrarily high-order

(i.e., higher than s-order) terms, depending on the nonlinearity of the response, the

appellation of the term ‘‘s-variate global sensitivity index’’ is more appropriate

than the term ‘‘s-order global sensitivity index’’.
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where the constant y0 and component functions yi1���is ðxi1 , . . . ,xis Þ,
1r i1o � � �o isrN, s¼ 1, . . . ,N, are obtained from

y0 :¼

Z
RN

yðxÞfX ðxÞ dx,

yiðxiÞ :¼

Z
RN�1

yðxÞ
Y
ja i

fjðxjÞ dxj�y0,

yi1i2 ðxi1 ,xi2 Þ :¼

Z
RN�2

yðxÞ
Y

ja ½i1 ,i2 �

fjðxjÞ dxj�yi1 ðxi1 Þ�yi2 ðxi2 Þ�y0,

^^^

yi1���is ðxi1 , . . . ,xis Þ :¼

Z
RN�s

yðxÞ
Y

ja ½i1 ,...,is �

fjðxjÞ dxj

�
X

j1 o ���o js�1 � fi1 ,...,isg

yj1���js�1
ðxj1

, . . . ,xjs�1
Þ

�
X

j1 o ���o js�2 � fi1 ,...,isg

yj1���js�2
ðxj1

, . . . ,xjs�2
Þ

� � � ��
X

j � fi1 ,...,isg

yjðxjÞ�y0, ð6Þ

quantifying various main and cooperative effects of input variables
on y. If E is the expectation operator with respect to fXðxÞ, then two
important properties of the ANOVA decomposition required for
uniquely defining its component functions are as follows.

Property 1. The ANOVA component functions yi1 ���is ðXi1 , . . . ,Xis Þ,
1r i1o � � �o isrN, s¼ 1, . . . ,N, have zero means, i.e.,

E½yi1���is ðXi1 , . . . ,Xis Þ� :¼

Z
RN

yi1���is ðxi1 , . . . ,xis ÞfXðxÞ dx¼ 0: ð7Þ

Property 2. Two distinct ANOVA component functions yi1���is

ðXi1 , . . . ,Xis Þ, 1r i1o � � �o isrN, and yj1���jt
ðXj1 , . . . ,Xjt

Þ, 1r jio � � �
o jt rN, where 1rsrN, 1rtrN, and ði1 . . . isÞa ðj1 . . . jtÞ; are

uncorrelated, i.e., they satisfy the orthogonality property

E½yi1���is ðXi1 , . . . ,Xis Þyj1 ���jt
ðXj1

, . . . ,Xjt Þ�

:¼

Z
RN

yi1���is ðxi1 , . . . ,xis Þyj1���jt
ðxj1

, . . . ,xjt ÞfXðxÞ dx¼ 0: ð8Þ

Traditionally, Eq. (5) with Xj, j¼ 1, . . . ,N, following independent,
standard uniform distributions, has been identified as the ANOVA
decomposition [15,22]; however, the author’s recent work [24]
reveals no fundamental requirement for a specific probability
measure of X, provided that the resultant integrals in Eq. (6) exist
and are finite.

Applying the expectation operator on yðXÞ in Eq. (5) and noting
Property 1, the mean E½yðXÞ� ¼ y0, the first coefficient of ADD
appearing in the first line of Eq. (6). Applying the expectation
operator again, this time on ðyðXÞ�y0Þ

2, and recognizing Property
2 results in splitting the variance

s2 :¼ E½ðyðXÞ�y0Þ
2
� ¼

XN

i ¼ 1

s2
i þ

XN�1

i1 ¼ 1

XN

i2 ¼ i1þ1

s2
i1 i2
þ � � �

þ
XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1

s2
i1���is
þ � � � þs2

12���N

¼
XN

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

s2
i1���is

0
BBBB@

1
CCCCA ð9Þ

of yðXÞ, where the variance contribution

s2
i1���is

:¼ E½y2
i1 ���is
ðXi1 , . . . ,Xis Þ� :¼

Z
RN

y2
i1���is
ðxi1 , . . . ,xis ÞfXðxÞ dx ð10Þ
to the total sum comes from the corresponding zero-mean s-variate
component function. According to Eq. (9), the variance decomposition
follows the same structure of yðXÞ�y0 from Eq. (5), explaining why
the acronym ‘‘ANOVA’’ is also coined for the function decomposition.

3.2. Global sensitivity index

The s-variate global sensitivity index1 of a stochastic response
function yðXÞ for a set fXi1 , . . . ,Xis g of input variables, denoted by
Sfi1 ,...,isg, is defined as the non-negative ratio [6]

Sfi1 ,...,isg :¼
s2

i1���is

s2
, s40, ð11Þ

representing the fraction of the variance of yðXÞ contributed by

yi1 ���is ðXi1 , . . . ,Xis Þ. Since 1r i1o � � �o isrN and s¼ 1, . . . ,N, there

exist 2N
�1 such indices, adding up to

XN

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

Sfi1 ,...,isg

0
BBBB@

1
CCCCA¼ 1: ð12Þ

For example, when N¼3, there are seven global sensitivity
indices: three univariate indices (Sf1g,Sf2g,Sf3g) due to the main

effects, three bivariate indices (Sf1,2g,Sf1,3g,Sf2,3g) due to the coop-

erative effects of two variables, and a trivariate index (Sf1,2,3g) due

to the cooperative effect of three variables.
The global sensitivity indices illuminate the dimensional struc-

ture lurking behind a complex response function. The indices can be
used to rank variables, fix unessential variables, and reduce dimen-
sions of large-scale problems [25]. In many applications, the
response function y with a low effective dimension [26] can be
approximated by combinations of low-variate component functions,
requiring, consequently, only low-variate sensitivity indices. For
instance, if yðXÞ ¼ y0þ

Pi ¼ N
i ¼ 1 yiðXiÞþ

PN�1
i1 ¼ 1

PN
i2 ¼ i1þ1 yi1i2 ðXi1 ,Xi2 Þ

represents an N-variate function comprising at most bivariate
component functions, then only the univariate and bivariate sensi-
tivities need to be determined and all higher-variate sensitivities are
equal to zero, satisfying

PN
i ¼ 1 Sfig þ

PN�1
i1 ¼ 1

PN
i2 ¼ i1þ1 Sfi1 ,i2g ¼ 1.

However, a naive or direct calculation of sensitivity indices, low-
variate or not, would require integral evaluations of the constant
and component functions in Eq. (5), followed by numerous integral
evaluations of sensitivity indices desired. For high-dimensional
systems, such an approach is impractical and possibly prohibitive.
Therefore, alternative routes must be charted to estimate the
sensitivity indices both accurately and efficiently.

4. Polynomial dimensional decomposition method

4.1. Fourier-polynomial expansion

Defined on the product probability triple �p ¼ s
p ¼ 1Oip , �p ¼ s

p ¼ 1 F ip ,
�

�
p ¼ s
p ¼ 1Pip

�
, 1rsrN, denote the space of square integrable

s-variate component functions of y by

L2 �
p ¼ s
p ¼ 1Oip , �p ¼ s

p ¼ 1 F ip , �p ¼ s
p ¼ 1 Pip

� �
:¼ yi1���is ðXi1 , . . . ,Xis Þ :

Z
Rs

y2
i1 ���is
ðxi1 , . . . ,xis Þ

�

�
Ys

p ¼ 1

fip ðxip Þ dxip o1

)
, ð13Þ
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which is a Hilbert space. Since the joint density of fXi1 , . . . ,Xis g
T is

separable (independence), the tensor product
Qs

p ¼ 1 cipjp
ðXip Þ ¼

ci1j1
ðXi1 Þ � � �cisjs

ðXis Þ constitutes an orthonormal polynomial

basis in L2. Therefore, there exists a Fourier-polynomial expan-
sion of

yi1���is ðXi1 , . . . ,Xis Þ ¼
X1

js ¼ 1

� � �
X1

j1 ¼ 1

Ci1���is j1 ���js

Ys

p ¼ 1

cipjp
ðXip Þ ð14Þ

involving

Ci1 ���isj1���js
:¼

Z
RN

yðxÞ
Ys

p ¼ 1

cipjp
ðxip ÞfXðxÞ dx ð15Þ

as the generic s-variate expansion coefficient. Applying the

expansion in Eq. (14) into Eq. (5) for 1r i1o � � �o isrN and
s¼ 1, . . . ,N yields

yðXÞ ¼ y0þ
XN

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

X1
j1 ¼ 1

� � �
X1

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

Ci1 ���is j1 ���js

Ys

p ¼ 1

cipjp
ðXip
Þ

2
66664

3
77775,

ð16Þ

an explicit form of Eq. (4). Once the embedded coefficients are
calculated, as described in a forthcoming subsection, Eq. (16)

furnishes an explicit map y : RN-R, describing an input–output
relationship from a complex numerical analysis or algorithm.
Consequently, GSA or second-moment analysis of yðXÞ can be
easily conducted using Eq. (16).
4.2. Calculation of global sensitivity indices

For calculating s2
i1���is

and s2 using orthonormal polynomials,
two important properties of cijðXiÞ are required and are described
as follows.

Property 3. The orthonormal polynomial basis functions have a unit

mean for j¼0 and zero means for all jZ1, i.e.,

E½cijðXiÞ� :¼

Z
R
cijðxiÞfiðxiÞ dxi ¼

1 if j¼ 0,

0 if jZ1:

(
ð17Þ

Property 4. Any two orthonormal polynomial basis functions

cij1
ðXiÞ and cij2

ðXiÞ, where j1,j2 ¼ 0,1,2, . . ., are uncorrelated and

each has unit variance, i.e.,

E½cij1
ðXiÞcij2

ðXiÞ� :¼

Z
R
cij1
ðxiÞcij2

ðxiÞfiðxiÞ dxi ¼
1 if j1 ¼ j2,

0 if j1a j2:

(
ð18Þ

Properties 3 and 4 of PDD ensure fulfillment of Properties 1 and
2 of ADD. Readers interested in further explanation of these
properties, including details of orthogonal polynomials for an
arbitrary probability measure, are referred to the author’s prior
work [27].

Applying the expectation operator on Eq. (16) and noting
Property 3, the mean E½yðXÞ� ¼ y0 from PDD matches the mean
from ADD. Applying the expectation operator on ½yðXÞ�y0�

2

yields

s2 ¼
XN

s ¼ 1

XN

t ¼ 1

0
BBBB@
XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1

X1
j1 ¼ 1

� � �
X1

js ¼ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2s sums
�
XN�tþ1

k1 ¼ 1

� � �
XN

kt ¼ kt�1þ1

X1
l1 ¼ 1

� � �
X1

lt ¼ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2t sums

Ci1���is j1 ���js

�Ck1 ���kt l1���ltE
Ys

p ¼ 1

cipjp
ðXip Þ

Yt

p ¼ 1

ckplp
ðXkp
Þ

" #1CCCA: ð19Þ

The number of summations inside the parenthesis of the right
side of Eq. (19) is 2(sþt), where s and t are the indices of the two
outer summations. By virtue of Property 4 and independent
coordinates of X,

E
Ys

p ¼ 1

cipjp
ðXip Þ

Yt

p ¼ 1

ckplp
ðXkp
Þ

" #
¼
Ys

p ¼ 1

E½c2
ipjp
ðXip Þ� ¼ 1 ð20Þ

for s¼t, ip ¼ kp,jp ¼ lp and zero otherwise, leading to

s2 ¼
XN

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

X1
j1 ¼ 1

� � �
X1

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

C2
i1���is j1���js

0
BBBB@

1
CCCCA ð21Þ

as the sum of squares of the expansion coefficients from PDD of yðXÞ.
Similarly, applying the expectation operator on y2

i1 ���is
ðXi1 , . . . ,Xis Þ from

Eq. (14) and invoking Property 4 results in

s2
i1 ���is
¼
X1

j1 ¼ 1

� � �
X1

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

C2
i1 ���isj1���js

: ð22Þ

Therefore, the global sensitivity index Sfi1 ,...,isg, defined in Eq. (11), can
be expressed by

Sfi1 ,...,isg ¼

P1
j1 ¼ 1 � � �

P1
js ¼ 1 C2

i1 ���is j1���jsPN
s ¼ 1

PN�sþ1
i1 ¼ 1 � � �

PN
is ¼ is�1þ1

P1
j1 ¼ 1 � � �

P1
js ¼ 1 C2

i1���isj1 ���js

� �
ð23Þ

in terms of the expansion coefficients.
Although Eq. (23) provides an exact formula for calculating the

global sensitivity index, its numerator and denominator both contain
an infinite number of coefficients, emanating from infinite orthonor-
mal polynomials in the PDD of yðXÞ (Eq. (16)). In practice, the number
of coefficients must be finite, say, by retaining 1rmo1 coefficients
or polynomials in each variable. Furthermore, in many applications,
the function y in Eq. (16) can be approximated by a sum of at most
S-variate component functions, where 1rSrN is the truncation
parameter, resulting in the S-variate approximation

~ySðXÞ ¼ y0þ
XS

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

Xm

j1 ¼ 1

� � �
Xm

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

Ci1 ���isj1���js

Ys

p ¼ 1

cipjp
ðXip Þ

2
66664

3
77775,

ð24Þ

which converges to yðXÞ in the mean square sense when S-N and
m-1. As a result, the approximate variance ~s2

S and approximate
variance component ~s2

i1���is
due to the truncated PDD and/or finite

number of orthonormal polynomials are

~s2
S ¼

XS

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

Xm

j1 ¼ 1

� � �
Xm

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

C2
i1���isj1���js

0
BBBB@

1
CCCCA ð25Þ

and

~s2
i1 ���is
¼
Xm

j1 ¼ 1

� � �
Xm

js ¼ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s sums

C2
i1���is j1���js

, s¼ 1, . . . ,S, ð26Þ
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respectively, leading to the approximate global sensitivity index

~Sfi1 ,...,isg :¼
~s2

i1 ���is

~s2
S

¼

Pm
j1 ¼ 1 � � �

Pm
js ¼ 1 C2

i1���isj1���jsPS
s ¼ 1

PN�sþ1
i1 ¼ 1 � � �

PN
is ¼ is�1þ1

Pm
j1 ¼ 1 � � �

Pm
js ¼ 1 C2

i1���is j1���js

� �
ð27Þ

of yðXÞ for any s¼ 1, . . . ,S and satisfying

XS

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

~Sfi1 ,...,isg

0
BBBB@

1
CCCCA¼ 1: ð28Þ

Note that ~Sfi1 ,...,isg for a given set fXi1 , . . . ,Xis g of input variables
depends on S and m, and should converge to Sfi1 ,...,isg as S-N and
m-1. However, its convergence with respect to m can be quite
complicated, depending mostly on the smoothness property of y. The
PCE method also exploits the smoothness condition by including the
same orthogonal polynomials, leading to similar equations for
sensitivity indices [11], but it lacks the dimensional hierarchy of
PDD exhibited in Eqs. (16) or (24). For GSA of a given stochastic
system, it will be intriguing to find if, indeed, PDD is superior to PCE
or vice versa.

For statistically dependent random variables, PDD requires
constructing multivariate orthogonal polynomials for a general,
multivariate joint density function. New methods avoiding non-
linear transformations will need to be developed for generating
measure-consistent multivariate polynomials. Stochastic pro-
blems entailing dependent random variables are outside the
scope of the present work.

4.3. Dimension-reduction integration for calculating expansion

coefficients

The determination of the expansion coefficients, which involve
N-dimensional integrals over RN , is computationally prohibitive
when N is large. Instead, a dimension-reduction integration, pre-
sented as follows, was applied to estimate the coefficients efficiently.

Let c¼ fc1, . . . ,cNg
T be a reference point of input X and yðc1, . . . ,

ci1�1,Xi1 ,ci1þ1, . . . ,ciR�k�1, XiR�k
,ciR�k þ1, . . . ,cNÞ represent an ðR�kÞth

dimensional component function of yðXÞ, where 1rRoN is an
integer, k¼ 0, . . . ,R, and 1r i1o � � �o iR�krN. For example, when
R¼1, the zero-dimensional component function, which is a
constant, is yðcÞ and the one-dimensional component functions
are yðX1,c2, . . . ,cNÞ, yðc1,X2, . . . ,cNÞ, . . . ,yðc1,c2, . . . ,XNÞ. Using Xu
and Rahman’s multivariate function theorem [19], it can be
shown that the R-variate RDD approximation of yðXÞ, defined by

ŷRðXÞ :¼
XR

k ¼ 0

ð�1Þk
N�Rþk�1

k

� �
�

XN�Rþkþ1

i1 ¼ 1

� � �
XN

iR�k ¼ iR�k�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðR�kÞsums

�yðc1, . . . ,ci1�1,Xi1 ,ci1þ1, . . . ,ciR�k�1,XiR�k
,ciR�kþ1, . . . ,cNÞ, ð29Þ

consists of all terms of the Taylor series of yðXÞ that have less than
or equal to R variables. The expanded form of Eq. (29), when
compared with the Taylor expansion of yðXÞ, indicates that the
residual error in ŷRðXÞ includes terms of dimensions Rþ1 and
higher. All higher-order R- and lower-variate terms of yðXÞ are
included in Eq. (29), which should therefore generally provide a
higher-order approximation of a multivariate function than equa-
tions derived from first- or second-order Taylor expansions.
Therefore, for RoN, an N-dimensional integral can be efficiently
estimated by at most R-dimensional integrations, if the contribu-
tions from terms of dimensions Rþ1 and higher are negligible.
Substituting yðxÞ in Eqs. (6) (first line) and (15) by ŷRðxÞ, the
coefficients can be estimated from

y0ffi
XR

k ¼ 0

ð�1Þk
N�Rþk�1

k

� � XN�Rþkþ1

i1 ¼ 1

� � �
XN

iR�k ¼ iR�k�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðR�kÞsums

�

Z
RR�k

yðc1, . . . ,ci1�1,xi1 ,ci1þ1, . . . ,ciR�k�1,xiR�k
,ciR�k þ1, . . . ,cNÞ

�
YR�k

q ¼ 1

fkq
ðxkq
Þ dxkq

ð30Þ

and

Ci1���is j1���js
ffi
XR

k ¼ 0

ð�1Þk
N�Rþk�1

k

� � XN�Rþkþ1

i1 ¼ 1

� � �
XN

iR�k ¼ iR�k�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðR�kÞsums

�

Z
RR�k

yðc1, . . . ,ci1�1,xi1
,ci1þ1, . . . ,ciR�k�1,xiR�k

,ciR�kþ1, . . . ,cNÞ

�
Ys

p ¼ 1

cipjp
ðxip Þ

YR�k

q ¼ 1

fkq
ðxkq
Þ dxkq

, ð31Þ

which require evaluating at most R-dimensional integrals.
Eqs. (30) and (31), which facilitate calculation of coefficients
approaching their exact values as R-N, are more efficient than
performing one N-dimensional integration, as in Eqs. (6) and (15),
particularly when R5N. Hence, the computational effort in
calculating the coefficients is significantly lowered using the
dimension-reduction integration. When R¼1, 2, or 3, Eqs. (30)
and (31) involve one-, at most two-, and at most three-dimen-
sional integrations, respectively. Nonetheless, numerical integra-
tion is still required for a general function y. The integration
points and associated weights depend on the probability distribu-
tion of Xi, and are readily available for classical distribution
functions, e.g., the Gauss–Hermite quadrature rule when Xi

follows Gaussian distribution [28]. For an arbitrary probability
distribution of Xi, the Stieltjes procedure can be employed to
generate the appropriate Gauss quadrature formulae [24]. In
performing the dimension-reduction integration, the value of R

should be selected in such a way that it is either equal to or
greater than the value of s. Then the expansion coefficient
Ci1���is j1 ���js

will have non-trivial solutions.

4.4. Computational effort

The S-variate approximation of the PDD method requires
evaluation of the deterministic coefficients: y0 and Ci1���is j1���js ,
s¼ 1, . . . ,S, 1r i1o � � �o isrN, j1, . . . ,js ¼ 1, . . . ,m. If these coeffi-
cients are estimated by dimension-reduction integration with
R¼ SoN and, therefore, involve at most S-dimensional tensor
product of an n-point univariate quadrature rule depending on m

in Eqs. (30) and (31), then the following deterministic responses
(function evaluations) are required: yðcÞ, yðc1, . . . ,ci1�1,xðk1Þ

i1
,ci1þ1,

. . . ,cis�1,xðksÞ

is
,cisþ1, . . . ,cNÞ for k1, . . . ,ks ¼ 1, . . . ,nðmÞ, where the

superscripts on variables indicate corresponding integration
points. Therefore, the total cost for the S-variate PDD approxima-
tion entails a maximum of

Pk ¼ S
k ¼ 0ð

N
S�kÞn

S�kðmÞ function evalua-
tions. If the integration points include a common point in each
coordinate – a special case of symmetric input probability density
functions and odd values of n (see Examples 2, 3 (N¼8), and 4) –
the number of function evaluations reduces to

Pk ¼ S
k ¼ 0ð

N
S�kÞ

ðnðmÞ�1ÞS�k. For instance, the univariate (S¼R¼1), bivariate (S¼
R¼2), and trivariate (S¼R¼3) approximations require ðn�1Þ Nþ1
(linear), NðN�1Þðn�1Þ2=2þðn�1ÞNþ1 (quadratic), and NðN�1Þ
ðN�2Þðn�1Þ3=6þNðN�1Þðn�1Þ2=2þðn�1ÞNþ1 (cubic) function
evaluations, respectively. In other words, the computational
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complexity of the S-variate PDD approximation is Sth-order poly-
nomial, as opposed to exponential, with respect to the number of
random variables or integration points. Therefore, PDD amelio-
rates the curse of dimensionality to some extent.

A recent work by the author’s group developed an alternative
form of PCE, where the pth-order PCE approximation can be
expressed in terms of the PDD coefficients directly [29]. The
coefficients can again be estimated by dimension-reduction
integration by selecting R¼ poN, and therefore involving at most
p-dimensional tensor product of an n-point univariate quadrature
rule, where n depends on p. As a result, the total cost for the
pth-order PCE approximation consists of a maximum ofPk ¼ p

k ¼ 0ð
N

p�kÞn
p�kðpÞ function evaluations. The significance of this

finding is that the ratio,
Pk ¼ p

k ¼ 0ð
N

p�kÞn
p�kðpÞ=

Pk ¼ S
k ¼ 0ð

N
S�kÞn

S�kðmÞ, can
be used to compare the computational efforts by PCE and PDD for
identical expansion orders (m¼p). For example, Figs. 1(a) and (b)
present plots of the ratio of numbers of function evaluations by
the PCE and PDD approximations as a function of the dimension
N for two cases of identical expansion orders: m¼p¼3 and
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Fig. 1. Ratio of function evaluations by the PCE and PDD approximations for two

identical polynomial expansion orders: (a) m¼p¼3 and (b) m¼p¼5. Note: a ratio

greater than one indicates higher computational cost of the PCE approximation

than the PDD approximation.
m¼p¼5, respectively, where n¼mþ1¼ pþ1. The plots in each
figure were developed separately for S¼1 (univariate), S¼2
(bivariate), and S¼3 (trivariate) PDD approximations. From the
results of Figs. 1(a) and (b), regardless of the plot, the ratios are
mostly larger than one, indicating greater computational need by
the PCE approximation than by the PDD approximation. When
S5N and m¼ pb1, the PCE approximation is significantly more
expensive than the PDD approximation.

4.5. Novelties

Many researchers, including a few cited in this paper [1,2,5–8],
readily exploit the RDD (cut-HDMR) or ANOVA decomposition for
GSA, including an application for learning the topology of a func-
tional network [30]. However, the ANOVA decomposition in its
standard form requires independent random variables that are
uniformly distributed over the unit hypercube ½0,1�N . When input
random variables are independent, but otherwise follow arbitrary
probability distributions – a more general case addressed here – one
must transform all original random variables into uniform random
variables, so that a probabilistic response function can be expanded
in terms of classical polynomials. Unfortunately, recent works have
shown such transformations to be deleterious, as they may induce
overly large nonlinearity of a stochastic response, potentially
degrading the convergence properties of probabilistic solutions [24].
The PDD method developed here sidesteps this dicey issue by
employing non-classical orthogonal polynomials that are consistent
with the probability measure of the random input. By exploiting its
orthogonal structure, the method proposes new explicit formulae
for the overall variance and its components of a stochastic response
in terms of the expansion coefficients. In addition, the method
includes a novel dimension-reduction technique that is required for
estimating the expansion coefficients efficiently. They constitute a
significant departure from existing ANOVA-based methods or tech-
niques employed by others. Finally, it is important to emphasize
that this paper exploits for the very first time the PDD approxima-
tion of a stochastic response for GSA.
5. Numerical examples

Five numerical examples involving four well-known mathe-
matical functions from the literature and an industrial-scale solid-
mechanics problem are presented to illustrate the proposed PDD
method for calculating the global sensitivity indices. The mathe-
matical functions selected are smooth or non-smooth, permit
exact solutions of the sensitivity indices, and have been studied
using a number of existing methods, facilitating a critical evalua-
tion of the PDD method developed. Whenever possible, the
classical orthogonal polynomials and associated Gauss quadrature
formulae were employed to evaluate the expansion coefficients.
The expansion coefficients in Examples 1 and 3 (N¼3) were
calculated by full N-dimensional integrations. However, in Exam-
ples 2, 3 (N¼8), 4, and 5, the coefficients were estimated by
dimension-reduction integration with the mean input as the
reference point and R¼S, so that an S-variate PDD approximation
requires at most S-variate numerical integration.

For determining the accuracy of the PDD method, three types
of error measures were defined: (1) L1-error in calculating all
2N
�1 sensitivity indices, i.e.,

e1 :¼
XN

s ¼ 1

XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s sums

jSfi1 ,...,isg�
~Sfi1 ,...,isgj

0
BBBB@

1
CCCCA, ð32Þ
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(2) L1-error in calculating N univariate sensitivity indices, i.e.,

e2 :¼
XN

i ¼ 1

jSfig� ~Sfigj, ð33Þ

and (3) relative error in calculating each non-zero univariate
sensitivity index, i.e.,

e3,i :¼
jSfig� ~Sfigj

Sfig
, Sfig40, i¼ 1, . . . ,N, ð34Þ

where Sfi1 ,...,isg is the exact s-variate sensitivity index and ~Sfi1 ,...,isg is
the approximate s-variate sensitivity index computed by the
S-variate PDD method. Similar error measures from several
existing methods were also analyzed and compared with those
from the PDD method when appropriate.

5.1. Example 1: polynomial function

Consider the polynomial function

yðXÞ ¼
1

2N

YN
i ¼ 1

ð3X2
i þ1Þ ð35Þ

studied by Sudret [9], where Xi, i¼ 1, . . . :N, are independent and
identical random variables, each following standard uniform
distribution over [0,1]. From elementary calculations, the exact
mean E½yðXÞ� ¼ 1, the variance s2 ¼ ð6=5ÞN�1, and the sensitivity
indices Sfi1 ,...,isg ¼ 5�s=½ð6=5ÞN�1�, 1r i1o � � �o isrN, s¼ 1, . . . ,N.

For N¼3, examined here, Eq. (35) represents a sixth-order,
trivariate, polynomial function, which is a product of three
quadratic polynomials in each variable. Therefore, a trivariate
PDD approximation (S¼3) with second-order (m¼2) Legendre
polynomials (interval¼½�1,þ1�) in Eq. (24) should exactly repro-
duce y. Since X1, X2, and X3 are independent, the highest order of
integrands for calculating the expansion coefficients is four. A
three-point Gauss–Legendre quadrature should then provide the
exact values of all coefficients. Therefore, if the expansion coeffi-
cients are calculated using mZ2 in Eq. (24) and Eqs. (6) (first line)
and (15) are numerically integrated with nZmþ1, then the only
source of error in a truncated PDD is the selection of S.

Table 1 presents the estimated global sensitivity indices
~Sfi1 ,...,isg, 1r i1o � � �o isrS, s¼ 1, . . . ,S, by univariate (S¼1),
bivariate (S¼2), and trivariate (S¼3) PDD approximations, which
were calculated separately using m¼1, n¼2 and m¼2, n¼3,
involving only 8 and 27 function evaluations, respectively. Since y

is a trivariate function, only the trivariate PDD approximation
Table 1
Approximate and exact sensitivity indices of the polynomial function by various meth

Sensitivity index & L Univariate PDD (S¼1)a Bivariate PDD (S¼2)a T

m¼1 m¼2 m¼1 m¼2 m

~Sf1g ,Sf1g 0.3333 0.3333 0.2807 0.2778 0

~Sf2g ,Sf2g 0.3333 0.3333 0.2807 0.2778 0

~Sf3g ,Sf3g 0.3333 0.3333 0.2807 0.2778 0

~Sf1,2g ,Sf1,2g
– – 0.0526 0.0556 0

~Sf1,3g ,Sf1,3g
– – 0.0526 0.0556 0

~Sf2,3g ,Sf2,3g
– – 0.0526 0.0556 0

~Sf1,2,3g ,Sf1,2,3g
– – – – 0

L 8 27 8 27 8

a The number of function evaluations for all three PDD methods employing a full N

L¼ nN , where N¼3, n¼mþ1, and 1rmr2.
b The results of PCE, including the numbers of function evaluations, were obtained
c The results of trivariate PDD for m¼2 and PCE for p¼6 coincide with the exact s
d The exact solution is Sfi1 ,...,isg ¼ 5�s=½ð6=5ÞN�1�, 1r i1 o � � �o is rN, s¼ 1, . . . ,N, wh
provides all sensitivity indices. In contrast, the univariate or
bivariate PDD approximation yields univariate or at most bivari-
ate sensitivity indices, regardless of m or n. Nonetheless, the
predicted indices from all three variants of PDD are reasonably
close to each other. When m¼2, n¼3, all seven indices generated
by the trivariate PDD approximation coincide with the exact
indices Sfi1 ,...,isg, also listed in Table 1, as expected. Sudret solved
the same problem using the PCE approximation with the expan-
sion order (p) varying from three to six and correspondingly
requiring 29 to 116 function evaluations. The sensitivity indices
by the PCE approximation enumerated in Table 1 also converge to
the exact solutions when p¼6, an order three times larger than
the order of univariate polynomials required by the PDD method.
At exactness, PDD is more efficient than PCE by a factor of
116=27ffi4:3. The higher efficiency of the PDD method is attrib-
uted to its dimensional hierarchy, favorably exploiting the struc-
ture of y.

5.2. Example 2: non-polynomial function

The second example involves GSA of the Ishigami and Homma
function [31]

yðXÞ ¼ sinX1þasin2X2þbX4
3sinX1, ð36Þ

where Xi, i¼1,2,3, are three independent and identically distrib-
uted uniform random variables on ½�p,þp�, and a and b are real-
valued deterministic parameters. This function, studied by several
researchers [9,11], also permits exact solutions of the variance
and sensitivity indices as follows: variance s2 ¼ a2=8þbp4=5þ
b2p8=18þ1=2, sensitivity indices Sf1g ¼ ½bp4=5þb2p8=50þ1=2�=
s2, Sf2g ¼ ½a

2=8�=s2, Sf3g ¼ 0, Sf1,2g ¼ 0, Sf1,3g ¼ ½8b2p8=225�=s2,
Sf2,3g ¼ 0, and Sf1,2,3g ¼ 0. Note that y is a non-polynomial function;
therefore, neither PDD nor PCE will provide exact solutions, but
their respective errors can be reduced to an arbitrarily low value
by increasing the polynomial orders successively. In this example,
the following deterministic parameters were selected: a¼7,
b¼0.1.

Since the right hand side of Eq. (36) includes cooperative
effects of at most two variables, the bivariate PDD approximation
is adequate for convergence analysis. In this example, the expan-
sion coefficients of the bivariate approximation were estimated
using Legendre polynomials (interval¼[�1,þ1]) of specified
order m and dimension-reduction integration (Gauss–Legendre
quadrature rule) with R¼S¼2. Since the integrand is not poly-
nomial, the optimal value of n for a specified m is difficult to
ods (Example 1).

rivariate PDD (S¼3)a PCEb Exactc,d

¼1 m¼2c p¼3 p¼4 p¼5 p¼6c

.2780 0.2747 0.2879 0.2725 0.2747 0.2747 0.2747

.2780 0.2747 0.2773 0.2733 0.2747 0.2747 0.2747

.2780 0.2747 0.2773 0.2737 0.2747 0.2747 0.2747

.0521 0.0549 0.0506 0.0564 0.0550 0.0549 0.0549

.0521 0.0549 0.0506 0.0564 0.0550 0.0549 0.0549

.0521 0.0549 0.0481 0.0569 0.0550 0.0549 0.0549

.0098 0.0110 0.0081 0.0108 0.0110 0.0110 0.0110

27 29 44 77 116 –

-dimensional numerical integration and n-point univariate Gauss–Legendre rule is

from Sudret [9].

olution.

ere N¼3.
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Fig. 2. L1-errors in calculating sensitivity indices of the Ishigami and Homma function (Example 2): (a) from all indices by PDD; (b) from univariate indices by PDD;

(c) from all indices by various methods; and (d) from univariate indices by various methods. Note: the parenthetical values are slopes of the trend lines.

2 A discrepancy exists between the convergence rates of PCE calculated in this

paper and the value of 6 reported by Crestaux et al. [11]. This is possible because

the number of data points used for calculating the convergence rate may differ.

However, such discrepancy has no major implication on the conclusion.
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ascertain. Instead, three integration options, n¼mþ1 with
m¼2,4,6,8,10,12; n¼mþ2 with m¼1,3,5,7,9,11; and n¼mþ3
with m¼2,4,6,8,10,12, were employed to examine the influence
of the option, if any, on the sensitivity indices. For each integra-
tion option, 1rmr12 was varied in such a way that n remained
an odd integer. In so doing, the corresponding numbers (L) of
function evaluations for a given m are 3 m2þ3 mþ1,
3ðmþ1Þ2þ3ðmþ1Þþ1, and 3ðmþ2Þ2þ3ðmþ2Þþ1, respectively.

Figs. 2(a) and (b) show how the errors e1 and e2, defined by
Eqs. (32) and (33), from the bivariate PDD approximation vary
with respect to L for all three integration options. The data points
of these plots were generated by calculating the sensitivity
indices for the selected values of m and counting the correspond-
ing numbers of functions evaluations depending on the integra-
tion option. Ignoring the first two data points, the errors of PDD
solutions from Figs. 2(a) and (b) decay proportionally to L�9.6,
L�8.9, and L�13.5 when n¼mþ1, n¼mþ2, and n¼mþ3, respec-
tively. Clearly, their convergence rates – the absolute values of the
slopes of the trend lines in the log–log plots – are much higher
than unity for all three integration options. Figs. 2(c) and (d)
compare the same two error measures from the bivariate PDD
approximation (n¼mþ1) with those computed by Crestaux
et al. [11] using the PCE, MC-LHS, and QMC methods or simula-
tions. The sampling-based methods, MS-LHS and QMC, have
convergence rates in the range of 0.51–1.14 and are no match
for the PDD and PCE methods, which are endowed with signifi-
cantly higher convergence rates, mostly due to the smoothness of y.
Compared with PCE showing a convergence rate of 4.5, calculated
ignoring also the first two data points in Figs. 2(c) and (d), the PDD
approximation converges about twice as fast as the PCE approxima-
tion.2 Although the same observation was made in Example 1, the
validity of this trend depends on the function examined. More
research is needed to establish appropriate criteria for grading these
two methods.

5.3. Example 3: non-smooth function

In the third example, consider the non-smooth function

yðXÞ ¼
YN
i ¼ 1

j4Xi�2jþai

1þai
ð37Þ

of N independent and identically random variables Xi, i¼ 1, . . . ,N,
uniformly distributed on [0,1] and ai, i¼ 1, . . . ,N, are real-valued,
non-negative, deterministic parameters. The lower the value of ai,
the greater the importance of Xi to y. Introduced by Saltelli and
Sobol [32], this function has been widely used for benchmarking
various sensitivity methods [9,11,33]. The exact solutions for
variance and sensitivity indices are as follows: variance s2 ¼

�1þ
Qi ¼ N

i ¼ 1 1þ1=½3ð1þai Þ
2
� and sensitivity indices Sfi1 ,...,isg ¼

ð1=s2Þ
Q

p ¼ s

p ¼ 1 1=½3ð1þaip Þ
2
�, 1r i1o � � �o isrN, s¼ 1, . . . ,N.

The sensitivity analysis in this example was conducted for two
problem sizes (dimensions): (1) N¼3 with a1¼0, a2¼1, and
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a3¼4.5; and (2) N¼8 with a1¼0, a2¼1, a3¼4.5, a4¼9, and
a5 ¼ a6 ¼ a7 ¼ a8 ¼ 99 [33]. When N¼3 (low dimension), the tri-
variate PDD method (S¼3) was employed to calculate the error e2,
the L1-error from the univariate indices only. The expansion
coefficients for this low-dimensional problem were estimated using
Legendre polynomials (interval¼[�1,þ1]) of orders 1rmr12
and full integration (Gauss–Legendre quadrature rule) with three
integration options: n¼mþ1, n¼mþ3, and n¼mþ5. The plot of e2

versus L, exhibited in Fig. 3, reveal an average convergence rate of
0.99, slightly varying with the integration option. Compared with
the results of Example 2, the convergence rates in Example 3 have
been significantly vitiated due to the lack of smoothness of y.
Crestaux et al. [11] observed similar loss of convergence rates from
the PCE method for the same function, however, with a different set
of deterministic parameters. Therefore, both the PDD and PCE
approximations are significantly challenged when faced with non-
differentiable functions. In this example, the PDD method is on par
with QMC simulation (asymptotic), which has a theoretical con-
vergence rate of 1, and slightly better than MC-LHS (asymptotic),
which has a theoretical convergence rate of 0.5.
100 101 102 103 104 105

No. of function evaluations (L)

10-4

10-3

10-2

10-1

100

101

e 2

univariate indices

n = m+5 (-1.2)

n = m+1 (-0.79)

n = m+3 (-0.97)

N = 3

Fig. 3. L1-error in calculating univariate sensitivity indices of the non-smooth

function (N¼3) by PDD (Example 3). Note: the parenthetical values are slopes of

the trend lines.

Table 2
Approximate and exact univariate sensitivity indices of the non-smooth function (N¼

Sensitivity index & L Trivariate PDD (S¼3)a RBDb

m¼4 (n¼5) m¼8 (n¼9) Low sample size

~Sf1g ,Sf1g 0.7140 0.7218 0.704

~Sf2g ,Sf2g 0.1642 0.1723 0.173

~Sf3g ,Sf3g 0.0193 0.0207 0.0314

~Sf4g ,Sf4g 0.0053 0.0057 0.0084

~Sf5g ,Sf5g 4.8�10�5 5.2�10�5 4.4�10�3

~Sf6g ,Sf6g 4.8�10�5 5.2�10�5 3.8�10�3

~Sf7g ,Sf7g 4.8�10�5 5.2�10�5 2.2�10�3

~Sf8g ,Sf8g 4.8�10�5 5.2�10�5 1.7�10�3

L 4065 30,529 4096

a The number of function evaluations for the trivariate PDD method employ

6þNðN�1Þðn�1Þ2=2þNðn�1Þþ1, where N¼8, n¼mþ1, 4rmr8.
b RBD, random balance design [2]; the results were obtained from Gatelli et al. [33
c SDP, state dependent parameter [5]; the results were obtained from Gatelli et al.
d The exact solution is Sfig ¼ ð1=s2Þ=½3ð1þaiÞ

2
�, where s2 ¼�1þ

Qi ¼ N
i ¼ 1 1þ1=½3ð1þa
When N¼8 (high dimension), the trivariate PDD approxima-
tion was applied again to compute the univariate sensitivity
indices, Sfig, i¼ 1, . . . ,8, which are displayed in Table 2 along with
their computational efforts. The expansion coefficients for this
high-dimensional problem were estimated using Legendre poly-
nomials (interval¼[�1,þ1]) of orders m¼4 or m¼8 and dimen-
sion-reduction integration (Gauss–Legendre quadrature rule)
with R¼S¼3 and n¼mþ1. Since 3¼ SoN¼ 8, errors in calculat-
ing these indices occur not only due to a finite value of m (or n),
but also due to the truncation of PDD. Table 2 also exhibits the
univariate indices calculated by the RBD and SDP methods,
analyzed by Gatelli et al. [33] for the same non-smooth function.
For each of the two latter methods, two sets of results, one for a
low sample size and the other for a high sample size, were
selected in such a way that their computational efforts are closest
to those required by the PDD method with the low and high
values of polynomial order (m) selected. Therefore, the accuracy
of a specific method, compared with the exact solution listed
in Table 2, can be judged for similar computational efforts.
From Table 2, all three methods for the largest polynomial order
or sample size yield fairly accurate sensitivity indices due to
highly important (X1 and X2) and slightly important (X3 and X4)
input variables. In contrast, the SDP and PDD methods better
estimate than the RBD method sensitivity indices due to unim-
portant (X5�X8) input variables, although predicting highly accu-
rate sensitivities for unimportant variables is not crucial. From
the analysis of Gatelli et al., the convergence rates of individual
univariate sensitivity indices from the RBD and SDP methods vary
from 0.41 to 1, approaching, at best, the theoretically achievable
convergence rate of QMC simulation. Therefore, the RBD and SDP
methods succumb to the same fate of the PDD approximation as
well. Clearly, sensitivity analysis of non-smooth systems merits
further study.

5.4. Example 4: Oakley and O’Hagan function

For Bayesian sensitivity analysis, Oakley and O’Hagan [34]
introduced a mixture of trigonometric and quadratic polynomial
functions, described by

yðXÞ ¼ aT
1XþaT

2sinXþaT
3cosXþXT MX, ð38Þ

where X ¼ fX1, . . . ,X15g
T AR15 is a 15-dimensional standard Gaus-

sian input vector (N¼15) with mean vector E½X� ¼ f0, . . . ,0gT ¼:
0AR15 and covariance matrix E½XXT

� ¼ diag½1, . . . ,1� ¼: IAR15�15;
8) by various methods (Example 3).

SDPc Exactd

High sample size Low sample size High sample size

0.714 0.717 0.716 0.7162

0.181 0.179 0.179 0.1791

0.0278 0.0235 0.0236 0.0237

0.0073 0.0070 0.0071 0.0072

3.0�10�4 2.1�10�5 6.1�10�5 7.2�10�5

3.0�10�4 2.3�10�5 5.8�10�5 7.2�10�5

4.0�10�4 2.2�10�5 5.8�10�5 7.2�10�5

3.0�10�4 2.0�10�5 5.9�10�5 7.2�10�5

32,768 4096 32,768 –

ing dimension-reduction integration with R¼S¼3 is L¼NðN�1ÞðN�2Þðn�1Þ3=

].

[33].

iÞ
2
�, N¼8, and a1¼0, a2¼1, a3¼4.5, a4¼9, and a5 ¼ a6 ¼ a7 ¼ a8 ¼ 99.



Table 3
Approximate and exact univariate sensitivity indices of the Oakley and O’Hagan

function by various methods (Example 4).

Sensitivity index & L Bivariate PDD (S¼2)a Exactb

m¼2, n¼3 m¼4, n¼5 m¼6, n¼7

~Sf1g , Sf1g 0.001281 0.001541 0.001560 0.001560

~Sf2g , Sf2g 0.000180 0.000189 0.000186 0.000186

~Sf3g , Sf3g 0.001291 0.001308 0.001307 0.001307

~Sf4g , Sf4g 0.003298 0.003046 0.003045 0.003045

~Sf5g , Sf5g 0.003102 0.002908 0.002905 0.002905

~Sf6g , Sf6g 0.022760 0.022991 0.023033 0.023035

~Sf7g , Sf7g 0.024677 0.024141 0.024150 0.024151

~Sf8g , Sf8g 0.026025 0.026528 0.026516 0.026517

~Sf9g , Sf9g 0.049019 0.046071 0.046035 0.046036

~Sf10g , Sf10g
0.014463 0.014942 0.014946 0.014945

~Sf11g , Sf11g
0.104726 0.102020 0.101830 0.101823

~Sf12g , Sf12g
0.131333 0.135520 0.135706 0.135708

~Sf13g , Sf13g
0.099474 0.101985 0.101986 0.101989

~Sf14g , Sf14g
0.103659 0.105201 0.105175 0.105169

~Sf15g , Sf15g
0.118182 0.122687 0.122812 0.122818

L 451 1741 3871 –

a The number of function evaluations for the bivariate PDD method employing

dimension-reduction integration with R¼S¼2 is L¼NðN�1Þðn�1Þ2=2þNðn�1Þ

þ1, where N¼15, n¼mþ1, 2rmr6.
b See Oakley and O’Hagan [34] or Gatelli et al. [33].
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Fig. 4. Relative error in calculating individual univariate sensitivity indices of the

Oakley and O’Hagan function by PDD (Example 4): (a) input variable X2 and

(b) input variable X12. Note: the parenthetical values are slopes of the trend lines.

3 For the SDP method, Gatelli et al. [33] reported a value of 0.61 for Sf2g in

Figures 8 and 9 of their paper. However, the location of the fitted curves at

logN¼ 1000 is slightly above the data point in Figure 8 and is slightly below the

data point in Figure 9. Due to this discrepancy, the author conducted his own fit of

the raw data, yielding a convergence rate of 0.48.
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sinX :¼ fsinX1, . . . ,sinX15g
T AR15 and cosX :¼ fcosX1, . . . , cosX15g

T

AR15 are compact notations for 15-dimensional vectors of sine
and cosine functions, respectively; and aiAR15, i¼1,2,3, and
MAR15�15 are coefficient vectors and matrix, respectively,
obtained from Oakley and O’Hagan’s paper [34]. The coefficient
vectors were selected so that the first five variables are unim-
portant, the next five variables are slightly important, and the last
five variables are very important. The coefficient matrix reflects
cooperative effects from all pairs of random variables. The exact
solutions of 15 univariate sensitivity indices, obtained from
Oakley and O’Hagan, are listed in Table 3. The three groups of
input variables are clearly identified in increasing order of
importance.

Although y : R15-R, each term on the right side of Eq. (38)
includes at most bivariate combinations of random variables.
Therefore, the bivariate PDD approximation (S¼2) is adequate
and was employed to calculate the univariate indices. The
expansion coefficients were estimated using Hermite polynomials
(interval ¼ ½�1,þ1�) of orders 2rmr6 and dimension-reduc-
tion (Gauss–Hermite quadrature rule) integration with R¼S¼2
and n¼mþ1. Table 3 presents the univariate indices computed by
the bivariate PDD method for three polynomial orders, m¼2,
m¼4, and m¼6, including the required numbers of function
evaluations. When m¼2 (lowest-order polynomial), there exist
some discrepancy between the indices estimated by the PDD and
the exact solutions, although the relative importance of input
variables is clearly recognized already. When m increases, the
accuracy of the estimated indices improves rapidly, however,
with increased computational demand. When m¼6, the largest
polynomial order considered, the estimated indices are practically
coincident with the exact solutions.

Gatelli et al. [33] also evaluated the error e3,i, defined as the
relative error in calculating each univariate sensitivity index Sfig (see
Eq. (34)), for this problem using the RBD, SDP, and improved Sobol’s
method. They reported convergence rates varying from 0.2 to 0.92
for RBD (Figure 6 of Gatelli et al.), 0.43 to 0.61 for SDP (Figure 8 of
Gatelli et al.), and 0.4 to 0.81 for improved Sobol’s (Figure 7 of Gatelli
et al.) methods, depending on the input variable examined.
Therefore, the convergence behaviors of all three aforementioned
methods are worse than QMC simulation (asymptotic), although
the convergence rates of the RBD method for a few variables are
close to 1. From the exact univariate indices in Table 3, Sf2g and Sf12g

are the smallest and largest indices, respectively; therefore, X2 is the
least important variable, while X12 is the most important variable.
Figs. 4(a) and (b) show the convergence curves for these two
extreme variables, obtained from the bivariate PDD, RBD, SDP, and
improved Sobol’s method. The errors from the PDD approximation
for a given number of function evaluations are significantly lower
than those obtained from any of the three competing methods
examined. The convergence rates of RBD, SDP, and improved Sobol’s
method, calculated using all data points in Figs. 4(a) and (b), are
0.92, 0.483, and 0.4, respectively, for Sf2g and 0.47, 0.48, and 0.8,
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respectively, for Sf12g. In contrast, the convergence rates of the PDD
approximation in estimating Sf2g and Sf12g are 1.34 and 2.84,
respectively, and are much higher than those obtained from the
other three methods. The relatively superior performance of PDD is
due to the combination of the bivariate dimensional structure and
smoothness properties of y. However, the convergence rates of the
PDD method achieved in Example 4 have not been as high as the
ones observed in Example 2. This is because of the larger number of
random variables in this example, implying slight deterioration of
the convergence properties with the dimension of the problem.

It is important to emphasize that estimating sensitivity indices
by PCE with a target error close to those produced by the bivariate
PDD with m¼6 (fourth column of Table 3) would be a daunting
task. This is because of the need to employ very high-order
multivariate polynomials in 15 variables, generating extremely
large number of PCE coefficients, not to mention the calculation of
numerous high-dimensional integrals involved.

5.5. Example 5: leverarm stress analysis

The final example illustrates the PDD method for GSA of an
industrial-scale, stochastic mechanics problem. It involves stress
Two lever
arms

Pin E 
Pin F 

Pin G 

PV

Pin E

Pin F
Pin Gx 

y 

PH

1.36 m

0.3 m 

uy = uyF, uz = 0
uy = uyG, uz = 0 

ux = uxF, uz = 0
ux = uxG, uz = 0 

1.72 m

Fig. 5. Structural analysis of a leverarm: (a) two leverarms in a wheel loader;

(b) geometry, loading, and boundary conditions; and (c) undeformed mesh

(48,312 elements).
analysis of a leverarm in a wheel loader, depicted in Fig. 5(a),
commonly used in the heavy construction industry. The loading
and boundary conditions of a single leverarm are shown
in Fig. 5(b). Fig. 5(c) presents an undeformed leverarm mesh from
the ABAQUS commercial code [35], comprising 48,312 tetrahedral
finite elements. Two random loads PH and PV acting at pin E can be
viewed as input loads due to other mechanical components of the
wheel loader. The essential boundary conditions, sketched
in Fig. 5(b), define random prescribed displacements uxF and uyF

at pin F and uxG, and uyG at pin G. The leverarm is made of cast
steel with random Young’s modulus E and random Poisson’s
ratio n. The input vector X ¼ fPH ,PV ,E,n,uxF ,uyF ,uxG,uyGg

T AR8

includes eight independent random variables with their statistical
properties listed in Table 4. Both the univariate (S¼1) and
bivariate (S¼2) PDD methods with measure-consistent orthogo-
nal polynomials and Gauss quadrature rule derived from the
Stieltjes procedure [24] were employed for sensitivity analysis of
an elastic response from finite-element analysis (FEA) of the
leverarm. The expansion coefficients were estimated by dimen-
sion-reduction integration with R¼S, requiring one- or at most
two-dimensional integrations. The order m of orthogonal poly-
nomials and number n of integration points in the dimension-
reduction integration are 2rmr3 and n¼mþ1, respectively.

Table 5 presents the approximate univariate sensitivity indices
and second-moment statistics of the maximum von Mises stress
Table 5
Approximate univariate sensitivity indices and second-moment statistics of the

maximum von Mises stress in the leverarm by PDD methods (Example 5).

Sensitivity index,

statistics & L

Univariate PDD (S¼1)a Bivariate PDD (S¼2)b

m¼2, n¼3 m¼3, n¼4 m¼2, n¼3 m¼3, n¼4

~Sf1g 2.82�10�4 2.82�10�4 2.81�10�4 2.81�10�4

~Sf2g 0.0207 0.0207 0.0206 0.0206

~Sf3g 0.0193 0.0193 0.0192 0.0186

~Sf4g 3.53�10�5 3.53�10�5 3.52�10�5 3.40�10�5

~Sf5g 0.4657 0.4657 0.4646 0.4651

~Sf6g 0.0142 0.0142 0.0141 0.0141

~Sf7g 0.4657 0.4657 0.4646 0.4651

~Sf8g 0.0142 0.0142 0.0141 0.0137

Mean (MPa) 510.51 510.51 510.53 510.57

Variance (MPa2) 17,604 17,604 17,658 17,668

L 25 33 277 481

a The number of function evaluations for the univariate PDD method employ-

ing dimension-reduction integration with R¼S¼1 is L¼Nnþ1, where N¼8,

n¼mþ1, 2rmr3.
b The number of function evaluations for the bivariate PDD method employing

dimension-reduction integration with R¼S¼2 is L¼NðN�1Þn2=2þNnþ1, where

N¼8, n¼mþ1, 2rmr3.

Table 4
Statistical properties of leverarm random input (Example 5).

Random variable Mean Standard deviation Probability distribution

PH
a (kN) 507.69 76.15 Lognormal

PV
a (kN) 1517.32 227.60 Lognormal

E (GPa) 203 10.15 Lognormal

n 0.3 0.015 Lognormal

uxF (mm) �5 5=
ffiffiffi
3
p

Uniformb

uyF (mm) 5 5=
ffiffiffi
3
p

Uniformc

uxG (mm) 5 5=
ffiffiffi
3
p

Uniformc

uyG (mm) �5 5=
ffiffiffi
3
p

Uniformb

a To be distributed equally (halved) on front and back sides of pin E.
b Uniformly distributed over [�10,0] mm; to be applied on both sides.
c Uniformly distributed over [0,10] mm; to be applied on both sides.
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of the entire leverarm by the univariate and bivariate PDD
methods. The von Mises stress is commonly used for examining
material yielding or fatigue damage in mechanical systems. The
sensitivity indices by the PDD methods in Table 5 quickly
converge with respect to S and/or m. Since FEA is employed for
response evaluations, the computational effort of PDD comes
primarily from numerically determining the expansion coeffi-
cients. The expenses involved in estimating the PDD coefficients
vary from 25–33 FEA for the univariate PDD and 277–481 FEA for
the bivariate PDD, depending on the values of m. Based on the
univariate indices in Table 5, the horizontal boundary conditions
(uxF and uxG) are highly important; the vertical load (PV), elastic
modulus (E), and vertical boundary conditions (uyF and uyG) are
slightly important; and the horizontal load (PH) and Poisson’s
ratio (n) are unimportant in influencing the variance of the
maximum von Mises stress.

Since no exact solution exists, crude Monte Carlo simulation
up to 1000 realizations (FEA) was performed, estimating the
mean and variance of the maximum von Mises stress to be
513.87 MPa and 17,956 MPa2, respectively. They match very well
with the approximate second-moment statistics in Table 5 from
either version of the PDD method regardless of m (see Table 5),
providing confidence on the accuracy of the indices computed by
the PDD methods. The univariate solution is not only accurate,
but also highly efficient. This is because of a realistic example
chosen, where the individual effects of input variables on the
response variance are dominant over their cooperative effects.
Finally, this example demonstrates the non-intrusive nature of
the PDD method, which can be easily integrated with external
commercial codes for GSA of large-scale engineering systems.
6. Conclusions

A PDD method was developed for GSA of stochastic systems
subject to independent random input following arbitrary prob-
ability distributions. The method is based on Fourier-polynomial
expansions of lower-variate component functions of a stochastic
response by measure-consistent orthonormal polynomial bases,
analytical formulae for calculating the global sensitivity indices in
terms of the expansion coefficients, and dimension-reduction
integration for efficiently estimating the expansion coefficients.
Compared with PCE, which contains the same orthonormal
polynomials, but is arranged with respect to the order of poly-
nomials, PDD is structured with respect to the degree of coopera-
tivity between a finite number of random variables. As a result,
PDD facilitates simple, direct, and immediate calculation of the
global sensitivity indices without the need to generate the ANOVA
decomposition of PCE. The PDD method employs measure-con-
sistent orthogonal polynomials, sidestepping the need for trans-
forming arbitrarily distributed random variables to uniform
random variables, as required by the classical ANOVA decomposi-
tion. The computational complexity of the PDD method is poly-
nomial, as opposed to exponential, consequently curbing the
curse of dimensionality to some extent.

The PDD method was employed to calculate the global
sensitivity indices in five numerical problems, where the output
functions are various mathematical constructs involving smooth
or non-smooth functions and complex responses from FEA. The
error analyses indicate rapid convergence of the PDD solution for
smooth non-polynomials, easily outperforming MC-LHS and QMC
simulations. Moreover, from the results of the smooth functions
examined, the convergence rates of the PDD method are notice-
ably higher than those of the PCE approximation and other
competing methods, including RBD, SDP, and improved Sobol’s
methods. However, for non-smooth functions, there is a
significant loss of convergence properties of the PDD approxima-
tion, eroding its advantage over existing methods. Therefore,
further improvements of PDD are necessary to effectively deal
with non-differentiable functions. The final example demon-
strates how the PDD method can be integrated with an external
FEA code, identifying important and unimportant variables during
stress analysis of a complex mechanical system.
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