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Abstract

This paper presents a new and alternative univariate method for predicting component reliability of mechanical systems subject to random
loads, material properties, and geometry. The method involves novel function decomposition at a most probable point that facilitates the univariate
approximation of a general multivariate function in the rotated Gaussian space and one-dimensional integrations for calculating the failure
probability. Based on linear and quadratic approximations of the univariate component function in the direction of the most probable point,
two mathematical expressions of the failure probability have been derived. In both expressions, the proposed effort in evaluating the failure
probability involves calculating conditional responses at a selected input determined by sample points and Gauss–Hermite integration points.
Numerical results indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental problem in time-invariant component relia-
bility analysis entails calculation of a multi-fold integral [1–3]

PF ≡ P [g(X) < 0] =

∫
g(x)<0

fX(x) dx, (1)

where X = {X1, . . . , X N }
T

∈ RN is a real-valued,
N -dimensional (N ≥ 2) random vector defined on a
probability space (Ω ,F, P) comprising the sample space Ω ,
the σ -field F , and the probability measure P; g(x) is the
performance function, such that g(x) < 0 represents the
failure domain; PF is the probability of failure; and fX(x)

is the joint probability density function of X, which typically
represents loads, material properties, and geometry. The most
common approach to compute the failure probability in
Eq. (1) involves the first- and second-order reliability methods
(FORM/SORM) [1–8], which are respectively based on linear
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(FORM) and quadratic (SORM) approximations of the limit-
state surface at a most probable point (MPP) in the standard
Gaussian space. When the distance βHL between the origin
and the MPP, a point on the limit-state surface that is
closest to the origin, approaches infinity, FORM/SORM strictly
provides asymptotic solutions. For non-asymptotic (finite
βHL) applications involving a highly nonlinear performance
function, its linear or quadratic approximation may not be
adequate and therefore resultant FORM/SORM predictions
must be interpreted with caution [9]. In the latter cases, an
importance sampling method developed by Hohenbichler and
Rackwitz [10] can make the FORM/SORM result arbitrarily
exact, but it may become expensive if a large number of
costly numerical analyses, such as large-scale finite element
analysis embedded in the performance function, are involved.
Furthermore, the existence of multiple MPPs may lead to
large errors in standard FORM/SORM approximations [3,8].
In that case, multi-point FORM/SORM, along with the system
reliability concept, is required to improve component reliability
analysis [8].

Recently, the authors have developed new decomposition
methods, which can solve highly nonlinear reliability problems
more accurately or more efficiently than FORM/SORM and

http://www.elsevier.com/locate/probengmech
mailto:rahman@engineering.uiowa.edu
http://www.engineering.uiowa.edu/~rahman
http://www.engineering.uiowa.edu/~rahman
http://www.engineering.uiowa.edu/~rahman
http://www.engineering.uiowa.edu/~rahman
http://www.engineering.uiowa.edu/~rahman
http://www.engineering.uiowa.edu/~rahman
http://dx.doi.org/10.1016/j.probengmech.2006.05.004


28 D. Wei, S. Rahman / Probabilistic Engineering Mechanics 22 (2007) 27–38
y(v) = y0 +

N∑
i=1

yi (vi )︸ ︷︷ ︸
=ŷ1(v)

+

N∑
i1,i2=1
i1<i2

yi1i2(vi1 , vi2)

︸ ︷︷ ︸
=ŷ2(v)

+ · · · +

N∑
i1,...,iS=1
i1<···<iS

yi1···iS (vi1 , . . . , vis )

︸ ︷︷ ︸
=ŷS(v)

+ · · · + y12···N (v1, . . . , vN ),

Box I.
simulation methods [11,12]. A major advantage of these
decomposition methods, so far based on the mean point [11]
or MPP [12] of a random input as reference points,
over FORM/SORM is that higher-order approximations of
performance functions can be achieved using function values
alone. In particular, an MPP-based univariate method developed
in the authors’ previous work involves univariate approximation
of the performance function at the MPP, n-point Lagrange
interpolation in the rotated Gaussian space, and subsequent
Monte Carlo simulation [12]. The present work is motivated
by an argument that the MPP-based univariate approximation,
if appropriately cast in the rotated Gaussian space, permits
an efficient evaluation of the component failure probability by
multiple one-dimensional integrations.

This paper presents a new and alternative MPP-based
univariate method for predicting the component reliability
of mechanical systems subject to random loads, material
properties, and geometry. Section 2 gives a brief exposition
of a novel function decomposition at the MPP that
facilitates a lower-dimensional approximation of a general
multivariate function. Section 3 describes the proposed
univariate method, which involves univariate approximation
of the performance function at the MPP and univariate
numerical integrations. Section 4 explains the computational
effort and flowchart of the proposed method. Five numerical
examples involving elementary mathematical functions and
structural/solid-mechanics problems illustrate the method
developed in Section 5. Comparisons have been made with
alternative approximate and simulation methods to evaluate the
accuracy and computational efficiency of the new method.

2. Multivariate function decomposition at MPP

Consider a continuous, differentiable, real-valued perfor-
mance function g(x) that depends on x = {x1, . . . , xN }

T
∈

RN . If u = {u1, . . . , uN }
T

∈ RN is the standard Gaussian
space, let u∗

=
{
u∗

1, . . . , u∗

N

}T denote the MPP or beta point,
which is the closest point on the limit-state surface to the ori-
gin. The MPP has a distance βHL, which is commonly re-
ferred to as the Hasofer–Lind reliability index [1–3], deter-
mined by a standard nonlinear constrained optimization. Con-
struct an orthogonal matrix R ∈ RN×N whose N th column is
α∗

≡ u∗/βHL, i.e., R =
[
R1 | α∗

]
, where R1 ∈ RN×N−1 sat-

isfies α∗TR1 = 0 ∈ R1×N−1. The matrix R can be obtained,
for example, by Gram–Schmidt orthogonalization. For an or-
thogonal transformation u = Rv, let v = {v1, . . . , vN }

T
∈ RN

represent the rotated Gaussian space with the associated MPP
Fig. 1. Performance function approximations by various methods.

v∗
=

{
v∗

1 , . . . , v∗

N−1, v
∗

N

}T
= {0, . . . , 0, βHL}

T. The trans-
formed limit states h(u) = 0 and y(v) = 0 are therefore the
maps of the original limit state g(x) = 0 in the standard Gaus-
sian space (u space) and the rotated Gaussian space (v space),
respectively. Fig. 1 depicts FORM and SORM approximations
of a limit-state surface at the MPP for N = 2.

Consider a decomposition of a general multivariate function
y(v), which can be viewed as a finite sum [11–13] (see Box I),
where y0 is a constant, yi (vi ) is a univariate component function
representing an individual contribution to y(v) by input variable
vi acting alone, yi1i2(vi1 , vi2) is a bivariate component function
describing the cooperative influence of two input variables
vi1 and vi2 , yi1···iS (vi1 , . . . , viS ) is an S-variate component
function quantifying the cooperative effects of S input variables
vi1 , . . . , viS , and so on. If

ŷS(v) = y0 +

N∑
i=1

yi (vi ) +

N∑
i1,i2=1
i1<i2

yi1i2(vi1 , vi2)

+ · · · +

N∑
i1,...,iS=1
i1<···<iS

yi1···iS (vi1 , . . . , vis ) (2)

represents a general S-variate approximation of y(v), the
univariate (S = 1) and bivariate (S = 2) approximations
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ŷ1(v) and ŷ2(v) respectively provide two- and three-term
approximants of the finite decomposition in the equation
given in Box I. Similarly, trivariate, quadrivariate, and other
higher-variate approximations can be derived by appropriately
selecting the value of S. In the limit when S = N , ŷS(v)
converges to the exact function y(v). In other words, the
decomposition in Eq. (2) generates a convergent sequence of
approximations of y(v). Readers interested in the fundamental
development of the decomposition are referred to Xu and
Rahman [13].

3. New univariate method

3.1. Univariate decomposition of performance function

Consider a univariate approximation of y(v), denoted by

ŷ1(v) ≡ ŷ1(v1, . . . , vN )

=

N∑
i=1

y(v∗

1 , . . . , v∗

i−1, vi , v
∗

i+1, . . . , v
∗

N )

− (N − 1)y(v∗), (3)

where each term in the summation is a function of only one
variable and can subsequently be expanded in a Taylor series
at the MPP, v∗

=
{
v∗

1 , . . . , v∗

N−1, v
∗

N

}T
= {0, . . . , 0, βHL}

T,
yielding

ŷ1(v) = y(v∗) +

∞∑
j=1

1
j !

N∑
i=1

∂ j y

∂v
j
i

(
v∗
)
(vi − v∗

i ) j . (4)

In contrast, the Taylor series expansion of y(v) at v∗
={

v∗

1 , . . . , v∗

N

}T can be expressed by

y(v) = y
(
v∗
)
+

∞∑
j=1

1
j !

N∑
i=1

∂ j y

∂v
j
i

(
v∗
) (

vi − v∗

i

) j
+R2 (5)

where the remainder R2 denotes all terms with dimensions
two and higher. A comparison of Eqs. (4) and (5) indicates
that the univariate approximation of ŷ1(v) leads to a residual
error y(v) − ŷ1(v) = R2, which includes contributions from
terms of dimension two and higher. For sufficiently smooth
y(v) with a convergent Taylor series, the coefficients associated
with higher-dimensional terms are usually much smaller than
those with one-dimensional terms. As such, higher-dimensional
terms contribute less to the function, and therefore can be
neglected. Nevertheless, Eq. (3) includes all higher-order
univariate terms, compared with FORM and SORM, which
only retain linear and quadratic univariate terms, respectively.
If the univariate decomposition is not sufficient, bivariate or
higher-variate decompositions may be required [11]. Because
of the higher cost, these were not included in this study.

In addition to the MPP as the chosen reference point, the
accuracy of the univariate approximation in Eq. (3) may depend
on the orientation of the first N − 1 axes. In this work, the
orientation is defined by the matrix R. However, an improved
approximation may be possible by selecting an orientation that
is optimal in some sense. This issue was not considered in the
present work.
3.2. Univariate integration for failure probability analysis

The proposed univariate approximation of the performance
function can be rewritten as

ŷ1(v) = yN (vN ) +

N−1∑
i=1

yi (vi ) − (N − 1)y(v∗), (6)

where yi (vi ) ≡ y(v∗

1 , . . . , v∗

i−1, vi , v
∗

i+1, . . . , v
∗

N ); i = 1, N .
Due to rotational transformation of the coordinates (see Fig. 1),
the univariate component function yN (vN ) in Eq. (6) is
expected to be a linear or a weakly nonlinear function of vN .
In fact, yN (vN ) is linear with respect to vN in the classical
FORM/SORM approximation of a performance function in the
v space. Nevertheless, if yN (vN ) is invertible, the univariate
approximation ŷ1(v) can be further expressed in a form
amenable to an efficient reliability analysis by one-dimensional
numerical integration. In this work, both linear and quadratic
approximations of yN (vN ) and the resultant equations for
failure probability are derived, as follows.

3.2.1. Linear approximation of yN (vN )

Consider a linear approximation: yN (vN ) = b0 + b1vN ,
where coefficients b0 ∈ R and b1 ∈ R (non-zero)
are obtained by least-squares approximations from exact or

numerically simulated responses
{

yN (v
(1)
N ), . . . , yN (v

(n)
N )

}
at

n sample points along the vN coordinate. The least-squares
approximation was chosen over interpolation, because the
former minimizes the error when n > 2. Applying the
linear approximation, the component failure probability can be
expressed by

PF ≡ P [y(V) < 0] ∼= P
[
ŷ1(V) < 0

]
∼= P

[
b0 + b1VN +

N−1∑
i=1

yi (Vi ) − (N − 1)y(v∗) < 0

]
, (7)

which, on inversion, yields

PF ∼=



P

[
VN <

(N − 1)y(v∗) − b0

b1
−

1
b1

N−1∑
i=1

yi (Vi )

]
,

if b1 > 0

P

[
VN ≥

(N − 1)y(v∗) − b0

b1
−

1
b1

N−1∑
i=1

yi (Vi )

]
,

if b1 < 0.

(8)

Since VN follows standard Gaussian distribution, the failure
probability can also be expressed by

PF ∼= E

[
8

(
(N − 1)y(v∗) − b0

|b1|
−

1
|b1|

N−1∑
i=1

yi (Vi )

)]
, (9)

where E is the expectation operator and 8 (u) =

(
1/

√
2π
)

∫ u
−∞

exp
(
−ξ2/2

)
dξ is the cumulative distribution function of

a standard Gaussian random variable. Note that Eq. (9) provides
higher-order estimates of failure probability if univariate
component functions yi (vi ), i = 1, N − 1, are approximated
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by terms higher than second order. If yi (vi ), i = 1, N − 1,
retain only linear and quadratic terms fitted with appropriately
selected sample points, Eq. (9) can be further simplified to
degenerate to the well-known FORM and SORM (point-fitted)
approximations.

3.2.2. Quadratic approximation of yN (vN )

The linear approximation described in the preceding can
be improved by a quadratic approximation: yN (vN ) = b0 +

b1vN + b2v
2
N , where coefficients b0 ∈ R, b1 ∈ R, and b2 ∈ R

(non-zero) are also obtained by least-squares approximations
from exact or numerically simulated responses at n sample
points along the vN coordinate. Again, the least-squares
approximation was selected due to error minimization when
n > 3. Similarly, the quadratic approximation of yN (vN )

employed in Eq. (6) leads to

PF ≡ P [y(V) < 0] ∼= P
[
ŷ1(V) < 0

]
∼= P

[
b0 + b1VN

+ b2V 2
N +

N−1∑
i=1

yi (Vi ) − (N − 1)y(v∗) < 0

]
. (10)

By defining B(Ṽ) ≡ b0 +
∑N−1

i=1 yi (Vi ) − (N − 1)y(v∗),
where Ṽ = {V1, . . . , VN−1}

T is an N − 1-dimensional standard
Gaussian vector, the following solutions are derived on the basis
of two cases:

(a) Case I — Trivial Solution (b1
2
− 4b2 B < 0; no real roots):

PF ∼=

{
0, if b2 > 0
1, if b2 < 0.

(11)

(b) Case II — Non-Trivial Solution (b1
2

− 4b2 B ≥ 0; two real
roots):

PF ∼=



P

−b1 −

√
b1

2
− 4b2 B(Ṽ)

2b2
< VN

<
−b1 +

√
b1

2
− 4b2 B(Ṽ)

2b2

 , if b2 > 0

1 − P

−b1 +

√
b1

2
− 4b2 B(Ṽ)

2b2
< VN

<
−b1 −

√
b1

2
− 4b2 B(Ṽ)

2b2

 , if b2 < 0,

(12)

yielding

PF ∼=
1 − b2/ |b2|

2
+ E

8

−b1 +

√
b1

2
− 4b2 B(Ṽ)

2b2


− E

8

−b1 −

√
b1

2
− 4b2 B(Ṽ)

2b2

 . (13)
Both Eqs. (9) and (13) can be employed for non-trivial solutions
of failure probability. Improvement in the accuracy of results,
if any, depends on how strongly yN (vN ) depends on vN .
Furthermore, it is possible to develop a generalized version of
Eq. (13) when yN (vN ) is highly nonlinear (e.g. polynomial of
an arbitrary order), but invertible. However, due to the rotational
transformation from the x space to the v space, it is expected
that the linear approximation of yN (vN ) (Eq. (9)) should result
in a very accurate solution. Hence, the present study is limited
to only linear and quadratic approximations of yN (vN ). It is
worth noting that, unlike Eq. (9), Eq. (13) cannot be reduced to
FORM/SORM equations, as yN (vN ) includes a second-order
term.

3.2.3. Univariate integration
The failure probability expressions in Eqs. (9) and

(13) involve the calculation of the expected values of
several multivariate functions of an N − 1-dimensional
standard Gaussian vector Ṽ = {V1, . . . , VN−1}

T. A generic
expression for such a calculation requires the determination of
E[8( f (Ṽ))], where f : RN−1

7→ R is a general mapping of Ṽ
and depends on how univariate component functions yi (vi ), i =

1, N −1, are approximated. Unfortunately, the exact probability
density function of f (Ṽ) is, in general, not available in closed
form. For this reason, it is difficult to calculate E[8( f (Ṽ))]

analytically. Numerical integration is not efficient, as 8( f (ṽ))
is a multivariate function and becomes impractical when the
dimension exceeds three or four.

In reference to Eq. (3), again consider a univariate
approximation of

ln
[
8 ( f (ṽ))

]
∼=

N−1∑
i=1

ln [8 ( fi (vi ))]

− (N − 2) ln
[
8
(

f (ṽ∗)
)]

, (14)

where fi (vi ) ≡ f (v∗

1 , . . . , v∗

i−1, vi , v
∗

i+1, . . . , v
∗

N−1); i =

1, N − 1 are univariate component functions; and f (ṽ∗) ≡

f (v∗

1 , . . . , v∗

N−1). Hence

8 ( f (ṽ)) = exp
{
ln
[
8 ( f (ṽ))

]}
∼= exp

{
N−1∑
i=1

ln [8 ( fi (vi ))]

− (N − 2) ln
[
8
(

f (ṽ∗)
)]}

=

N−1∏
i=1

8 ( fi (vi ))

8 ( f (ṽ∗))N−2 , (15)

yielding

E[8( f (Ṽ))] ∼=

N−1∏
i=1

E [8 ( fi (Vi ))]

8 ( f (ṽ∗))N−2

=

N−1∏
i=1

∫
+∞

−∞
8( fi (vi ))φ(vi ) dvi

8 ( f (ṽ∗))N−2 , (16)
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which involves a product of N −1 univariate integrals with φ(·)

denoting the standard Gaussian probability density function.
Using Eq. (16), the nontrivial expressions of failure probability
in Eqs. (9) and (13) are

PF ∼=

N−1∏
i=1

∫
+∞

−∞
8
(

(N−1)y(v∗)−b0−yi (vi )
|b1|

)
φ(vi ) dvi8

 (N−1)y(v∗)−b0−
N−1∑
i=1

yi (v∗
i )

|b1|




N−2 (17)

and

PF ∼=
1 − b2/|b2|

2

+


N−1∏
i=1

∫
+∞

−∞
8

(
−b1+

√
b1

2
−4b2 Bi (vi )

2b2

)
φ(vi ) dvi[

8

(
−b1+

√
b1

2
−4b2 B(ṽ∗)

2b2

)]N−2

−

N−1∏
i=1

∫
+∞

−∞
8

(
−b1−

√
b1

2
−4b2 Bi (vi )

2b2

)
φ(vi ) dvi[

8

(
−b1+

√
b1

2
−4b2 B(ṽ∗)

2b2

)]N−2

 (18)

respectively, where Bi (vi ) ≡ B(v∗

1 , . . . , v∗

i−1, vi , v
∗

i+1, . . . ,

v∗

N−1). The univariate integration involved in Eqs. (17) or
(18) can be evaluated easily by standard one-dimensional
Gauss–Hermite numerical quadrature [14]. The decomposition
method involving univariate approximation (Eq. (3)) and
univariate integration (Eqs. (17) or (18)) is defined as the MPP-
based univariate method with numerical integration in this
paper.

4. Computational effort and flow

Consider yi (vi ) ≡ y(v∗

1 , . . . , v∗

i−1, vi , v
∗

i+1, . . . , v
∗

N ),

i = 1, N − 1, for which n function values yi (v
( j)
i ) ≡

y(v∗

1 , . . . , v∗

i−1, v
( j)
i , v∗

i+1, . . . , v
∗

N ), j = 1, . . . , n, are required

to be evaluated at integration points vi = v
( j)
i to perform

an n-order Gauss–Hermite quadrature for the i th integration
in Eqs. (17) or (18). The same procedure is repeated for
N − 1 univariate component functions, i.e. for all yi (vi ), i =

1, . . . , N−1. Therefore, the total cost of the proposed univariate
method, including the n function values of yN (vN ) required for
its linear or quadratic approximation, entails a maximum of nN
function evaluations.1 Note that the above cost is in addition to
any function evaluations required for locating the MPP.

Fig. 2 shows the computational flowchart of the MPP-
based univariate method with numerical integration. The
implementation of the method requires the calculation of
yN (vN ) at a user-selected input to obtain coefficients b0, b1,

1 The orders of numerical integration and the number of function values of
yN (vN ) need not be the same. In addition, different orders of integration can
be employed if desired.
and/or b2 and the calculation of yi (vi ), i = 1, . . . , N − 1,
at Gauss–Hermite integration points to perform the numerical
integration. Both calculations entail the evaluation of univariate
component functions, which are conditional responses. Hence,
the proposed effort in determining the failure probability can
be viewed as numerically calculating conditional responses
at a selected input. Compared with the previously developed
univariate method [12], no Monte Carlo simulation is required
in the present method. The accuracy and efficiency of the
new method depend on both the univariate approximation and
numerical integration. They will be evaluated using several
numerical examples in a forthcoming section.

In performing n-order Gauss–Hermite quadratures in
Eqs. (17) or (18), two options for evaluating yi (vi ) are
proposed. Option 1 involves calculating yi (v

( j)
i ) at integration

points (v∗

1 , . . . , v∗

i−1, v
( j)
i , v∗

i+1, . . . , v
∗

N ), j = 1, n, from
direct numerical analysis (e.g. finite-element analysis). When
the computation of yi (vi ) is expensive, the first option is
inefficient if n is required to be large for accurate numerical
integration. The second option involves developing first a
univariate response-surface approximation of yi (vi ) from
selected sample points in the vi -coordinate, followed by
numerical integration of the response-surface approximation.
Option 2 is computationally efficient, because no additional
numerical analysis (e.g. finite-element analysis) is required
if the order of integration is larger than the number of
sample points. However, an additional layer of response-surface
approximation is involved in the second option. Both options
were explored in numerical examples, as follows.

5. Numerical examples

Five numerical examples involving explicit performance
functions from mathematical or solid-mechanics problems
(Examples 1 and 2) and implicit functions from structural or
solid-mechanics problems (Examples 3, 4, and 5) are presented
to illustrate the MPP-based univariate method with numerical
integration. Whenever possible, comparisons have been made
with the previously developed MPP-based univariate method
with simulation [12], FORM/SORM, and direct Monte Carlo
simulation to evaluate the accuracy and efficiency of the new
method.

To obtain the linear or quadratic approximation of yN (vN ),
n (= 5, 7 or 9) sample points v∗

N − (n − 1)/2, v∗

N −

(n − 3)/2, . . . , v∗

N , . . . , v∗

N + (n − 3)/2, v∗

N + (n − 1)/2
were deployed along the vN -coordinate. The same value of
n was employed as the order of Gauss–Hermite quadratures
in Eqs. (17) or (18) of the proposed univariate method with
numerical integration. Furthermore, option 1 was used in
Examples 3 and 4 and option 2 was invoked in Examples
1, 2 and 5. When using option 2, an nth-order polynomial
equation was employed for generating the response-surface
approximation of various component functions yi (vi ), i = 1,

N − 1. A 10-order Gauss–Hermite integration was invoked in
option 2. For a consistent comparison, the same value of n was
also employed as the number of sample points in the previously
developed univariate method with simulation [12]. Hence, the
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Fig. 2. Flowchart of the MPP-based univariate method with numerical integration.
total number of function evaluations required by both versions
of the univariate method, in addition to those required for
locating the MPP, is (n −1)N . When comparing computational
efforts by various methods, the number of original performance
function evaluations is chosen as the primary metric in this
paper.

5.1. Example 1 — Elementary mathematical functions

Consider cubic and quartic performance functions, expres-
sed respectively by [12]

g(X1, X2) = 2.2257 −
0.025

√
2

27
(X1 + X2 − 20)3

+
33

140
(X1 − X2) (19)

g(X1, X2) =
5
2

+
1

216
(X1 + X2 − 20)4

−
33

140
(X1 − X2) ,

(20)

where X i , i = 1, 2, are independent, Gaussian random
variables, each with mean µ = 10 and standard deviation
σ = 3. From an MPP search, v∗

= {0, 2.2257}
T and βHL =

‖v∗‖ = 2.2257 for the cubic function and v∗
= {0, 2.5}

T and
βHL = ‖v∗‖ = 2.5 for the quartic function. For both variants of
the univariate method, a value of n = 5 was selected, resulting
in nine function evaluations. Since both performance functions
in the rotated Gaussian space are linear in v2, the proposed
method involving Eq. (17) was employed to calculate the failure
probability.

Tables 1 and 2 show the results of the failure probability
calculated by FORM, SORM [4–6], the MPP-based univariate
method with simulation [12], the proposed MPP-based
univariate method with numerical integration, and direct Monte
Carlo simulation using 106 samples. The univariate method
with simulation, which yields exact limit-state equations in this
particular example, predicts the same probability of failure by
the direct Monte Carlo simulation. The univariate method with
numerical integration also yields exact limit-state equations
and predicts very accurate estimates of failure probability
when compared with simulation results. A slight difference
in the failure probability estimates by two versions of the
univariate method is due to the approximations involved in
Eqs. (7) and (14) of the proposed method. Nevertheless, other
commonly used reliability methods, such as FORM and SORM,
underpredict the failure probability by 31% and overpredict the
failure probability by 117% compared with the direct Monte
Carlo results. The SORM results are the same as the FORM
results, indicating that there is no improvement over FORM for
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Table 1
Failure probability for cubic performance function

Method Failure probability Number of function evaluationsa

MPP-based univariate method with numerical integration 0.01895 29b

MPP-based univariate method with simulation [12] 0.01907 29b

FORM 0.01302 21
SORM [4–6] 0.01302 204
Direct Monte Carlo simulation 0.01907 1000,000

a Total number of times that the original performance function is calculated.
b 21 + (n − 1) × N = 21 + (5 − 1) × 2 = 29.
Table 2
Failure probability for quartic performance function

Method Failure probability Number of function evaluationsa

MPP-based univariate method with numerical integration 0.003030 29b

MPP-based univariate method with simulation [12] 0.002886 29b

FORM 0.006209 21
SORM [4–6] 0.006208 212
Direct Monte Carlo simulation 0.002886 1000,000

a Total number of times that the original performance function is calculated.
b 21 + (n − 1) × N = 21 + (5 − 1) × 2 = 29.
problems involving an inflection point (cubic function) or high
nonlinearity (quartic function).

5.2. Example 2 — Burst margin of a rotating disk

Consider an annular disk of inner radius Ri , outer radius
Ro, and constant thickness t � Ro (plane stress), as shown
in Fig. 3. The disk is subject to an angular velocity, ω,
about an axis perpendicular to its plane at the centre. The
maximum allowable angular velocity, ωa , when tangential
stresses through the thickness reach the material’s ultimate
strength, Su , factored by a material utilization factor αm , is [15]

ωa =

[
3αm Su (Ro − Ri )

ρ
(
R3

o − R3
i

) ]1/2

, (21)

where ρ is the mass density of the material. According to an
SAE G-11 standard, the satisfactory performance of the disk is
defined when the burst margin Mb, defined as

Mb ≡
ωa

ω
=

[
3αm Su (Ro − Ri )

ρω2
(
R3

o − R3
i

) ]1/2

, (22)

exceeds 0.374 73 [16]. If random variables X1 = αm , X2 =

Su , X3 = ω, X4 = ρ, X5 = Ro, and X6 = Ri have
their statistical properties defined in Table 3, the performance
function becomes

g(X) = Mb(X1, X2, X3, X4, X5, X6) − 0.374 73. (23)

Table 4 presents the predicted failure probability of the disk
and the associated computational effort using new and ex-
isting MPP-based univariate methods, FORM, Hohenbichler’s
SORM [5], and direct Monte Carlo simulation (106 samples).
For univariate methods, a value of n = 7 was selected. For the
Fig. 3. Rotating annular disk subject to angular velocity.

univariate method with numerical integration, the failure prob-
abilities based on linear (Eq. (17)) and quadratic (Eq. (18)) ap-
proximations are almost identical, which verifies the adequacy
of the linear approximation of yN (vN ) in this example. The
results also indicate that the univariate methods using either
simulation or numerical integration produce the most accurate
solution. FORM and SORM slightly underpredict the failure
probability. Both univariate methods surpass the efficiency of
SORM in solving this particular reliability problem.

5.3. Example 3 — Ten-bar truss structure

A ten-bar, linear-elastic, truss structure, shown in Fig. 4,
was studied in this example to examine the accuracy and
efficiency of the proposed reliability method. The Young’s
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Table 3
Statistical properties of random input for rotating disk

Random variable Mean Standard deviation Probability distribution

αm 0.9377 0.0459 Weibulla

Su , ksi 220 5 Gaussian
ω, rpm 24 0.5 Gaussian
ρ, lb − s2/in.4 0.29/gb 0.0058/gb Uniformc

Ro, in. 24 0.5 Gaussian
Ri , in. 8 0.3 Gaussian

a Scale parameter = 25.508; shape parameter = 0.958.
b g = 385.82 in./s2.
c Uniformly distributed over (0.28, 0.3).
Table 4
Failure probability of rotating disk

Method Failure probability Number of function evaluationsa

MPP-based univariate method with numerical integration
Linear (Eq. (17)) 0.00099 167b

Quadratic (Eq. (18)) 0.00099 167b

MPP-based univariate method with simulation [12] 0.00101 167b

FORM 0.00089 131
SORM (Hohenbichler) [5] 0.00097 378
Direct Monte Carlo simulation 0.00104 1000,000

a Total number of times that the original performance function is calculated.
b 131 + (n − 1) × N = 131 + (7 − 1) × 6 = 167.
Fig. 4. A ten-bar truss structure.

modulus of the material is 107 psi. Two concentrated forces of
105 lb are applied at nodes 2 and 3, as shown in Fig. 4. The
cross-sectional area X i , i = 1, . . . , 10 for each bar follows
a truncated normal distribution clipped at xi = 0 and has
mean µ = 2.5 in.2 and standard deviation σ = 0.5 in.2.
According to the loading condition, the maximum displacement
[v3(X1, . . . , X10)] occurs at node 3, where the permissible
displacement is limited to 18 in., leading to g(X) = 18 −

v3 (X1, . . . , X10).
From an MPP search involving finite-difference gradients,

βHL = ‖v∗‖ = 1.3642. Table 5 shows the failure
probability of the truss, calculated using the proposed MPP-
based univariate method with numerical integration, MPP-
based univariate method with simulation [12], FORM, three
variants of SORM due to Breitung [4], Hohenbichler [5] and
Cai and Elishakoff [6], and direct Monte Carlo simulation
(106 samples). For univariate methods, a value of n = 7
was selected. From Table 5, both versions of the univariate
method predict the failure probability more accurately than
FORM and all three variants of SORM. This is because
univariate methods are able to approximate the performance
function more accurately than FORM/SORM. The univariate
method with numerical integration involving the quadratic
approximation of yN (vN ) yields a slightly more accurate result
than that based on its linear approximation. A comparison of the
number of function evaluations, also listed in Table 5, indicates
that the computational effort by the MPP-based univariate
methods is slightly larger than FORM, but much less than
SORM.

5.4. Example 4 — Mixed-mode fracture-mechanics analysis

The fourth example involves an isotropic, homogeneous,
edge-cracked plate, presented to illustrate mixed-mode proba-
bilistic fracture-mechanics analysis using the proposed univari-
ate method. As shown in Fig. 5(a), a plate of length L = 16
units and width W = 7 units is fixed at the bottom and sub-
jected to a far-field and a shear stress τ∞ applied at the top.
The elastic modulus and Poisson’s ratio are 1 unit and 0.25,
respectively. A plane strain condition was assumed. The statis-
tical property of the random input X = {a/W, τ∞, K I c}

T is
defined in Table 6.

Due to the far-field shear stress τ∞, the plate is subjected
to mixed-mode deformation involving fracture modes I and
II [17]. The mixed-mode stress-intensity factors K I (X) and
K I I (X) were calculated using an interaction integral [18]. The
plate was analysed using the finite-element method, involving



D. Wei, S. Rahman / Probabilistic Engineering Mechanics 22 (2007) 27–38 35
Table 5
Failure probability of ten-bar truss structure

Method Failure probability Number of function evaluationsa

MPP-based univariate method with numerical integration
Linear (Eq. (17)) 0.1457 187b

Quadratic (Eq. (18)) 0.1400 187b

MPP-based univariate method with simulation [12] 0.1465 187b

FORM 0.0862 127
SORM (Breitung) [4] 0.1286 506
SORM (Hohenbichler) [5] 0.1524 506
SORM (Cai and Elishakoff) [6] 0.1467 506
Direct Monte Carlo simulation 0.1394 1000,000

a Total number of times that the original performance function is calculated.
b 127 + (n − 1) × N = 127 + (7 − 1) × 10 = 187.
Table 6
Statistical properties of random input for an edge-cracked plate

Random
variable

Mean Standard
deviation

Probability distribution

a/W 0.5 0.2309 Uniforma

τ∞ Variableb 0.1 Gaussian
K I c 200 0.1 Lognormal

a Uniformly distributed over (0.3, 0.7).
b Varies from 2.6 to 3.1.

Fig. 5. An edge-cracked plate subject to mixed-mode deformation: (a) geome-
try and loads; (b) finite-element discretization.

a total of 832 8-noded, regular, quadrilateral elements and 48
6-noded, quarter-point (singular), triangular elements at the
crack-tip, as shown in Fig. 5(b).

The failure criterion is based on a mixed-mode fracture
initiation using the maximum tangential stress theory [17],
which leads to the performance function

g(X) = K I c −

[
K I (X) cos2 Θ(X)

2

−
3
2

K I I (X) sin Θ(X)

]
cos

Θ(X)

2
, (24)
Fig. 6. Probability of fracture initiation in an edge-cracked plate.

where K I c is the random fracture toughness and Θc(X) is the
direction of crack propagation.

Failure probability estimates of PF = P[g(X) < 0],
obtained using the proposed univariate method with numerical
integration, univariate method using simulation, FORM,
Hohenbichler’s SORM, and direct Monte Carlo simulation, are
compared in Fig. 6 and are plotted as a function of E[τ∞

],
where E is the expectation operator. For each reliability analysis
(i.e. each point in the plot), FORM and SORM require 29 and
42 function evaluations (finite-element analysis). Using n = 9,
the MPP-based univariate methods require only 53 (=29 + 24)
function evaluations, whereas 50,000 finite-element analyses
were employed in the direct Monte Carlo simulation. The
results show that both versions of the univariate method are
more accurate than other methods, particularly when the failure
probability is low. The computational effort by univariate
methods is slightly higher than that by FORM/SORM, but
much lower than that by direct Monte Carlo simulation.

5.5. Example 5 — Three-span, five-story frame structure

The final example examines the proposed univariate method
for solving reliability problems involving correlated random
variables. A three-span, five-story frame structure, studied by
Liu and Der Kiureghian [19], is subjected to horizontal loads,
as shown in Fig. 7. There are 21 random variables: (1) three
applied loads, (2) two Young’s moduli, (3) eight moments
of inertia, and (4) eight cross-sectional areas. The random
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Fig. 7. A three-span, five-story frame structure subjected to lateral loads.
Table 7
Frame element properties

Element Young’s modulus Moment of inertia Cross-sectional area

B1 E4 I10 A18
B2 E4 I11 A19
B3 E4 I12 A20
B4 E4 I13 A21
C1 E5 I6 A14
C2 E5 I7 A15
C3 E5 I8 A16
C4 E5 I9 A17

variables associated with frame elements are defined in Table 7.
Tables 8 and 9 list statistical properties of all random variables.
The lognormally distributed load variables are independent and
all other random variables are jointly normal. Failure is defined
when the horizontal component of the top-floor displacement
u1(X) exceeds 0.2 ft, leading to g(X) = 0.2 − u1(X).

The MPP-based univariate methods with numerical integra-
tion and simulation, FORM, Hohenbichler’s SORM, and direct
Monte Carlo simulation were employed to estimate the fail-
ure probability and are listed in Table 10. FORM and SORM
require 474 and 1143 function evaluations (frame analysis), re-
spectively. Using n = 7, the univariate methods require 600
function evaluations, whereas 1,000,000 frame analyses are
needed by the direct Monte Carlo simulation. For the univariate
method with numerical integration, the linear approximation of
yN (vN ) was employed. The results clearly show that both ver-
sions of the univariate method provide more accurate results
than FORM and SORM. In terms of effort, the method devel-
oped is slightly more expensive than FORM, but significantly
more efficient than SORM.
Table 8
Statistical properties of random input for frame structurea

Random variable Mean Standard deviation Probability distribution

P1 30 9 Lognormal
P2 20 8 Lognormal
P3 16 6.40 Lognormal
E4 454,000 40,000 Normal
E5 497,000 40,000 Normal
I6 0.94 0.12 Normal
I7 1.33 0.15 Normal
I8 2.47 0.30 Normal
I9 3.00 0.35 Normal
I10 1.25 0.30 Normal
I11 1.63 0.40 Normal
I12 2.69 0.65 Normal
I13 3.00 0.75 Normal
A14 3.36 0.60 Normal
A15 4.00 0.80 Normal
A16 5.44 1.00 Normal
A17 6.00 1.20 Normal
A18 2.72 1.00 Normal
A19 3.13 1.10 Normal
A20 4.01 1.30 Normal
A21 4.50 1.50 Normal

a The units of Pi , Ei , Ii , and Ai are kip, kip/ft2, ft4, and ft2, respectively.

In all numerical examples presented, the number of function
evaluations required by both versions of the univariate method
is the same. However, the present univariate method does not
require any Monte Carlo simulations embedded in its previous
version. Instead, explicit forms of failure probability requiring
only one-dimensional integrations are involved. Hence, the new
method should be useful in deriving the sensitivity (gradients)
of failure probability for reliability-based design optimization,
which is a subject of current research by the authors.
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Table 9
Correlation coefficients of random input for frame structure

P1 P2 P3 E4 E5 I6 I7 I8 I9 I10 I11 I12 I13 A14 A15 A16 A17 A18 A19 A20 A21

P1 1.0
P2 0. 1.0
P3 0. 0. 1.0
E4 0. 0. 0. 1.0
E5 0. 0. 0. 0.9 1.0
I6 0. 0. 0. 0. 0. 1.0
I7 0. 0. 0. 0. 0. 0.13 1.0
I8 0. 0. 0. 0. 0. 0.13 0.13 1.0
I9 0. 0. 0. 0. 0. 0.13 0.13 0.13 1.0
I10 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 1.0
I11 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 1.0
I12 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 0.13 1.0
I13 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A14 0. 0. 0. 0. 0. 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A15 0. 0. 0. 0. 0. 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A16 0. 0. 0. 0. 0. 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A17 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A18 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A19 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A20 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
A21 0. 0. 0. 0. 0. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.95 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.0
Table 10
Failure probability of frame structure

Method Failure probability Number of function evaluationsa

MPP-based univariate method with numerical integration 3.829 × 10−4 600b

MPP-based univariate method with simulation [12] 3.720 × 10−4 600b

FORM 7.891 × 10−4 474
SORM (Hohenbichler) [5] 1.402 × 10−4 1143
Direct Monte Carlo simulation 3.630 × 10−4 1000,000

a Total number of times that the original performance function is calculated.
b 474 + (n − 1) × N = 474 + (7 − 1) × 21 = 600.
6. Conclusions

A new univariate method was developed for predicting
the component reliability of mechanical systems subject
to random loads, material properties, and geometry. The
method involves novel function decomposition at the most
probable point, which facilitates univariate approximation of
a general multivariate function in the rotated Gaussian space
and one-dimensional integrations for calculating the failure
probability. Based on linear and quadratic approximations of
the univariate component function in the direction of the most
probable point, two mathematical expressions of the failure
probability were derived. In both expressions, the proposed
effort in evaluating the failure probability involves calculating
conditional responses at a selected input determined by sample
points and Gauss–Hermite integration points. The results of
five numerical examples involving elementary mathematical
functions and structural/solid-mechanics problems indicate that
the proposed method provides accurate and computationally
efficient estimates of the probability of failure. Compared with
the authors’ previous work, no Monte Carlo simulation is
required in the present version of the univariate method that
has been developed. Although both versions of the univariate
method have comparable computational efficiencies, the new
method should be useful in deriving the sensitivity of the failure
probability for reliability-based design optimization, which is
the ultimate goal of probabilistic mechanics.
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