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Abstract

This paper presents a new, univariate dimension-reduction method for calculating statistical moments of response of mechanical systems

subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of a multi-dimensional

response function into multiple one-dimensional functions, an approximation of response moments by moments of single random variables,

and a moment-based quadrature rule for numerical integration. The resultant moment equations entail evaluating N number of one-

dimensional integrals, which is substantially simpler and more efficient than performing one N-dimensional integration. The proposed

method neither requires the calculation of partial derivatives of response, nor the inversion of random matrices, as compared with commonly

used Taylor expansion/perturbation methods and Neumann expansion methods, respectively. Nine numerical examples involving elementary

mathematical functions and solid-mechanics problems illustrate the proposed method. Results indicate that the univariate dimension-

reduction method provides more accurate estimates of statistical moments or multidimensional integration than first- and second-order

Taylor expansion methods, the second-order polynomial chaos expansion method, the second-order Neumann expansion method,

statistically equivalent solutions, the quasi-Monte Carlo simulation, and the point estimate method. While the accuracy of the univariate

dimension-reduction method is comparable to that of the fourth-order Neumann expansion, a comparison of CPU time suggests that the

former is computationally far more efficient than the latter.
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1. Introduction

A common problem in computational statistics and

stochastic mechanics entails calculating a multi-dimen-

sional integral to determine the probabilistic character-

istics of random output when input uncertainties are

characterized either partially by moments or fully by

probability density functions [1–6]. In general, such

an integral cannot be evaluated analytically. Direct

numerical integration can be performed, but is not

economically feasible when the number of random

variables increases beyond three or four. Other than

numerical integration, current existing methods to solve

stochastic problems can be arbitrarily classified into two

major categories: (1) classical analytical methods and

(2) simulation methods.

Analytical methods include Taylor expansion or

perturbation methods [7–10], the Neumann expansion

method [11–15], the decomposition method [16,17], the

polynomial chaos expansion method [14], the statistically

equivalent solution [18], the point estimate method [19,

20], and others [1], and have been traditionally employed

to predict second-moment characteristics of random

output. Taylor expansion or perturbation methods involve

first- or second-order Taylor series expansion of output in

terms of input random parameters and application of

standard stochastic operators to obtain second-moment

properties of output. Two major limitations of these

methods are that both the uncertainty of random input and

the nonlinearity of random output with respect to random

input must be small. The errors in these methods can be

bounded if higher-order partial derivatives of the output
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variable exist and are available. However, such bounds

are rarely used in engineering applications since they

require expensive calculations of higher-order partial

derivatives (e.g. third-order partial derivatives are needed

to bound errors of second-order Taylor expansion or

perturbation methods). The Neumann expansion method

consists of Neumann series expansion of the inverse of

random matrices (or other mathematical operators), which

is absolutely convergent [1]. However, the algebra and

numerical effort required for a relatively low-order

Neumann expansion can be enormous when there are a

large number of random variables or random fields

[13–15]. The decomposition and polynomial chaos

expansion methods involve alternative series expansions

that can be exploited for stochastic analysis. The

expansion terms in the decomposition method exhibit a

recursive relationship, but the series may not be

convergent [1]. The polynomial chaos expansion method

is mean-square convergent and can approximate a square-

integrable random variable by Hermite or chaos poly-

nomials of Gaussian variables [3,14]. However, depending

on the order of polynomial expansion, this method may

provide inaccurate estimates of higher-order moments

(e.g. skewness, kurtosis, etc.), as recently demonstrated by

Grigoriu [1]. For problems involving large number of

input variables, the number of polynomial coefficients

grows exponentially and the resultant calculations become

prohibitively large. Statistically equivalent solutions are

based on a selection of model parameters, which can be

determined from the condition that the difference between

exact and approximate responses is in some sense

minimized. However, this difference cannot be calculated

directly since the exact probability law of output is

unknown. The point estimate method involves finite

number of probability concentrations to approximate

second-moment properties of response. Similar to Taylor

expansion methods, the point estimate method also yields

inaccurate results when input uncertainties are moderate

to large [19]. In summary, all existing methods described

above become computationally inefficient or less accurate

when the number or the uncertainty of input random

variables is large. Hence, new stochastic methods, which

are derivative-free and can handle arbitrarily large number

of random variables, and yet predict both response

moments and reliability accurately, are highly desirable.

Simulation methods involving sampling and estimation

are well known in the statistics and reliability literature.

Direct Monte Carlo simulation [21] is the most widely

used simulation method and involves the generation of

independent samples of all input random variables,

repeated deterministic trials (analyses) to obtain corre-

sponding simulated samples of response variables, and

standard statistical analysis to estimate probabilistic

characteristics of response. This method generally

requires a large number of simulations to calculate low

probability or higher-order moments, and is impractical

when each simulation involves expensive finite-element

or meshless calculations. As a result, researchers have

developed or examined faster simulation methods, such

as quasi-Monte Carlo simulation [22–24], importance

sampling [25,26], directional simulation [27,28], and

others [29–32]. Nevertheless, all simulation methods

today require considerably more extensive calculations

than analytical methods. Consequently, simulation

methods have found their utility when alternative

methods are inapplicable or inaccurate, and/or analytical

methods require validation.

This paper presents a new dimension-reduction method

for predicting second-moment characteristics of response of

mechanical systems subject to random loads, material

properties, and geometry. The method involves an additive

decomposition of a multi-dimensional response function

into multiple one-dimensional functions; an approximation

of response moments by moments of single random

variables; and a moment-based quadrature rule for numeri-

cal integration. Two sets of numerical examples illustrate

the accuracy and/or computational efficiency of the

proposed method.

2. Univariate dimension-reduction method

2.1. Additive decomposition and reduced integration

Consider a continuous, differentiable, real-valued func-

tion yðx1; x2Þ that depends on two independent variables

x1 [ R and x2 [ R: Let

I½yðx1; x2Þ� ;
ðþa

2a

ðþa

2a
yðx1; x2Þdx1dx2; ð1Þ

denote a two-dimensional integration of yðx1; x2Þ on the

symmetric range ½2a; a�2: If the Taylor series expansion of

yðx1; x2Þ at ðx1 ¼ 0; x2 ¼ 0Þ; expressed by
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›y
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is convergent and substituted in Eq. (1), the integral

becomes

I½yðx1; x2Þ� ¼ I½yð0; 0Þ� þ
1
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where terms

I½x
k1

1 x
k2

2 � ¼
ðþa
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x

k1

1 x
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2 dx1dx2 ¼
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x
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2 dx2

£
ðþa

2a
x
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1 dx1 ¼ 0;

when k1 or k2 is an odd integer. Now consider an additive

decomposition

ŷðx1; x2Þ ¼ yðx1; 0Þ þ yð0; x2Þ2 yð0; 0Þ; ð4Þ

where each of the first two terms on the right-hand side is a

function of only one variable and can be subsequently

expanded in Taylor series at ðx1 ¼ 0; x2 ¼ 0Þ; yielding
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The comparison of Eqs. (2) and (5) indicates that yðx1; x2Þ

contains all terms of ŷðx1; x2Þ; and it is interesting to note

that
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provides a univariate approximation of I½yðx1; x2Þ� by

including all one-dimensional integrations in Eq. (3), with

the residual error

I½yðx1; x2Þ�2 I½ŷðx1; x2Þ�

¼
1

2!2!

›4y
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2
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2� þ · · ·: ð7Þ

For a generalization to N number of variables, consider a

continuous, differentiable, real-valued function yðxÞ that

depends on x ¼ {x1;…; xN} [ RN : If

I½yðxÞ� ;
ðþa

2a
· · ·
ðþa

2a
yðx1;…; xNÞdx1· · ·dxN ð8Þ

defines an N-dimensional integration of yðxÞ in the range

½2a; a�N ; then by following Taylor series expansion of yðxÞ
at x ¼ 0 ¼ {0;…; 0}T; it can be expressed by

I½yðxÞ� ¼I½yð0Þ� þ
1
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where once again the terms I½
QN

i¼1 x
ki

i � vanish when ki is an

odd integer for some i: Analogous to Eq. (4), consider a

univariate approximation

ŷðxÞ ; ŷðx1;…; xNÞ

¼
XN
i¼1

yð0;…; 0; xi; 0;…; 0Þ2 ðN 2 1Þyð0;…; 0Þ; ð10Þ

where each term in the summation is a function of only one

variable and can be subsequently expanded in a Taylor

series at x ¼ 0; yielding
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Similar to Eq. (7), the univariate approximation leads to the

residual error

I½yðxÞ�2 I½ŷðxÞ� ¼
1

2!2!

X
i,j

›4y

›x2
i ›x2

j

ð0ÞI½x2
i x2

j � þ · · ·; ð12Þ

which includes contributions from integrations of dimen-

sion two and higher. For sufficiently smooth yðxÞ
with convergent Taylor series, the coefficients [e.g. ð1=2!2!Þ

›4yð0Þ=›x2
i ›x2

j � associated with higher-dimensional inte-

grations are much smaller than that with one-dimensional

integrations. In that case, terms associated with higher-

dimensional integrations can be neglected. In contrast, the

residual error due to the second-order Taylor approximation

~y2ðxÞ; given by

I½yðxÞ�2 I½~y2ðxÞ�¼
1

4!

XN
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›4y

›x4
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i �
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comprises one- (fourth order and higher), two-, and higher-

dimensional integrations. In either case, contributions from

bivariate and higher-dimensional integrations are retained
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in the residual errors. This issue is addressed in Section 3.1.

Note that I½ŷðxÞ� represents a reduced integration, because

only N number of one-dimensional integration is required,

as opposed to one N-dimensional integration in I½yðxÞ�:
Furthermore, there is no need to calculate partial deriva-

tives. If, indeed, the contributions from two- and higher-

dimensional integrations are negligibly small, then I½ŷðxÞ�
in Eq. (11) provides a convenient approximation

of I½yðxÞ�: Furthermore, Eq. (11) yields exact results when

yðxÞ¼
PN

i¼1 yiðxiÞ; i.e. when yðxÞ can be additively decom-

posed into functions yiðxiÞ of single variables.

2.2. Non-symmetric domains and arbitrary expansion point

In order to integrate over a non-symmetric domainQN
i¼1 ½ai; bi�; such as

I½yðxÞ� ¼
ðbN

aN

· · ·
ðb1

a1

yðx1;…; xNÞdx1· · ·dxN ; ð14Þ

a linear transformation

xi ¼
bi þ ai

2
þ

bi 2 ai

2
ji; i ¼ 1;…;N ð15Þ

maps the original integral over a non-symmetric domain, to

I½yðxÞ� ¼
YN
i¼1

bi 2 ai

2

ð1

21
· · ·
ð1

21
hðj1;…; jNÞdj1· · ·djN ;

ð16Þ

which represents an integral over a symmetric domain

where hðj1;…; jNÞ is the transformed function due to a

change of variables from x to j-space. Hence, Eq. (12) is

applicable to a multi-dimensional integration over non-

symmetric domains.

Eq. (10) is developed based on the additive decompo-

sition centered at x ¼ 0: For any arbitrary point x ¼ m; a

slightly generalized form of Eq. (10) can be given as

ŷðxÞ ¼ŷðx1;…; xNÞ ;
XN
i¼1

yðm1;…;mi21; xi;miþ1;…;mNÞ

2 ðN 2 1Þyðm1;…;mNÞ; ð17Þ

yielding the reduced integration

I½ŷðxÞ� ¼
XN
i¼1

I½yðm1;…;mi21; xi;miþ1;…;mNÞ�

2 ðN 2 1ÞI½yðm1;…;mNÞ�: ð18Þ

Eqs. (17) and (18) will be employed for solving stochastic

problems, as follows.

3. Application to stochastic problems

3.1. Statistical moments of response

Consider a mechanical system subject to random input

vector X ¼ {X1;…;XN}T [ RN ; which characterizes

uncertainty in loads, material properties, and geometry.

Let YðXÞ represent a relevant response of interest, for which

its lth statistical moment

ml ; E½YlðXÞ� ¼
ð
RN

ylðxÞfXðxÞdx ð19Þ

is sought, where fXðxÞ ¼ fX1· · ·XN
ðx1;…; xNÞ is the joint

probability density function of X and E is the expectation

operator. Following the dimension-reduction procedure in

Eqs. (17) and (18), the lth moment can be approximated by

ml ø E½ŶlðXÞ� ¼ E

"(XN
j¼1

Yðm1;…;mj21;Xj;mjþ1;…;mNÞ

2ðN 2 1Þyðm1;…;mNÞ

)l#
; ð20Þ

where mj ; E½Xj� is the first moment or mean of Xj;

Yðm1;…;mj21;Xj;mjþ1;…;mNÞ is a random response that

depends on the jth random variable Xj; yðm1;…;mNÞ is a

deterministic response when {X1 ¼ m1;…;XN ¼ mN}:

Applying the binomial formula on the right-hand side of

Eq. (20) gives

ml ø
Xl

i¼0

l

i

0
@

1
AE XN

j¼1

Yðm1;…;mj21;Xj;mjþ1;…;mNÞ

8<
:

9=
;

i

½2ðN 2 1Þyðm1;…;mNÞ�
l2i

: ð21Þ

Define

Si
j ¼ E

Xj

i¼1

Yðm1;…;mj21;Xj;mjþ1;…;mNÞ

( )i
2
4

3
5;

j ¼ 1;…;N; i ¼ 1;…; l;

ð22Þ

which can be expressed using the recursive formula

Si
1 ¼E½YiðX1;m2;…;mNÞ�; i¼ 1;…; l

Si
2 ¼

Xi

k¼0

i

k

 !
Sk

1E½Y
i2kðm1;X2;m3;…;mNÞ�; i¼ 1;…; l

Si
3 ¼

Xi

k¼0

i

k

 !
Sk

2E½Y
i2kðm1;m2;X3;m4;…;mNÞ�; i¼ 1;…; l

..

.

Si
j ¼

Xi

k¼0

i

k

 !
Sk

j21E½Y
i2kðm1;…;mj21;

Xj;mjþ1;…;mNÞ�; i¼ 1;…; l

..

.

Si
N ¼

Xi

k¼0

i

k

 !
Sk

N21E½Y
i2kðm1;…;mN21;XNÞ�; i¼ 1;…; l:

ð23Þ
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Hence, Eq. (21) becomes

ml øE½ŶlðXÞ�

¼
Xl

i¼0

l

i

0
B@
1
CASi

N½2ðN 21Þyðm1;…;mNÞ�
l2i

: ð24Þ

In Eqs. (23) and (24), one needs to compute

E½Ymðm1;…;mj21;Xj;mjþ1;…;mNÞ�; m¼ i2 k: According

to the definition,

E½Ymðm1;…;mj21;Xj;mjþ1;…;mNÞ�

;
ð1

21
ymðm1;…;mj21;xj;mjþ1;…;mNÞfXj

ðxjÞdxj; ð25Þ

where fXj
ðxjÞ is the marginal probability density of Xj; which

can be calculated from the known joint density of X:

Note that Eq. (25) is valid for independent random

vector X: However, if X comprises dependent variables

with its joint density fXðxÞ ¼ fX1· · ·XN
ðx1;…; xNÞ; a multi-

variate transformation such as Rosenblatt transformation

[33] should be applied to transform the dependent

random vector X to an independent standard Gaussian

random vector U: The Rosenblatt transformation is given

by [33]

u1 ¼ F21½FX1
ðx1Þ�

u2 ¼ F21½FX2
ðx2lx1Þ�

..

.

uN ¼ F21½FXN
ðxN lx1; x2;…; xN21Þ�;

ð26Þ

in which FXi
ðxilx1; x2;…; xi21Þ is the cumulative distri-

bution function of component Xi conditional on X1 ¼ x1;

X2 ¼ x2;…;Xi21 ¼ xi21 and Fð·Þ is the cumulative

distribution function of a standard Gaussian random

variable. The conditional distribution function

FXi
ðxilx1; x2;…; xi21Þ can be obtained from

FXi
ðxilx1; x2;…; xi21Þ

¼

ðxi

21
fX1;X2;…;Xi

ðx1; x2;…; xi21; sÞds

fX1;X2;…;Xi21
ðx1; x2;…; xi21Þ

; ð27Þ

where fX1;X2;…;Xi21
ðx1; x2;…; xi21Þ is the joint probability

density function of random vector {X1;X2;…;Xi21}T:

Notice that Eq. (25) only require one-dimensional

deterministic integration that can easily be evaluated

using standard quadrature rules. For example, Gauss–

Legendre and Gauss–Hermite quadratures are frequently

used when Xj follows uniform and Gaussian probability

distributions, respectively [34]. For arbitrary distribution

of Xj; a moment-based quadrature rule, described in the

subsequent section, was developed to evaluate the

integral.

The newly proposed moment equation entails evaluating

N number of one-dimensional integrals, which is substan-

tially simpler and more efficient than performing one

N-dimensional integration. For practical problems involving

a moderate to large number of random variables (e.g.

N . 10), this is a promising method. The method does not

require calculation of any partial derivatives of response or

inversion of random matrices when compared with the

commonly used Taylor/perturbation and Neumann expan-

sion methods, respectively. Hence, the computation effort in

conducting probabilistic finite element or meshless analysis

will be significantly reduced by the dimension-reduction

method. The method is coined univariate dimension-

reduction, because it essentially reduces the calculation of

an N-dimensional integral to that of a one-dimensional

integral. It is also noted that when N ¼ 1; the integrand

becomes a univariate function, i.e., no dimension reduction

is possible or required and the proposed method is exact.

As described previously, the residual error in the

univariate dimension-reduction method contains terms

involving bivariate and other higher-dimensional inte-

grations. The error can be reduced further, for example, in

the bivariate reduction method, if terms associated with

bivariate integrations are retained in ŷðxÞ: However, this

process will require two-dimensional integrations, as

opposed to one-dimensional integrations in the univariate

dimension-reduction method. Nevertheless, it is conceiva-

ble that bivariate and, in general, multivariate dimension-

reduction methods can be developed to reduce residual error

to an arbitrarily small number, which is a subject of current

research by the authors.

3.2. Moment-based quadrature rule

In this section, a new moment-consistent quadrature rule

is presented to perform numerical integration in the

direction of the xj coordinate, as defined in Eq. (25). To

construct a moment-consistent integration rule with n

interpolation points xj;i; i ¼ 1;…; n in the direction of the

xj co-ordinate, define a function

PðxjÞ ¼
Yn

i¼1

ðxj 2 xj;iÞfXj
ðxjÞ; ð28Þ

which satisfies

ð1

21
PðxjÞðxjÞ

idxj ¼ 0; i ¼ 0; 1;…; n 2 1: ð29Þ

If

rj;k ¼
Xn

i1¼1

Xn

i2¼1;–i1

· · ·
Xn

ik¼1;–i1;i2;…;ik21

xj;i1
xj;i2

· · ·xj;ik
;

k ¼ 1; 2;…; n;

ð30Þ

S. Rahman, H. Xu / Probabilistic Engineering Mechanics 19 (2004) 393–408 397



Eq. (29) yields a system of linear equations

mj;n21 2mj;n22 mj;n23 · · · ð21Þn21mj;0

mj;n 2mj;n21 mj;n22 · · · ð21Þn21mj;1

mj;nþ1 2mj;n mj;n21 · · · ð21Þn21mj;2

..

. ..
. ..

. ..
. ..

.

mj;2n22 2mj;2n23 mj;2n24 · · · ð21Þn21mj;n21

2
666666666666664

3
777777777777775

rj;1

rj;2

rj;3

..

.

rj;n

2
66666666666664

3
77777777777775

¼

mj;n

mj;nþ1

mj;nþ2

..

.

mj;2n21

2
66666666666664

3
77777777777775
; ð31Þ

where the coefficient matrix consists of known moments of

input random variable Xj; given by

mj;i ¼
ð1

21
ðxjÞ

ifXj
ðxjÞdxj: ð32Þ

After solving rj;i from Eq. (31), the interpolation point xj;i;

i¼ 1;…;n can easily be obtained as the ith root of

xn
j 2 rj;1xn21

j þ rj;2xn22
j 2 · · ·þð21Þnrj;n ¼ 0: ð33Þ

For a shape function defined as

f
ðn21Þ
j;i ðxjÞ;

fXj
ðxjÞ

Yn

k¼1;k–i

ðxj 2 xj;kÞ

fXj
ðxj;iÞ

Yn

k¼1;k–i

ðxj;i 2 xj;kÞ

; ð34Þ

it can be shown by polynomial approximation that

ymðm1;…;mj21;xj;mjþ1;…;mNÞfXj
ðxjÞ

ø
Xn

i¼1

f
ðn21Þ
j;i ðxjÞy

mðm1;…;mj21;xj;i;mjþ1;…;mNÞ

� fXj
ðxj;iÞþ

Xn21

i¼0

bj;iðxjÞ
iPðxjÞ; ð35Þ

where bj;i [ ð21;1Þ; i¼ 0; n21 are constants. Hence,

Eqs. (29) and (35) yield

E½Ymðm1;…;mj21;Xj;mjþ1;…;mNÞ�

ø
Xn

i¼1

wj;iy
mðm1;…;mj21;xj;i;mjþ1;…;mNÞ; ð36Þ

where

wj;i¼

ð1

21

Yn

k¼1;k–i

ðxj2xj;kÞfXj
ðxjÞdxj

Yn

k¼1;k–i

ðxj;i2xj;kÞ

¼

Xn21

k¼0

ð21Þkmj;n2k21qj;ik

Yn

k¼1;k–i

ðxj;i2xj;kÞ

ð37Þ

is the ith weight for the jth variable Xj; which is consistent

with its moments, qj;i0¼1; and qj;ik ¼ rj;k2xj;iqj;iðk21Þ: For

n-order interpolation, Eq. (37) is employed to calculate

weights, and then Eq. (36) is invoked to calculate

E½Ymðm1;…;mj21;Xj;mjþ1;…;mNÞ�: Note that the interp-

olation points (Eq. (33)) and the weights (Eq. (37)) are

strictly based on moments of input random variables. Only a

finite number of input moments are needed to calculate the

output moments. The input moments can easily be obtained

from its known probability distribution, or they can be

estimated from its samples. Also, it can be shown that

Eq. (33) generates integration points and Eq. (37) produces

the weights of Gauss–Legendre or Gauss–Hermite quad-

ratures [34] when the input random variable follows

uniform or Gaussian probability distributions, respectively.

3.3. Discrete equilibrium equations

Consider a linear mechanical system subject to a vector

of input random parameters X [ RN 7! ðm;gÞ characteriz-

ing uncertainty in the system and loads. Following

discretization, let Y [ RM 7! ðmY ;gYÞ represent a displa-

cement (response) vector associated with M degrees of

freedom of the system, satisfying the linear equilibrium

equation

KðXÞYðXÞ ¼ FðXÞ; ð38Þ

in which stiffness matrix K and force vector F depend on X
and represent an elementary stochastic linear operator that

has random coefficients and only involves algebraic

operations. Eq. (38) is common to finite-difference, finite-

element, and recently developed mesh-free methods when

the system, loads, or both, are uncertain. From Eq. (38), the

solution

YðXÞ ¼ KðXÞ21FðXÞ ð39Þ

is random and depends on X: Using the dimension-reduction

method, the mean vector mY and covariance matrix gY of Y
can be derived as

mY ¼ E½Y� ¼
XN
j¼1

E½KjðXjÞ
21FjðXjÞ�2 ðN 2 1ÞKðmÞ21FðmÞ

ð40Þ

gY ¼ E½YYT�2 mYmT
Y ð41Þ
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E½YYT� ¼
XN
j¼1

E½KjðXjÞ
21FjðXjÞFjðXjÞ

TKjðXjÞ
2T�

2 ðN 2 1ÞKðmÞ21FðmÞFðmÞTKðmÞ2T
; ð42Þ

where KðmÞ ¼Kðm1;…;mNÞ; FðmÞ ¼Fðm1;…;mNÞ; KjðXjÞ ¼

Kðm1;…;mj21;Xj;mjþ1;…;mNÞ; and FjðXjÞ ¼Fðm1;…;mj21;

Xj;mjþ1;…;mNÞ: Note that the calculation of expected values

on the right-hand side of Eqs. (40) and (42) involves only

one-dimensional integrations.

4. Numerical examples

In this section, two sets of numerical examples, one

involving elementary mathematical functions (Examples

1–5) and the other involving solid-mechanics problems

(Examples 6–9), are presented to illustrate the proposed

univariate dimension-reduction method. For all these

examples, the response functions are smooth and have

convergent Taylor series at the expansion point. In these

examples, the number ðnÞ of interpolation points in the

dimension-reduction method varies from 3 to 4. Whenever

possible, comparisons have been made with alternative

analytical and simulation methods and direct numerical

integration to evaluate the accuracy and computational

efficiency of the proposed method.

4.1. Example Set I: mathematical functions

Example 1. Consider two elementary transformations

Y1 ¼ Y1ðX1;X2Þ ¼
1

1 þ X4
1 þ 2X2

2 þ 5X4
2

ð43Þ

and

Y2 ¼ Y2ðX1;X2Þ ¼ exp 2
1

1 þ 100X2
1 þ 2X2

2 þ X2
1X2

2

 !
;

ð44Þ

where Xj 7! Nð0;s2Þ; j ¼ 1; 2 are two independent and

identically distributed Gaussian random variables with

mean zero and variance s2: The proposed univariate

dimension-reduction method was employed to determine

standard deviations sY1
and sY2

of Y1 and Y2; respectively,

and are plotted in Fig. 1(a) and (b) for increasing values of

input standard deviation. The dimension-reduction method

provides very good approximations of sY1
and sY2

; when

compared with the results of direct numerical integration

(the reference solution). Since this problem only has two

dimensions, the computational effort using the dimension-

reduction method is slightly lower than with numerical

integration. Comparison with the second-order Taylor

expansion, the results of which are also shown

in Fig. 1(a) and (b), suggests that the univariate

dimension-reduction method is superior to the second-

order Taylor expansion when the standard deviation of

input (Fig. 1(a)) or output nonlinearity (Fig. 1(b)) is large

in this particular problem. Also plotted in Fig. 1(a) and (b)

are the results by second- and fourth-order polynomial

chaos expansions with Hermite polynomials [14]. For both

cases, the univariate dimension-reduction method is more

accurate than the second-order polynomial chaos expan-

sion. For case (a), Fig. 1(a) indicates that the fourth-order

polynomial chaos expansion can generate more accurate

result than the univariate dimension-reduction method.

However, CPU time associated with the calculation of 14

coefficients in the fourth-order polynomial chaos expansion

makes it more expensive than the univariate dimension-

reduction method.

Example 2. Consider a stochastic response function

Y ¼ YðX1;X2;X3Þ ¼ 3X2
1 2 X1X2 þ X1X3 þ X3

3 ; ð45Þ

where Xj [ ½0;1Þ; j ¼ 1; 2; 3 are three independent and

identically distributed Weibull random variables with mean

0.918 and standard deviation 0.210, and marginal

Fig. 1. Standard deviations of output responses for increasing values of

input standard deviation; (a) Y1 ¼ ð1 þ X4
1 þ 2X2

2 þ 5X4
2Þ

21; (b) Y2 ¼

exp½2ð1 þ 100X2
1 þ 2X2

2 þ X2
1X2

2Þ
21�:
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probability density function fXj
ðxjÞ ¼ 5x4

j expð2x5
j Þ:

Table 1 shows the first and second moments of response

ml ; E½YlðX1;X2;X3Þ�

¼
ð
R3

ylðx1; x2; x3Þ
Y3

j¼1

fXj
ðxjÞdxj; l ¼ 1; 2 ð46Þ

obtained using the univariate dimension-reduction method,

first- and second-order Taylor expansion methods, and

direct numerical integration. Results show that the dimen-

sion-reduction method provides more accurate estimates of

response moments than either the first- or second-order

Taylor expansion methods, which is similar to the

conclusion reached for Example 1.

Example 3. This example illustrates how the dimension

affects the calculation of a multi-dimensional integral.

Define yðx1;…; xNÞ ¼
QN

i¼1 sinðpxiÞ; for which a multi-

dimensional integral, given by

I½yðx1;…; xNÞ� ;
ð2

0
· · ·
ð2

0
yðx1;…; xNÞ

YN
i¼1

dxi; ð47Þ

is sought. The integral in Eq. (47) was calculated using the

univariate dimension-reduction method and Monte Carlo

simulation involving 106 samples. Since the exact integral is

zero regardless of the dimension N; both dimension-

reduction and Monte Carlo methods can be evaluated.

Fig. 2 shows the absolute errors provided by these two

methods. For smaller values of N; the error produced by the

Monte Carlo simulation fluctuates slightly about zero and

then begins to deviate from zero when N . 15: In contrast,

the proposed dimension-reduction method yields exact

results regardless of the value of N: The superior

performance of the dimension-reduction method can be

explained by noting that the residual error (see Eq. (12)) is

zero, because all even-order derivatives vanish at the

expansion point.

Example 4. Let

I½yðx1;…; xNÞ� ;
ð1

0
· · ·
ð1

0

XN
i¼1

xi

 !1=2YN
i¼1

dxi ð48Þ

denote another N-dimensional integral, for which Entacher

[24] developed a quasi-Monte Carlo formula involving a

generalized Haar series to determine the integration error.

From the reported results in Ref. [24], Table 2 shows

the integration errors by two quasi-Monte Carlo analyses

involving 32,768 and 262,144 function evaluations of

the integrand. The error measures, which vary from

4.0 £ 1028 to 3.4 £ 1021 for 32,768 evaluations and

2.1 £ 10210 to 3.4 £ 1021 for 262,144 evaluations,

strongly depend on the dimension N and may change by

orders of magnitude when N varies from 6 to 9. When

this problem was solved using n ¼ 3 in the univariate

dimension-reduction method, only 19–28 function evalu-

ations were required, with integration errors in the order

1024. The dimension-reduction method is not only

computationally efficient, but more importantly, yields

error estimates that are relatively insensitive to the

dimension of the integral.

Example 5. The final example in this set entails calculating

standard deviation of the quadratic transformation

Y ¼ YðX1;…;XNÞ ¼
XN
j¼1

X2
j ; ð49Þ

where Xj 7! ðm;s2Þ; j ¼ 1;…;N are independent and

identically distributed random variables. Recently, Hong

[19] proposed a point estimate method to solve this problem

for three distinct cases of probability distributions of Xj :

(1) normal, (2) lognormal, and (3) Gamma. Fig. 3 shows

the plots of relative error 1 ; ðŝY 2 sY Þ=sY as a function of

the coefficient of variation v ; s=m of Xj; where sY and ŝY

Table 1

Statistical moments of Y by Taylor expansion and dimension-reduction methods

Statistical moments

of Yðml ¼ E½Yl�Þ

First-order Taylor

expansion method

Second-order Taylor

expansion method

Univariate dimension-

reduction method

Numerical

integration

m1 3.3032 3.5577 3.5553 3.5553

m2 12.816 14.504 14.519 14.523

Fig. 2. Absolute errors by univariate dimension-reduction and Monte Carlo

methods.
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are exact and approximate standard deviations of Y ;

respectively. The relative error by the point estimate

method is independent of N; but its accuracy degrades

when the input coefficient of variation v is large [19]. In

contrast, the dimension-reduction method, which has a zero

residual error (see Eq. (12)), provides exact estimates of the

standard deviation of Y regardless of the dimension of the

problem and the coefficient of variation of input.

4.2. Example Set II: solid-mechanics problems

In most of these solid-mechanics examples, random

fields are introduced to increase the dimension of the

stochastic problem. For example, lognormal random fields

were employed in Examples 6 and 9 to represent the spatial

variability of material properties. However, in Example 7,

the elastic modulus was modeled by a Gaussian random

field, which is somewhat unrealistic; but it was adopted here

to allow for comparing the proposed method with existing

methods that require the Gaussian assumption. The

proposed method does not require any specific distribution

type of input random variables or fields.

Example 6 (Stochastic finite-difference analysis (linear-

elastic)). Consider a propped cantilever beam on an

elastic foundation with its discrete model, as shown in

Fig. 4. Suppose that: (1) span L ¼ 120 in.; (2) nodal

spacing D ¼ L=4 ¼ 30 in.; (3) constant beam stiffness

EI ¼ 6:45 £ 108 lb in.2; (4) uniformly distributed load

S ¼ expðZÞ follows a lognormal distribution with mean

mS ¼ expðmZ þ s2
Z =2Þ ¼ 1000 lb=in:; variance s2

S ¼ m2
S

½expðs2
ZÞ2 1�; and coefficient of variation vS ¼ sS=mS;

where mZ ¼ lnðmS=

ffiffiffiffiffiffiffiffi
1 þ n2

S

q
Þ and s2

Z ¼ lnð1 þ v2
SÞ; and (5)

the foundation modulus is a homogeneous lognormal

random field jðxÞ ¼ exp½hðxÞ� with mean mj ¼ expðmh þ

s2
h=2Þ ¼ 2000 lb=in:2; variance s2

j ¼ m2
j½expðs2

hÞ2 1�; and

coefficient of variation vj ¼ sj=mj; where hðxÞ is a

stationary Gaussian random field with mean mh; variance

s2
h; and covariance function gðuÞ ¼ E{½hðx þ uÞ2 mh� �

½hðxÞ2 mh�} ¼ s2
h expð2dlulÞ; d $ 0: There is no depen-

dence between the applied load and foundation modulus.

The equilibrium equation for the discrete finite-

difference model (Fig. 4(b)), including boundary con-

ditions, is

7 þ zX1 24 1

24 6 þ zX2 24

1 24 5 þ zX3

2
664

3
775

Y1

Y2

Y3

8>><
>>:

9>>=
>>; ¼

1

1

1

8>><
>>:

9>>=
>>;zX4 ð50Þ

where Yi ¼ YðiDÞ; i ¼ 1; 2; 3 is the displacement response

at node i; z ¼ D4=EI ¼ 1:26 £ 1023 in.2/lb; Xj ¼ jðjDÞ ¼

exp½hðjDÞ�; j ¼ 1; 2; 3; and X4 ¼ S ¼ expðZÞ: The input

lognormal vector X ¼ {X1;X2;X3;X4}T [ R4 has mean

m ¼ {mj;mj;mj;mS}T and covariance matrix

g ¼

s2
j s2

jr
pðDÞ s2

jr
pð2DÞ 0

s2
jr

pðDÞ s2
j s2

jr
pðDÞ 0

s2
jr

pð2DÞ s2
jr

pðDÞ s2
j 0

0 0 0 s2
S

2
66666664

3
77777775
; ð51Þ

where rpðuÞ ¼ ½exp{gðuÞ} 2 1�½expðs2
hÞ2 1�: The objec-

tive of this example, which was originally presented by

Grigoriu [18], is to determine the second-moment

characteristics of the displacement response Y ¼

{Y1; Y2;Y3}T [ R3:

Table 3 gives approximate mean and covariance of Y for

dD ¼ 0:1; obtained using the Monte Carlo simulation

Fig. 3. Relative error 1 ; ðŝY 2 sY Þ=sY as a function of input coefficient of

variation.

Table 2

Integration errors by quasi-Monte Carlo and dimension-reduction methods

Dimension

(N)

Integration error

Quasi Monte Carlo method [24]

(32,768 function evaluations)

Quasi Monte Carlo method [24]

(262,144 function evaluations)

Univariate dimension-reduction method

(19–28 function evaluations)a

6 4.0 £ 1028 2.1 £ 10210 3.6 £ 1024

7 1.5 £ 1025 1.4 £ 1028 2.6 £ 1024

8 1.7 £ 1024 5.9 £ 1026 2.0 £ 1024

9 3.4 £ 1021 3.4 £ 1021 1.6 £ 1024

a Required 19, 22, 25, and 28 functions evaluations for N ¼ 6; 7, 8, and 9, respectively.
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(100,000 samples), the univariate dimension-reduction

method (Eqs. (40)–(42)), and the statistically equivalent

solution [18]. The statistically equivalent solution was

developed for stochastic-mechanics problems and was

found to be more accurate than first-order Taylor expansion

or Neumann expansion methods [18]. The results in Table 3

focus on three cases of input uncertainties: (a) vj ¼ 0:3;

vS ¼ 0:2; (b) vj ¼ 0:6; vS ¼ 0:2; and (c) vj ¼ 0:6; vS ¼

0:01: Simulation results and statistically equivalent sol-

utions were obtained from Ref. [18]. In all three cases, the

statistically equivalent solution and dimension-reduction

method provide almost exact (simulation) estimates of the

response mean. However, the dimension-reduction method

outperforms the statistically equivalent solution when

covariance properties are compared. For example, the

ratio of exact to approximate standard deviations lies in

the range of (0.81, 1.26) for the statistically equivalent

solution and (0.99, 1.04) for the dimension-reduction

method. For each stochastic problem, only 13 deterministic

analyses ðn ¼ 3Þ were required by the dimension-reduction

method.

Example 7 (Stochastic mesh-free analysis (linear-elas-

tic)). Consider a square plate with a centrally located

circular hole, as shown in Fig. 5(a). The plate has

Fig. 4. A stochastic beam on an elastic foundation; (a) geometry and loads;

(b) discrete finite-difference model.

Table 3

Mean and covariance of displacement vector Y in beam on elastic foundation for dD ¼ 0:1

Statistically equivalent solution [18] Univariate dimension-reduction method Monte Carlo simulation [18] (106 samples)

(a) nj ¼ 0:3; nS ¼ 0:2

Mean vector ðmYÞ
0:295

0:480

0:391

8>><
>>:

9>>=
>>;

0:297

0:480

0:391

8>><
>>:

9>>=
>>;

0:297

0:480

0:392

8>><
>>:

9>>=
>>;

Covariance matrix ðgY Þ
0:0044 0:0085 0:0067

0:0168 0:0133

ðsym:Þ 0:0107

2
664

3
775

0:0066 0:0113 0:0091

0:0198 0:0159

ðsym:Þ 0:0130

2
664

3
775

0:0070 0:0121 0:0096

0:0212 0:0170

ðsym:Þ 0:0139

2
664

3
775

(b) nj ¼ 0:6; nS ¼ 0:2

Mean vector ðmYÞ
0:328

0:540

0:441

8>><
>>:

9>>=
>>;

0:328

0:540

0:439

8>><
>>:

9>>=
>>;

0:328

0:539

0:439

8>><
>>:

9>>=
>>;

Covariance matrix ðgY Þ
0:0205 0:0388 0:0307

0:0746 0:0595

ðsym:Þ 0:0480

2
664

3
775

0:0163 0:0292 0:0231

0:0535 0:0428

ðsym:Þ 0:0348

2
664

3
775

0:0173 0:0312 0:0247

0:0573 0:0459

ðsym:Þ 0:0373

2
664

3
775

(c) nj ¼ 0:6; nS ¼ 0:01

Mean vector ðmYÞ
0:327

0:540

0:441

8>><
>>:

9>>=
>>;

0:328

0:540

0:440

8>><
>>:

9>>=
>>;

0:328

0:540

0:439

8>><
>>:

9>>=
>>;

Covariance matrix ðgY Þ
0:0188 0:0353 0:0279

0:0669 0:0534

ðsym:Þ 0:0432

2
664

3
775

0:0129 0:0238 0:0187

0:0451 0:0360

ðsym:Þ 0:0293

2
664

3
775

0:0126 0:0233 0:0184

0:0442 0:0352

ðsym:Þ 0:0285

2
664

3
775
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a dimension of 2L ¼ 40 units, a hole with diameter 2a ¼ 2

units, and is subjected to a uniformly distributed load of

magnitude s1 ¼ 1 unit. The Poisson’s ratio n was chosen as

0.3. The elastic modulus was assumed to be a homogeneous

random field and symmetrically distributed with respect to

x1- and x2-axes (Fig. 5(a)). The modulus of elasticity EðxÞ
was represented by EðxÞ ¼ mE½1 þ aðxÞ�; where mE ¼ 1

unit is the constant mean over the domain V; and aðxÞ is a

homogeneous Gaussian random field with mean zero and

covariance function

GaðjÞ ¼ E½aðxÞaðx þ jÞ�

¼ s2
a exp 2

kjk
bL

! "
; ;x; x þ j [ V; ð52Þ

where sa ¼ 0:1 unit and b ¼ 0:1 and 0.5. Due to symmetry,

only a quarter of the plate, represented by the region

ABEDC and shaded in Fig. 5(a), was analyzed. Fig. 5(b)

shows a meshless discretization of the quarter plate with 90

nodes [8,15].

The random field aðxÞ was parameterized using the

Karhunen–Loève expansion [35]

aðxÞ ø
XN
j¼1

Xj

ffiffiffi
lj

q
fjðxÞ; ð53Þ

where Xj 7! Nð0; 1Þ; j ¼ 1;…;N are standard and indepen-

dent Gaussian random variables and {lj;fjðxÞ}; j ¼ 1;…;N

are the eigenvalues and eigenfunctions, respectively, of the

covariance kernel. The mesh-free shape functions were

employed to solve the associated integral equation needed
Fig. 5. A square plate with a hole subjected to uniformly distributed tension;

(a) geometry and loads; (b) meshless discretization.

Table 4a

Standard deviations of displacement and strains in plate with a hole by various methods ðb ¼ 0:1Þ

Location Response

variablea

Standard deviation of response

Second-order Neumann

expansion method

Fourth-order Neumann

expansion method

Univariate dimension-

reduction method

Monte Carlo simulation

(5000 samples)

A u1 6.45 £ 1022 6.53 £ 1022 6.49 £ 1022 6.54 £ 1022

111 1.07 £ 1022 1.08 £ 1022 1.07 £ 1022 1.09 £ 1022

122 1.02 £ 1021 1.03 £ 1021 1.02 £ 1021 1.04 £ 1021

112 1.46 £ 1022 1.48 £ 1022 1.47 £ 1022 1.49 £ 1022

B u1 1.96 £ 1021 2.00 £ 1021 1.98 £ 1021 2.00 £ 1021

122 4.62 £ 1022 4.67 £ 1022 4.64 £ 1022 4.62 £ 1022

C u2 1.15 £ 1021 1.16 £ 1021 1.15 £ 1021 1.16 £ 1021

111 4.92 £ 1022 4.97 £ 1022 4.94 £ 1022 4.96 £ 1022

122 6.23 £ 1023 6.30 £ 1023 6.27 £ 1023 6.26 £ 1023

112 2.23 £ 1022 2.26 £ 1022 2.25 £ 1022 2.26 £ 1022

D u2 4.82 £ 1021 4.98 £ 1021 4.93 £ 1021 5.01 £ 1021

122 4.51 £ 1022 4.58 £ 1022 4.55 £ 1022 4.51 £ 1022

E u1 2.79 £ 1021 2.82 £ 1021 2.81 £ 1021 2.85 £ 1021

u2 5.34 £ 1021 5.48 £ 1021 5.44 £ 1021 5.59 £ 1021

122 4.02 £ 1022 4.08 £ 1022 4.05 £ 1022 4.16 £ 1022

a u1 and u2 are horizontal and vertical displacements, respectively; 111 and 122 represent normal tensorial strains in x1 and x2 directions, respectively; and 112

represents tensorial shear strain.
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to calculate the eigenvalues and eigenfunctions [15]. For the

correlation parameter b ¼ 0:1 or 0.5, a value of N ¼ 12 was

selected to adequately represent aðxÞ: Following the

Karhunen–Loève discretization, the input uncertainty is

represented by a 12-dimensional standard Gaussian vector

X 7! Nð0; IÞ; where 0 [ R12 and I [ LðR12 £R12Þ are the

null vector and identity matrix, respectively.

For the correlation parameter b ¼ 0:1 and 0.5, Table 4a

and b present standard deviations of displacements and

strains at points A, B, C, D, and E (Fig. 5(a)), predicted by

the proposed univariate dimension-reduction method

(Eqs. (40)–(42)); the second- and fourth-order Neumann

expansion methods; and the Monte Carlo simulation (5000

samples). The Neumann expansion solutions were obtained

following the development by Ghanem and Spanos [14].

As expected, the fourth-order Neumann expansion method

provides more accurate solutions than the second-order

version. According to Table 4a and b, the univariate

dimension-reduction method also provides satisfactory

results of standard deviations when compared with the

simulation results. In fact, the accuracy of response statistics

from the univariate dimension-reduction method is very

close to the accuracy of the fourth-order Neumann

expansion method. But the comparison of CPU times,

which were obtained for two separate analyses involving

N ¼ 6 and 12, and are shown in Fig. 6(a) and (b),

respectively, indicates that the dimension-reduction method

is far more efficient than both Neumann expansion methods.

It would be interesting to pursue multivariate reduction

methods, such as the bivariate dimension-reduction

method, to determine if it can supersede both the accuracy
Fig. 6. Comparison of CPU time by various methods; (a) N ¼ 6;

(b) N ¼ 12:

Table 4b

Standard deviations of displacement and strains in plate with a hole by various methods ðb ¼ 0:5Þ

Location Response

variablea

Standard deviation of response

Second-order Neumann

expansion method

Fourth-order Neumann

expansion method

Univariate dimension-

reduction method

Monte Carlo simulation

(5000 samples)

A u1 1.06 £ 1021 1.11 £ 1021 1.09 £ 1021 1.12 £ 1021

111 2.47 £ 1022 2.58 £ 1022 2.53 £ 1022 2.56 £ 1022

122 2.28 £ 1021 2.39 £ 1021 2.34 £ 1021 2.37 £ 1021

112 3.13 £ 1022 3.28 £ 1022 3.22 £ 1022 3.25 £ 1022

B u1 4.36 £ 1021 4.60 £ 1021 4.52 £ 1021 4.61 £ 1021

122 7.62 £ 1022 7.97 £ 1022 7.82 £ 1022 8.21 £ 1022

C u2 2.36 £ 1021 2.48 £ 1021 2.43 £ 1021 2.46 £ 1021

111 8.28 £ 1022 8.64 £ 1022 8.48 £ 1022 8.72 £ 1022

122 1.23 £ 1022 1.28 £ 1022 1.26 £ 1022 1.28 £ 1022

112 3.70 £ 1022 3.89 £ 1022 3.81 £ 1022 3.90 £ 1022

D u2 1.24 1.33 1.30 1.33

122 7.86 £ 1022 8.30 £ 1022 8.10 £ 1022 8.34 £ 1022

E u1 5.74 £ 1021 5.94 £ 1021 5.83 £ 1021 5.99 £ 1021

u2 1.30 1.37 1.35 1.38

122 7.92 £ 1022 8.36 £ 1022 8.17 £ 1022 8.37 £ 1022

a u1 and u2 are horizontal and vertical displacements, respectively. 111 and 122 represent normal tensorial strains in x1 and x2 directions, respectively; and 112

represents tensorial shear strain.
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and computational efficiency of the fourth-order Neumann

expansion method.

Example 8 (Stochastic finite element analysis (linear-

elastic)). A homogeneous, edge-cracked plate is presented

to illustrate a mixed-mode probabilistic fracture-mechanics

analysis using the univariate dimension-reduction method.

As shown in Fig. 7(a), the plate of length L ¼ 16 units was

fixed at the bottom and subjected to a far-field normal stress

s1 and a shear stress t1 applied at the top. The plate was

analyzed by the finite element method including a total of

832 8-noded quadrilateral elements and 48 quarter-point

triangular elements at the crack-tip, as shown in Fig. 7(b).

The independent random variables involved: (1) uniformly

distributed crack length a 7! Uð2:8; 4:2Þ units; (2) uni-

formly distributed plate width W 7! Uð7; 8Þ; (3) Gaussian

normal stress s1 7! Nð1; 0:12Þ; and (4) Gaussian shear

stress t1 7! Nð1; 0:12Þ: The elastic modulus and Poisson’s

ratio were 30 £ 106 units and 0.25, respectively. A plane

strain condition was assumed.

Table 5 shows the predicted means and standard

deviations of stress-intensity factors KI and KII obtained

using the proposed dimension-reduction method (Eq. (24))

and the Monte Carlo simulation (10,000 samples). The

results in Table 5 clearly show that the dimension-reduction

method can accurately calculate the statistical character-

istics of fracture parameters. Only 13 finite element analyses

were needed in the dimension-reduction method.

Example 9 (Stochastic finite element analysis (nonlinear,

large-deformation)). In this example, the proposed

dimension-reduction method is employed to solve non-

linear problems in solid-mechanics. Fig. 8(a) shows a

shallow circular arch, with mean radius R ¼ 100 mm,

rectangular cross-section with depth h ¼ 2 mm, thickness

t ¼ 1 mm, and arc angle 2b ¼ 28:18: The arch is fixed at

both ends and is subjected to a concentrated load P at

the center. The modulus of elasticity E ¼ 80 kN/mm2

and Poisson’s ratio ¼ 0. A finite element mesh employ-

ing 30 8-noded quadrilateral elements is shown in

Fig. 8(b). The stress analysis involved large-deformation

behavior for modeling the geometric nonlinearity of the

arch. A plane stress condition was assumed.

The first effort involved predicting displacement

response of the arch when the material properties, geometry,

and loads are deterministic. Fig. 9 shows the deflection y at

the central point computed by two methods for loads

10 N # P # 400 N: The first method employs the conven-

tional Gauss quadrature rule to construct the element

stiffness matrix. For this two-dimensional problem,

8 £ 8 ¼ 64 Gauss points were used for each element. The

second method uses the proposed dimension-reduction

method, where only 2 £ 8 þ 1 ¼ 17 Gauss points were

employed. The displacement responses by both methods are

practically identical, but the dimension-reduction method

reduces the computational effort of numerical integration by

a factor of approximately 4. This computational savings can

Table 5

Means and standard deviations of mixed-mode fracture parameters

Response and

computational

effort

Univariate dimension-

reduction method

Monte Carlo simulation

Mean Standard

deviation

Mean Standard

deviation

KI 39.302 7.828 39.255 8.033

KII 4.411 0.737 4.405 0.739

No. of analyses 13 10,000

Fig. 7. Edge-cracked plate subject to mixed-mode loading conditions;

(a) geometry and loads; (b) finite-element discretization; (c) quarter-point

elements at crack tip.
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become significant in nonlinear stress analysis, since the

stiffness matrix must be updated frequently to find an

iterative solution to equilibrium equations. However, the

reduction factor depends on the order of Gauss quadrature

and the spatial dimensions of the problem. Nevertheless,

this simple comparison shows how the proposed dimension-

reduction method can be exploited for commonly used

deterministic analysis.

In the second effort, the modulus of elasticity EðxÞ
was represented by a homogeneous, lognormal

translation field EðxÞ ¼ ca exp½aðxÞ�; where mean is

mE ¼ 80 kN/mm2; standard deviation is sE; aðxÞ is a

zero-mean, homogeneous, Gaussian random field

with standard deviation sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1 þ s2

E=m
2
EÞ

q
; an expo-

nential covariance function represented by Eq. (52), b ¼

0:1; and ca ¼ mE expð2s2
a=2Þ ¼ m2

E=

ffiffiffiffiffiffiffiffiffiffiffi
m2

E þ s2
E

q
: The Kar-

hunen–Loève expansion was employed to discretize the

random field aðxÞ into four standard Gaussian random

variables.

Due to uncertainty in the elastic modulus, any mechan-

ical response of this arch is stochastic. Table 6 gives

estimates of the first five moments ml ¼ E½Yl�; l ¼ 1;…; 5

of the deflection Y at the central point of the arch, obtained

using three approximate methods: (1) the first-order Taylor

expansion; (2) the second-order Taylor expansion, and (3)

the univariate dimension-reduction method (Eq. (24)). The

gradients required in both Taylor expansions were obtained

using finite-difference equations. To evaluate approximate

methods, direct, four-dimensional numerical integrations

were also performed to generate benchmark solutions. The

results in Table 6 pertain to four cases of input: (a)

sE ¼ 8 kN/mm2, P ¼ 400 N; (b) sE ¼ 16 kN/mm2,

P ¼ 400 N; (c) sE ¼ 8 kN/mm2, P ¼ 200 N; and (d)

sE ¼ 16 kN/mm2, P ¼ 200 N. The first two cases involve

an applied load that yields a mild variation in the deflection.

The last two cases entail an applied load that gives rise to

instability in the deflection response (Fig. 9). The standard

deviation of the elastic modulus was varied for each

deflection response. According to the results presented in

Table 6, the univariate dimension-reduction method

provides excellent estimates of statistical moments for all

four cases of input. For a given problem (case), the proposed

method required only 4 £ 4 þ 1 ¼ 17 analyses ðn ¼ 4Þ; as

opposed to 44 ¼ 256 analyses using numerical integration.

First- and second-order Taylor expansions also yield good

estimates of moments, but only for the first two cases of

input when the deflection response at the neighborhood of

the load ðP ¼ 400 NÞ is mildly varying and almost linear.

However, for the latter two cases ðP ¼ 200 NÞ; deflection

behavior is strongly nonlinear, resulting in an unsatisfactory

prediction of moments with either Taylor expansion

method. In general, the errors are larger for higher-order

moments with all three methods. For example, the errors in

predicting the first moment (mean) for case (c) by the first-

order Taylor expansion, second-order Taylor expansion,

and the univariate dimension-reduction method are 5.8, 1.3,

and 0.4%, respectively. The respective errors in predicting

the fourth moment (kurtosis) for the same case are 32.5,

11.4, and 0.8%, respectively. Nevertheless, the dimension-

reduction method provides reasonably good estimates of

higher-order moments, and therefore, should provide a

better approximation of the tail of response distribution than

any Taylor expansion method.

Fig. 8. A shallow arch subject to concentrated load; (a) geometry and loads; (b) finite-element discretization.

Fig. 9. Deterministic deflection at the center of the arch.
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5. Conclusions

A new univariate dimension-reduction method was

developed for calculating statistical moments of response

of mechanical systems subject to uncertainties in loads,

material properties, and geometry. This method is based

on (1) an additive decomposition of a multi-dimensional

response function into multiple one-dimensional func-

tions; (2) an approximation of response moments by

moments of single random variables; and (3) a moment-

based quadrature rule for numerical integration. The

resultant moment equations entail evaluating N number

of one-dimensional integrals, which is substantially

simpler and more efficient than performing one N-

dimensional integration. The proposed method does not

require the calculation of any partial derivatives of

response or the inversion of random matrices, as

compared with commonly used Taylor expansion/pertur-

bation methods and Neumann expansion methods,

respectively. Hence, the computation effort in conducting

stochastic finite element or meshless analyses can be

significantly reduced. Two sets of numerical examples,

one involving elementary mathematical functions and the

other involving solid-mechanics problems, are presented

to illustrate the proposed method. The accuracy and

computational efficiency of the proposed method were

evaluated by simulation or direct numerical integration

and were also compared with alternative analytical

methods. The results of five mathematical examples

indicate that the univariate dimension-reduction method

provides more accurate estimates of statistical moments or

multidimensional integration than the first- and second-

order Taylor expansion methods, the quasi-Monte Carlo

simulation, and the point estimate method. Solid-mech-

anics examples include both linear and nonlinear problems

analyzed by the finite-difference, finite element, and

meshless methods. The results of four solid-mechanics

examples illustrate that the univariate dimension-reduction

method outperforms first- and second-order Taylor

expansion methods, the second-order Neumann expansion

method, and statistically equivalent solutions. In one

example, the accuracy of the univariate dimension-

reduction method is comparable in accuracy to the

fourth-order Neumann expansion method, but a CPU

time comparison suggests that the former method is far

more efficient than the latter.
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Table 6

Statistical moments of deflection in shallow arch by various methods

Statistical moments

ðml ¼ E½Yl�Þ

First-order Taylor

expansion method

Second-order Taylor

expansion method

Univariate dimension-

reduction method

Numerical

integration

(a) sE ¼ 8 kN/mm2; P ¼ 400 N

m1 4.7626 4.7608 4.7609 4.7608

m2 22.689 22.672 22.673 22.672

m3 108.13 108.00 108.01 108.00

m4 515.43 514.65 514.71 514.66

m5 2457.8 2453.1 2453.5 2453.2

(b) sE ¼ 16 kN/mm2; P ¼ 400 N

m1 4.7892 4.7824 4.7826 4.7823

m2 22.964 22.898 22.900 22.898

m3 110.23 109.76 109.78 109.76

m4 529.78 526.76 526.89 526.79

m5 2549.0 2530.8 2531.7 2531.1

(c) sE ¼ 8 kN/mm2; P ¼ 200 N

m1 1.6409 1.7192 1.7491 1.7413

m2 2.7641 3.0573 3.1929 3.1735

m3 4.7699 5.6679 6.1191 6.1035

m4 8.4187 11.055 12.382 12.478

m5 15.176 22.908 26.567 27.229

(d) sE ¼ 16 kN/mm2; P ¼ 200 N

m1 1.7441 2.2288 2.1947 2.0402

m2 3.4769 6.5935 5.3093 4.7406

m3 7.5815 27.000 13.659 12.333

m4 17.761 151.94 36.576 34.904

m5 44.169 1112.7 101.08 104.581
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Corrigendum

Corrigendum to “A univariate dimension-reduction method

for multi-dimensional integration in stochastic mechanics”

[Probabilistic Engineering Mechanics 19 (2004) 393–408]*

S. Rahman *, H. Xu

Department of Mechanical Engineering, College of Engineering, University of Iowa, 2140 Seamans Center, Iowa City, IA 52242, USA

Available online 30 September 2005
In Example 7, the results listed in Tables 4a and 4b of

the above article were calculated when the covariance

function GaðxÞZsaexp Kð x1j jC x2j jÞ=ðbLÞ
� �

;cx; xCx2U.
Table 4a

Standard deviations of displacement and strains in plate with a hole by various me

Location Response variablea Standard deviation of respo

2nd-order Neumann

expansion method

A u1 7.57!10K2

311 1.31!10K2

322 1.25!10K1

312 1.78!10K2

B u1 2.29!10K1

322 5.02!10K2

C u2 1.38!10K1

311 5.79!10K2

322 7.47!10K3

312 2.62!10K2

D u2 5.66!10K1

322 4.94!10K2

E u1 3.21!10K1

u2 6.20!10K1

322 4.77!10K2

a u1 and u2 are horizontal and vertical displacements, respectively. 311 and 322 r

represents tensorial shear strain.

*DOI of original article: 10.1016/j.probengmech.2004.04.003
* Corresponding author. Tel.: C1 319 335 5679; fax: C1 319 335 5669.

E-mail address: rahman@engineering.uiowa.edu (S. Rahman).

0266-8920/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.probengmech.2005.09.001
For the isotropic covariance function described by Eq. (52),

the corrected Tables 4a and 4b should read as follows:

The authors apologize for any inconvenience caused.
Probabilistic Engineering Mechanics 21 (2006) 97–98
www.elsevier.com/locate/probengmech
thods (bZ0.1)

nse

4th-order Neumann

expansion method

Univariate dimension-

reduction method

Monte Carlo simulation

(5000 samples)

7.70!10K2 7.63!10K2 7.84!10K2

1.32!10K2 1.31!10K2 1.32!10K2

1.26!10K1 1.26!10K1 1.27!10K1

1.81!10K2 1.79!10K2 1.82!10K2

2.35!10K1 2.32!10K1 2.38!10K1

5.10!10K2 5.06!10K2 5.06!10K2

1.40!10K1 1.39!10K1 1.41!10K1

5.88!10K2 5.83!10K2 5.99!10K2

7.58!10K3 7.53!10K3 7.75!10K3

2.67!10K2 2.65!10K2 2.72!10K2

5.89!10K1 5.83!10K1 5.83!10K1

5.03!10K2 4.98!10K2 4.92!10K2

3.25!10K1 3.23!10K1 3.23!10K1

6.40!10K1 6.33!10K1 6.35!10K1

4.86!10K2 4.81!10K2 4.76!10K2

epresent normal tensorial strains in x1 and x2 directions, respectively; and 312

http://www.elsevier.com/locate/probengmech


Table 4b

Standard deviations of displacement and strains in plate with a hole by various methods (bZ0.5)

Location Response variablea Standard deviation of response

2nd-order Neumann

expansion method

4th-order Neumann

expansion method

Univariate dimension-

reduction method

Monte Carlo simulation

(5000 samples)

A u1 1.11!10K1 1.17!10K1 1.15!10K1 1.19!10K1

311 2.64!10K2 2.78!10K2 2.72!10K2 2.79!10K2

322 2.44!10K1 2.57!10K1 2.51!10K1 2.58!10K1

312 3.34!10K2 3.52!10K2 3.45!10K2 3.54!10K2

B u1 4.63!10K1 4.92!10K1 4.83!10K1 4.95!10K1

322 8.18!10K2 8.58!10K2 8.41!10K2 8.49!10K2

C u2 2.50!10K1 2.64!10K1 2.58!10K1 2.66!10K1

311 8.68!10K2 9.12!10K2 8.92!10K2 9.28!10K2

322 1.32!10K2 1.38!10K2 1.35!10K2 1.41!10K2

312 3.83!10K2 4.06!10K2 3.97!10K2 4.13!10K2

D u2 1.34 1.44 1.41 1.44

322 8.26!10K2 8.76!10K2 8.53!10K2 8.52!10K2

E u1 5.79!10K1 6.03!10K1 5.91!10K1 5.98!10K1

u2 1.38 1.46 1.44 1.46

322 8.25!10K2 8.74!10K2 8.53!10K2 8.59!10K2

a u1 and u2 are horizontal and vertical displacements, respectively. 311 and 322 represent normal tensorial strains in x1 and x2 directions, respectively; and 312

represents tensorial shear strain.
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