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a b s t r a c t

This article presents a new class of computational methods, known as dimensional decomposition
methods, for calculating stochastic sensitivities of mechanical systems with respect to probability
distribution parameters. These methods involve a hierarchical decomposition of a multivariate response
function in terms of variables with increasing dimensions and score functions associated with probability
distribution of a random input. The proposed decomposition facilitates univariate and bivariate
approximations of stochastic sensitivitymeasures, lower-dimensional numerical integrations or Lagrange
interpolations, and Monte Carlo simulation. Both the probabilistic response and its sensitivities can be
estimated from a single stochastic analysis, without requiring performance function gradients. Numerical
results indicate that the decomposition methods developed provide accurate and computationally
efficient estimates of sensitivities of statistical moments or reliability, including stochastic design of
mechanical systems. Future effort includes extending these decomposition methods to account for the
performance function parameters in sensitivity analysis.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Sensitivity analysis provides an important insight about com-
plex model behavior [1,2] so that one can make informed
decisions on minimizing the variability of a system [3], or opti-
mizing a system’s performance with an acceptable risk [4]. For
estimating the derivative or sensitivity1 of a general probabilistic
response, there are three principal classes of methods or analyses.
The finite-difference method [5] involves repeated stochastic analy-
ses for nominal and perturbed values of system parameters, and
then invoking forward, central, or other differentiation schemes
to approximate their partial derivatives. This method is cumber-
some and often expensive, if not prohibitive, because evaluating
probabilistic response for each system parameter, which consti-
tutes a complete stochastic analysis, is already a computationally
demanding task. The two remainingmethods, the infinitesimal per-
turbation analysis [6,7] and the score functionmethod [8], have been
mostly viewed as competing methods, where both performance
and sensitivities can be obtained from a single stochastic simu-
lation. However, there are additional requirements of regularity
conditions, in particular smoothness of the performance function
or the probability measure [9]. For the infinitesimal perturbation
analysis, the probability measure is fixed, and the derivative of a
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performance function is taken, assuming that the differential and
integral operators are interchangeable. The score functionmethod,
which involves probability measure that continuously varies with
respect to a design parameter, also requires a somewhat similar
interchange of differentiation and integration, but in many prac-
tical examples, interchange in the score function method holds in
a much wider range than that in infinitesimal perturbation analy-
sis. Nonetheless, bothmethods, when valid, are typically employed
in conjunction with the direct Monte Carlo simulation, a premise
well-suited to stochastic optimization of discrete event systems.
Unfortunately, in mechanical design optimization, where stochas-
tic response and sensitivity analyses are required at each design
iteration, even a single Monte Carlo simulation is impractical, as
each deterministic trial of the simulation may require expensive
finite-element or other numerical calculations. This is the princi-
pal reason why neither the infinitesimal perturbation analysis nor
the score function method have found their way in to the design
optimization of mechanical systems.
The direct differentiation method, commonly used in deter-

ministic sensitivity analysis [10], provides an attractive alter-
native to the finite-difference method for calculating stochastic
sensitivities. In conjunctionwith the first-order reliability method,
Liu andDer Kiureghian [11] and their similarwork has significantly
contributed to the development of such methods for obtaining
reliability sensitivities. The direct differentiation method, also
capable of generating both reliability and its sensitivities from a
single stochastic analysis, is particularly effective in solving finite-
element-based reliability problems, when (1) the most probable
point can be efficiently located and (2) a linear approximation of
the performance function at that point is adequate. Therefore, the
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direct differentiation method inherits high efficiency of the first-
order reliability method, but also its limitations. In contrast, the
three sensitivity methods described in the preceding are indepen-
dent of underlying stochastic analysis.
This article presents a new class of computational methods,

known as dimensional decomposition methods, for calculating
stochastic sensitivities of mechanical systems with respect to
probability distribution parameters. The idea of dimensional de-
composition of a multivariate function, originally developed by
the author’s group for statistical moment [12,13] and reliabil-
ity [14] analyses, has been extended to stochastic sensitivity anal-
ysis, which is the focus of the current paper. Section 2 describes
a unified probabilistic response and sensitivity, and derives score
functions associated with a number of probability distributions.
Section 3 presents the dimensional decompositionmethod for cal-
culating the probabilistic sensitivities, using either the numeri-
cal integration or the simulation method and score functions. The
computational effort required by the decompositionmethod is also
discussed. Four numerical examples illustrate the accuracy, com-
putational efficiency, and usefulness of the sensitivity method in
Section 4. Section 5 states the limitations of the proposed method.
Finally, conclusions are drawn in Section 6.

2. Probabilistic response and sensitivity

Let (Ω,F ) be a measurable space, where Ω is a sample space
and F is a σ -field on Ω . Defined over (Ω,F ), consider a family
{Pθ : F → [0, 1]} of probability measures, where θ = {θ1,
. . . , θM}

T
∈ RM is an M-dimensional vector of deterministic

parameters and RM is an M-dimensional, real, vector space. In
otherwords, a sample pointω ∈ Ω obeys the probability law Pθ(F)
for any event F ∈ F and θ ∈ RM , so that the probability triple
(Ω,F , Pθ) depends on θ.
Let {X = {X1, . . . , XN}T : (Ω,F ) → (RN ,BN)} with BN

as the Borel σ -field on RN denote a family of RN -valued input
random vector, which describes statistical uncertainties in loads,
material properties, and geometry of a mechanical system. The
probability law of X is completely defined by a family of joint
probability density functions {fX (x; θ), x ∈ RN , θ ∈ RM} that are
associatedwith probabilitymeasures {Pθ, θ ∈ RM}. Let y(X), a real-
valued, measurable transformation on (Ω,F ), define a relevant
performance function of a mechanical system. It is assumed that
y : (RN ,BN)→ (R,B) is not an explicit function of θ, although y
implicitly depends on θ via the probability law of X . The objective
of stochastic sensitivity analysis is to obtain the partial derivatives
of a probabilistic characteristic of y(X)with respect to a parameter
θi, i = 1, . . . ,M , given a reasonably arbitrary probability law of X .

2.1. Statistical moments and reliability

Denote by Lq(Ω,F , Pθ) a collection of real-valued random
variables including y(X), which is defined on (Ω,F , Pθ) such that
E[|yq(X)|] < ∞, where q ≥ 1 is an integer and Eθ represents
the expectation operator with respect to the probability measure
{Pθ, θ ∈ RM}. If y(X) is in Lq(Ω,F , Pθ), then its qth moment,
defined by the multifold integral

mq(θ) := Eθ

[
yq(X)

]
:=

∫
RN
yq(x)fX (x; θ)dx; q = 1, 2, . . . , (1)

exists and is finite. A similar integral appears in time-invariant
reliability analysis, which entails calculating the failure probability

PF (θ) := Pθ [X ∈ ΩF ] =
∫

RN
IΩF (x)fX (x; θ)dx := Eθ

[
IΩF (X)

]
, (2)

where ΩF := {x : y(x) < 0} is the failure set for component
reliability analysis; and ΩF := {x : ∪Kk=1 y

(k)(x) < 0} and
ΩF := {x : ∩Kk=1 y
(k)(x) < 0} are the failure sets for series-system

and parallel-system reliability analyses, respectively, with y(k)(x)
representing the kth out of K performance functions, and

IΩF (x) :=
{
1, x ∈ ΩF
0, x ∈ Ω \ΩF

; x ∈ RN (3)

is an indicator function. Therefore, expressions of both integrals or
expectations in Eqs. (1) and (2) can be consolidated into a generic
probabilistic response

h(θ) = Eθ [g(X)] :=
∫

RN
g(x)fX (x; θ)dx, (4)

where h(θ) and g(x) are either mq(θ) and yq(x), respectively, for
statistical moment analysis or PF (θ) and IΩF (x), respectively, for
reliability analysis.

2.2. Sensitivity analysis by score functions

Consider a distribution parameter θi, i = 1, . . . ,M , and
suppose that the derivative of a generic probabilistic response h(θ),
which is either the statistical moment of a mechanical response
or the reliability of a mechanical system, with respect to θi is
sought. For such sensitivity analysis, the following assumptions are
required [8].
1. The probability density function fX (x; θ) is continuous. Discrete
distributions having jumps at a set of points, or a mixture of
continuous and discrete distributions, can be treated similarly,
but will not be discussed here.

2. The parameter θi ∈ Θi ⊂ R, i = 1, . . . ,M , whereΘi is an open
interval on R.

3. The partial derivative ∂ fX (x; θ)/∂θi exists and is finite for all x
and θi ∈ Θi ⊂ R. In addition, h(θ) is a differentiable function of
θ ∈ RM .

4. There exists a Lebesgue integrable dominating function r(x)
such that∣∣∣∣g(x) ∂ fX (x; θ)∂θi

∣∣∣∣ ≤ r(x) (5)

for all θ ∈ RM .

The assumptions 1–4 are known as the regularity conditions.
Taking the partial derivative of both sides of Eq. (4) with respect

to θi gives

∂h(θ)
∂θi
=

∂

∂θi

∫
RN
g(x)fX (x; θ)dx. (6)

By invoking assumption 4 and the Lebesgue dominated conver-
gence theorem [15], the differential and integral operators can be
interchanged, yielding
∂h(θ)
∂θi

=

∫
RN
g(x)

∂ fX (x; θ)
∂θi

dx

=

∫
RN
g(x)

∂ ln fX (x; θ)
∂θi

fX (x; θ)dx

= Eθ

[
g(X)

∂ ln fX (X; θ)
∂θi

]
; i = 1, . . . ,M, (7)

provided fX (x; θ) 6= 0. Define

s(1)θi (x; θ) :=
∂ ln fX (x; θ)

∂θi
, (8)

which is known as the first-order score function for the parameter
θi [8]. Therefore, the first-order sensitivity of h(θ) can be expressed
by

∂h(θ)
∂θi
= Eθ

[
g(X)s(1)θi (X; θ)

]
; i = 1, . . . ,M. (9)
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Table 1
Log-derivatives for Gaussian and lognormal distributions

Distribution fXi (xi;µi, σi)
∂ ln fXi (xi;µi,σi)

∂µi

∂ ln fXi (xi;µi,σi)
∂σi

Gaussian 1
√
2πσi

exp
[
−
1
2

(
xi−µi
σi

)2]
;

−∞ ≤ xi ≤ +∞

1
σi

(
xi−µi
σi

)
1
σi

[(
xi−µi
σi

)2
− 1

]

Lognormala 1
√
2πxi σ̃i

exp
[
−
1
2

(
ln xi−µ̃i
σ̃i

)2]
;

0 < xi ≤ +∞

−
1
σ̃i

∂σ̃i
∂µi
+

1
σ̃ 2i

(
ln xi−µ̃i
σ̃i

)
×

[
σ̃i
∂µ̃i
∂µi
+ (ln xi − µ̃i)

∂σ̃i
∂µi

]
−
1
σ̃i

∂σ̃i
∂σi
+

1
σ̃ 2i

(
ln xi−µ̃i
σ̃i

)
×

[
σ̃i
∂µ̃i
∂σi
+ (ln xi − µ̃i)

∂σ̃i
∂σi

]
a σ̃ 2i = ln

(
1+ σ 2i /µ

2
i

)
and µ̃i = lnµ− σ̃ 2i /2. The partial derivatives of µ̃i and σ̃i with respect to µi or σi can be easily obtained, so they are not reported here.
The extension to higher-order partial derivatives of h(θ) is
straightforward. See Rubinstein and Shapiro [8], who pioneered
the score function method.
In general, the sensitivity is not available analytically, since the

response h(θ) is not either. Nonetheless, the probabilistic response
h(θ) (Eq. (4)) and its sensitivities ∂h(θ)/∂θi (Eq. (9)) have been
formulated as expectations of stochastic quantities with respect to
the same density function, facilitating their concurrent evaluations
in a single stochastic simulation or analysis. Themain contribution
of this work is to simultaneously evaluate both the stochastic
response and sensitivities by an alternative route, known as the
dimensional decompositionmethod, to the traditionalMonte Carlo
simulation.
The score function method requires differentiating only the

probability density function fX (x; θ). The resulting score functions
can be easily determined and, in many cases, analytically. In con-
trast, the infinitesimal perturbation analysis in its original form
requires derivatives or perturbation of the performance function,
which is always expensive in stochastic-mechanics applications.
Furthermore, if the performance function is not differentiable, the
regularity condition that permits interchangeability of differential
and integral operators is violated and the infinitesimal perturba-
tion analysis will not work. In the score function method, g(x) can
be discontinuous – for example, the indicator function IΩF (x) that
comes from reliability analysis – but the method still allows eval-
uation of the sensitivity if the density function is differentiable.
In reality, the density function is often smoother than the perfor-
mance function, and therefore the regularity conditions are milder
in the score functionmethod than in the infinitesimal perturbation
analysis.

2.3. Score functions

The score functions s(1)θi (x; θ); i = 1, . . . ,M depend only on the
probability distribution of random inputX = {X1, . . . , XN}T .When
the distribution of Xi is either independent or both independent
and identical, the expressions of the score functions simplify
slightly. Since a major application of sensitivity analysis is design
optimization, where the second-moment properties of random
input play the role of design parameters, attention is confined
to the score functions associated with the mean and standard
deviations of input.

2.3.1. Independent distributions
Consider a random input X , where the components X1, . . . , XN

are independent random variables. Let Xi follow the probability
density function fXi(xi;µi, σi) for i = 1, . . . ,N , with mean µi
and standard deviation σi. The joint density of X is fX (x; θ) =∏N
i=1 fXi(xi;µi, σi), θ = {µ1, σ1 . . . , µN , σN}

T , and M = 2N .
Therefore, from Eq. (8), the first-order score functions for µi and
σi become

s(1)µi (x; θ) =
∂ ln fXi(xi;µi, σi)

∂µi
; i = 1, . . . ,N (10)
and

s(1)σi (x; θ) =
∂ ln fXi(xi;µi, σi)

∂σi
; i = 1, . . . ,N, (11)

respectively.

2.3.2. Independent and identical distributions
Furthermore, consider X , where the components X1, . . . , XN

are not only independent, but also follow the common probability
density function f (xi;µ, σ) with the common mean µ and
common standard deviation σ , so that θ = {µ, σ }T and M = 2.
Such distributions frequently arise in manufacturing processes,
where a sequence of events occur independently, but share the
same distribution parameters. In that case, the joint density of X
is fX (x; θ) =

∏N
i=1 f (xi;µ, σ), yielding

s(1)µ (x; θ) =
N∑
i=1

∂ ln f (xi;µ, σ)
∂µ

(12)

and

s(1)σ (x; θ) =
N∑
i=1

∂ ln f (xi;µ, σ)
∂σ

(13)

as the first-order score functions. In either case, the log-derivatives
of a marginal probability density function are required in deter-
mining the score functions. Table 1 presents explicit expressions
of log-derivatives for Gaussian and lognormal distributions.

2.3.3. Dependent distributions
When X is dependent, the derivation of score functions is

generally tedious, but not difficult. For example, when X is
Gaussian with its mean µ := Eθ[X] = {µ1, . . . , µN}T , covariance
matrix Σ := Eθ[(X − µ)(X − µ)T ] = [ρijσiσj], and density
fX (x; θ) =

[
(2π)N/2 |Σ|1/2

]−1
exp

[
−(x− µ)TΣ−1(x− µ)/2

]
,

whereµi and σi are themean and standard deviation, respectively,
of Xi and ρij is the correlation coefficient between Xi and Xj, the
first-order score functions are

s(1)µi (x; θ) = {0, . . . , 1, . . . , 0}Σ
−1(x− µ) (14)

and

s(1)σi (x; θ) = −
1
2
(x− µ)T

∂Σ−1

∂σi
(x− µ)−

1
2
∂ ln |Σ|
∂σi

. (15)

If the variables share the same mean µ, the same standard
deviation σ , and the same correlation coefficient ρ between any
two distinct variables, thenµ = µ1,Σ = σ 2[1− (1− δij)(1−ρ)],
leading to simplified score functions

s(1)µ (x; θ) = 1TΣ−1(x− µ) (16)
and

s(1)σ (x; θ) =
1
σ

[
(x− µ)TΣ−1(x− µ)− N

]
, (17)

where 1 = {1, . . . , 1}T and δij is the Kronecker delta. The
score functions for dependent non-Gaussian distributionswere not
considered in this work.
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3. Dimensional decomposition method

Consider a continuous, differentiable, real-valued, multivariate
performance function y(x) := y(x1, . . . , xN), which describes g(x),
a function that represents either yq(x) for statistical moment anal-
ysis or IΩF (x) for reliability analysis. Let c = {c1, . . . , cN}

T be a ref-
erence point of X and y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciS−k−1, xiS−k ,
ciS−k+1, . . . , cN) represent an (S − k)th dimensional component
function of y(x), where 1 ≤ S ≤ N and k = 0, . . . , S. Then, an
S-dimensional decomposition of y(x) is [13,14]

ŷS(x) :=
S∑
k=0

(−1)k
(
N − S + k− 1

k

)

×

N∑
i1,...,iS−k=1;i1<···<iS−k

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciS−k−1,

xiS−k , ciS−k+1, . . . , cN). (18)

Using a multivariate function theorem [13], it can be shown that
ŷS(x) in Eq. (18) consists of all terms of the Taylor series of y(x)
that have less than or equal to S variables. The expanded formof Eq.
(18), when compared with the Taylor expansion of y(x), indicates
that the residual error in the S-variate approximation includes
terms of dimensions S + 1 and higher. All higher-order S- and
lower-variate terms of y(x) are included in Eq. (18), which should
therefore generally provide a higher-order approximation of a
multivariate function than equations derived from first- or second-
order Taylor expansions. When S = 1 and 2, Eq. (18) degenerates
to the univariate and bivariate approximations, respectively.

3.1. Decomposition with numerical integration

When g(x) represents yq(x), it can also be decomposed
by a convergent sequence of lower-variate approximations, as
in Eq. (18). Therefore, for an independent random vector X ,
an S-variate approximation of the qth moment mq(θ) and its
sensitivity ∂mq(θ)/∂θi can be evaluated using standard numerical
quadratures, leading to

mq(θ) ∼=
S∑
k=0

(−1)k
(
N − S + k− 1

k

)

×

N∑
i1,...,iS−k=1;i1<···<iS−k

n∑
jS−k=1

· · ·

n∑
j1=1

w
(j1)
i1
· · ·w

(jS−k)
iS−k

× yq(c1, . . . , ci1−1, x
(j1)
i1
, ci1+1, . . . , ciS−k−1,

x(jS−k)iS−k
, ciS−k+1, . . . , cN) (19)

and

∂mq(θ)
∂θi

∼=

S∑
k=0

(−1)k
(
N − S + k− 1

k

)

×

N∑
i1,...,iS−k=1;i1<···<iS−k

n∑
jS−k=1

· · ·

n∑
j1=1

w
(j1)
i1
· · ·w

(jS−k)
iS−k

× yq(c1, . . . , ci1−1, x
(j1)
i1
, ci1+1, . . . , ciS−k−1,

x(jS−k)iS−k
, ciS−k+1, . . . , cN)s

(1)
θi
(x
(jt(i))
it(i)
; θ) (20)

for i = 1, . . . ,M , where x(jm)im is the jmth integration point of
the imth variable, w

(jm)
im is the associated weight that includes

the probability density, m = 1, . . . , S − k, 1 ≤ t(i) ≤ N
is an integer index such that θi is the distribution parameter of
the Xit(i) th variable, and n is the number of integration points.
The score function s(1)θi (xit(i); θ) is associated with the parameter
θi, which can be either the mean µi or the standard deviation
σi of the random variable Xit(i) . Since Xit(i) and Xit(j) for any
t(i) 6= t(j) are independent, s(1)θi (xit(i); θ) is a univariate function,
as already demonstrated by Eq. (10) or (11). If X comprises both
independent and identical random variables, the score function
s(1)θi (x; θ), according to Eq. (12) or (13), is a linear combination
of univariate functions, and hence, effectively remains univariate.
In the latter case, s(1)θi (xit(i); θ) in Eq. (20) should be replaced by

s(1)θi (x; θ), which is just another univariate function. Therefore, the
proposed equations, Eqs. (19) and (20), for independent and/or
identical distributions entail evaluating at most S-dimensional
integrals, which is substantially simpler and more efficient than
performing oneN-dimensional integration, particularlywhen S �
N . Hence, the computational effort in conducting moment and its
sensitivity analyses is significantly reduced using the dimensional
decomposition. When S = 1, Eqs. (19) and (20) degenerate
to the univariate approximation involving only one-dimensional
integration. When S = 2, Eqs. (19) and (20) become the bivariate
approximation entailing at most two-dimensional integration.
When X includes dependent random variables, the score

function s(1)θi (x; θ) is a multivariate function in general. Therefore,
the formulation of the S-variate approximation of the sensitivity
for dependent variables must include the S-variate decomposition
of the product yq(x)s(1)θi (x; θ). Nonetheless, it is possible to
generalize Eq. (20) for sensitivity analysis of a general stochastic
system with dependent random variables, but with an additional
layer of approximation from decomposition of the score functions.

3.2. Decomposition with simulation

The S-variate decomposition and associated numerical in-
tegration developed should not be applied to g(x) when it
represents IΩF (x), the indicator function from reliability anal-
ysis. This is because IΩF (x) is a discontinuous function, which
takes on discrete values of 0 and 1 in the sample space
Ω . In that case, consider the n-point Lagrange interpolation
of y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN) for
1 ≤ S ≤ N and k = 0, . . . , S, yielding

ŷS(X) ∼=
S∑
k=0

(−1)k
(
N − S + k− 1

k

)

×

N∑
i1,...,iS−k=1;i1<···<iS−k

n∑
jS−k=1

· · ·

n∑
j1=1

φj1(Xi1) · · ·φjS−k(XiS−k)

× y(c1, . . . , ci1−1, x
(j1)
i1
, ci1+1, . . . , ciS−k−1,

x(jS−k)iS−k
, ciS−k+1, . . . , cN), (21)

where x(jS−k)iS−k
is the jS−kth sample of XiS−k , φjS−k(XiS−k) is the ran-

dom Lagrange shape function, and y(c1, . . . , ci1−1, x
(j1)
i1
, ci1+1, . . . ,

ciS−k−1, x
(jS−k)
iS−k

, ciS−k+1, . . . , cN) is the associated deterministic co-
efficient. Eq. (21) provides a convergent sequence of lower-variate
approximations of y(X) if the Lagrange interpolations of compo-
nent functions are convergent. Since ŷS(x) represents an explicit
approximation of y(X), any probabilistic characteristic of y(X), in-
cluding its statistical moments and probability density function,
can be easily evaluated by performing Monte Carlo simulation on
Eq. (21).
Recall that ŷS(x) or {ŷ

(k)
S (x), k = 1, K} are S-variate

approximations of performance functions for component or
system reliability analysis. Based on these approximations, let
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Ω̂F ,S := {x : ŷS(x) < 0}, Ω̂F ,S := {x : ∪Kk=1 ŷ
(k)
S (x) < 0}, and

Ω̂F ,S := {x : ∩Kk=1 ŷ
(k)
S (x) < 0} define approximate failure sets in

reliability analyses of the component, series system, and parallel
system, respectively. Therefore, the Monte Carlo estimates of the
failure probability PF (θ) and its sensitivity ∂PF (θ)/∂θi, employing
S-variate approximations of the failure sets, are

PF (θ) ∼= Eθ

[
IΩ̂F ,S (X)

]
= lim
L→∞

1
L

L∑
l=1

IΩ̂F ,S (x
(l)) (22)

and
∂PF (θ)
∂θi

∼= Eθ

[
IΩ̂F ,S (X)s

(1)
θi
(X; θ)

]
= lim
L→∞

1
L

L∑
l=1

IΩ̂F ,S (x
(l))s(1)θi (x

(l)
; θ), (23)

respectively, where L is the sample size, x(l) is the lth realization of
X , and

IΩ̂F ,S (x
(l)) =

{
1, x(l) ∈ Ω̂F ,S
0, x(l) ∈ Ω \ Ω̂F ,S

(24)

is an approximate indicator function corresponding to S-variate
decompositions of performance functions. Both independent and
dependent random variables can be accounted for, provided that
their realization can be generated. Setting S = 1 or 2 in Eqs. (22)
and (23), the univariate or bivariate approximations of the failure
probability and its sensitivity can be invoked.
A Monte Carlo simulation on an S-variate approximation ŷS(X)

also leads to its qth moment

mq(θ) ∼= Eθ

[
ŷqS(X)

]
= lim
L→∞

1
L

L∑
l=1

ŷqS(x
(l)) (25)

and its sensitivity
∂mq(θ)
∂θi

∼= Eθ

[
ŷqS(X)s

(1)
θi
(X; θ)

]
= lim
L→∞

1
L

L∑
l=1

ŷqS(x
(l))s(1)θi (x

(l)
; θ), (26)

and therefore provides an alternative means to numerical integra-
tion.
The proposed methods involving univariate (S = 1) and

bivariate (S = 2) approximations, where an n-point numerical
integration yields sensitivity of moments or where an n-point
Lagrange interpolation and associated Monte Carlo simulation
produce sensitivity of moments or reliability, are defined as the
univariate and bivariate decomposition methods in this paper.

3.3. Computational effort

The univariate and bivariate decomposition methods for cal-
culating sensitivity of moment or reliability of a mechanical
system require evaluation of deterministic coefficients: y(c),
y(c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN), and y(c1, . . . , ci1−1, x

(j1)
i1
, ci1+1,

. . . , ci2−1, x
(j2)
i2
, ci2+1, . . . , cN) for i, i1, i2 = 1, . . . , n and j, j1, j2 =

1, . . . , n. Hence, the computational effort required by the decom-
position method can be viewed as numerically calculating a me-
chanical response y(x) at several deterministic inputs defined by
either integration points (for moments) or user-selected sample
points (for reliability). Therefore, the total cost for the univariate
decomposition entails amaximum of nN + 1 function evaluations.
For the bivariate decomposition, a maximum of N(N − 1)n2/2 +
nN+1 function evaluations are required. If the integration or sam-
ple points include a common point in each coordinate xi (see the
forthcoming example section), the numbers of function evalua-
tions reduce slightly.
4. Numerical examples

Four numerical examples involvingmathematical functions and
solid-mechanics/structural problems are presented to illustrate
the proposed decomposition methods, for obtaining first-order
sensitivity of the moment or reliability. Whenever possible, a
forward finite-difference method, with one percent perturbation
and the direct Monte Carlo simulation, was employed to evaluate
the accuracy and computational efficiency of the decomposition
methods. The sample sizes for the direct Monte Carlo simulation
and the embedded Monte Carlo simulation of the decomposition
method vary from 105 to 108, depending on the examples, but they
are identical for a specific problem. The score functions associated
with the probability distributions employed in these examples are
provided in Section 2.3.
The dimensional decomposition was formulated in the orig-

inal space (x space) of the random input. The reference point
c associated with the decomposition methods was fixed at
the mean input. A five-point Gauss–Hermite integration and
three- to five-point Lagrange interpolation schemes were se-
lected. For an n-point Lagrange interpolation, sample points
(c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN) and (c1, . . . , ci1−1, x

(j1)
i1
, ci1+1, . . . ,

ci2−1, x
(j2)
i2
, ci2+1, . . . , cN) for univariate and bivariate decomposi-

tions, respectively, were uniformly distributed, where x(l)k = ck −
(n−1)/2, ck−(n−3)/2, . . . , ck, . . . , ck+(n−3)/2, ck+(n−1)/2,
k = i, i1, i2, and l = j, j1, j2. For response or sensitivity analysis,
(n − 1)N + 1 and N(N − 1)(n − 1)2/2 + (n − 1)N + 1 function
evaluations are involved in the univariate and bivariate methods,
respectively.

4.1. Example 1: Moments

The first example involves sensitivity analysis of moments of a
quadratic performance function

y(X) = X21 + X
2
2 + X

2
3 + X1X2 + 2X2X3 + 4X3X1, (27)

where Xi ∼ N(µ, σ 2); i = 1, 2, 3 are three independent
and identically distributed Gaussian random variables with the
common mean µ and common standard deviation σ and θ =
{µ, σ }T . All finite-order moments of y(X) can be obtained exactly,
of which, the first three moments are: m1(µ, σ ) := Eθ [y(X)] =
3σ 2+10µ2,m2(µ, σ ) := Eθ

[
y2(X)

]
= 27σ 4+100µ4+198σ 2µ2,

andm3(µ, σ ) := Eθ

[
y3(X)

]
= 405σ 6+4914µ2σ 4+5040µ4σ 2+

1000µ6. Therefore, sensitivities of these moments with respect
to µ or σ can be obtained exactly to evaluate the accuracy of
the decomposition methods. When solving this problem by the
decomposition methods, both numerical integration (Eqs. (19)
and (20)) and simulation (Eqs. (25) and (26)) approaches were
employed. A five-point Gauss–Hermite integration and a three-
point Lagrange interpolation schemes were selected. The sample
size L = 106.
Table 2 lists the first three moments mq := Eθ [yq(X)] and

their first-order sensitivities ∂mq/∂µ and ∂mq/∂σ for q = 1, 2, 3,
when (1) µ = 1; σ = 0.3 and (2) µ = 1; σ = 0.6,
representing moderate and large input uncertainties, respectively.
The tabulated results came from the decomposition methods with
both approaches and the exact solution. The agreement between
the results of the decomposition methods using numerical
integration or simulation and the exact solution is excellent.
The results improve when switching from the univariate to the
bivariate method, as expected. Regardless of the method selected,
the magnitudes of moments and sensitivities for σ = 0.6,
compared with those for σ = 0.3, increase, as they should for
a larger standard deviation; but more importantly, a comparison
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Table 2
Moments of a quadratic function and sensitivities

Decomposition with integration Decomposition with simulation
Univariate Bivariate Univariate Bivariate Exact

(1) Moderate input uncertainty (µ = 1, σ = 0.3)

m1 10.27 10.27 10.27 10.27 10.27
m2 117.89 118.11 117.94 118.1 118.04
m3 1465.88 1495.94 1473.67 1495.18 1493.7
∂m1/∂µ 20 20 19.97 19.96 20
∂m2/∂µ 410.8 435.64 417.17 434.64 435.64
∂m3/∂µ 6595.89 7881.18 7286.03 7877.12 7894.01
∂m1/∂σ 1.8 1.8 1.78 1.77 1.8
∂m2/∂σ 119.77 122.69 120.41 122.42 121.72
∂m3/∂σ 3187.95 3590.83 3299.99 3589.11 3560.62

(2) Large input uncertainty (µ = 1, σ = 0.6)

m1 11.08 11.08 11.08 11.08 11.08
m2 172.45 175.95 173.17 175.8 174.78
m3 3012.46 3508.5 3143.39 3507.26 3470.15
∂m1/∂µ 20 20 19.96 19.96 20
∂m2/∂µ 443.2 542.56 471.05 541.0 542.56
∂m3/∂µ 8471.04 14326.02 11385.77 14548.95 14531.31
∂m1/∂σ 3.6 3.6 3.61 3.59 3.6
∂m2/∂σ 245.38 268.7 250.93 268.42 260.93
∂m3/∂σ 7375.36 10749.53 8291.72 10795.5 10482.65
with the exact solution demonstrates that the decomposition
methods, in particular the bivariatemethod, can indeed account for
large input uncertainties, a desirable property of any approximate
solution.

4.2. Example 2: Reliability

Consider two reliability problems: (1) a component reliability
problem with the performance function

y(X) =
1

1000+
100∑
i=1
Xi

−
1

1000+ 3
√
100

, (28)

where X ∼ N(µ,Σ) is a 100-dimensional, Gaussian random
vector with mean vector µ = µ{1, . . . , 1}T and covariance matrix
Σ = σ 2[1− (1− δij)(1− ρ)], and θ = {µ, σ }T ; and (2) a system
reliability problem with three performance functions:

y(1)(X) = X2 + 2X3 + X4 − 1.15,

y(2)(X) = X1 + X2 + X4 + X5 − 2.4, and

y(3)(X) = X1 + 2X3 + 2X4 + X5 − 3.55,

(29)

where Xi is an independent, lognormal random variablewithmean
µi and standard deviation σi, and θ = {µ1, σ1 . . . , µ5, σ5}

T .
The performance functions in Eq. (29) represent three rigid-
plastic failure mechanisms of a well-studied portal frame [16].
The objective of this example is to evaluate the accuracy of
the decomposition method in calculating the component failure
probability PF ,1 := Pθ [y(X) < 0] and the series-system failure
probability PF ,2 := Pθ [X ∈ ΩF ];ΩF := {x : ∪3k=1 y

(k)(x) < 0}, and
their respective sensitivities. The statistical properties of input are:
(1) µ = 0, σ = 1, and two distinct cases of ρ = 0 and ρ = 0.5 for
the component reliability problem; and (2) µi = 1 and σi = 0.25;
i = 1, . . . , 5 for the system reliability problem.
Since y for the component reliability problem is a multivariate

function, the univariate or bivariate decomposition for a finite
value of n, regardless how large, provides only an approximation.
Nonetheless, using only n = 3 and L = 106, the univariate
and bivariate estimates of PF ,1, ∂PF ,1/∂µ, and ∂PF ,1/∂σ are
listed in Table 3 for both (1) uncorrelated (ρ = 0) and
(2) correlated (ρ = 0.5) input. The exact solutions are
Table 3
Component failure probability and sensitivities for µ = 0, σ = 1

Univariate Bivariate Exact

(1) Uncorrelated input (ρ = 0)

PF ,1 1.72× 10−3 1.34× 10−3 1.35× 10−3

∂PF ,1/∂µ 5.52× 10−2 4.41× 10−2 4.43× 10−2

∂PF ,1/∂σ 1.55× 10−2 1.29× 10−2 1.33× 10−2

(2) Correlated input (ρ = 0.5)

PF ,1 0.3414 0.3369 0.3365
∂PF ,1/∂µ 0.5174 0.5148 0.5135
∂PF ,1/∂σ 0.1440 0.1482 0.1541

PF ,1 = Φ(−β), ∂PF ,1/∂µ = φ(−β)
√
N/σ
√
1+ (N − 1)ρ, and

∂PF ,1/∂σ = φ(−β)
(
3−
√
Nµ
)
/σ 2
√
1+ (N − 1)ρ, where β =(

3−
√
Nµ
)
/σ
√
1+ (N − 1)ρ, φ(u) =

(
1/
√
2π
)
exp

(
−u2/2

)
,

and Φ(u) =
∫ u
−∞

φ(ξ)dξ . Compared with the exact results, also
listed in Table 3, both versions of the decomposition method
are satisfactory for solving reliability problems involving both
independent and dependent Gaussian variables. However, the
bivariate approximation provides a highly accurate solution for
this high-dimensional, nonlinear problem.
Table 4 lists the system failure probability PF ,2, which is

calculated by the proposed univariate decomposition method
involving at most 11 (n = 3, N = 5) evaluations of each
performance function and the direct Monte Carlo simulation
involving 108 samples. Both methods provide an identical result:
PF ,2 = 5.54 × 10−5. This is possible, since each performance
function in Eq. (29) is a univariate function, and is exactly
represented by a three-point Lagrange interpolation, leading to
the univariate approximation Ω̂F ,1 of the failure set that is the
same as the exact failure set ΩF . Therefore, there is no need
to pursue the bivariate approximation. It is worth noting that a
value of n as large as nine was required to produce a satisfactory
univariate approximation of the failure set in the Gaussian space
(u space), where the transformed performance functions become
highly nonlinear [14]. Therefore, a higher-order interpolation
can be avoided by decomposition in the original space in this
problem.
The advantage of the univariate decomposition method in

the x space extends to sensitivity analysis, as essentially the
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Fig. 1. A through-wall-cracked cylinder under four-point bending; (a) geometry and loads; (b) cracked cross-section; (c) finite-element discretization.
Table 4
System failure probability and sensitivities for µi = 1, σi = 0.25

Univariate Direct MCS/FDa

PF ,2 5.54× 10−5 5.54× 10−5

∂PF ,2/∂µ1 −5.9× 10−4 −5.94× 10−4

∂PF ,2/∂µ2 −3.23× 10−4 −3.18× 10−4

∂PF ,2/∂µ3 −5.14× 10−4 −4.68× 10−4

∂PF ,2/∂µ4 −8.32× 10−4 −7.82× 10−4

∂PF ,2/∂µ5 −5.91× 10−4 −5.92× 10−4

∂PF ,2/∂σ1 7.34× 10−4 7.44× 10−4

∂PF ,2/∂σ2 4.39× 10−4 4.48× 10−4

∂PF ,2/∂σ3 7.98× 10−4 8.2× 10−4

∂PF ,2/∂σ4 1.22× 10−3 1.31× 10−3

∂PF ,2/∂σ5 7.27× 10−4 7.4× 10−4

a MCS/FD=Monte Carlo simulation/finite-difference.

same effort delivers the sensitivities ∂PF ,2/∂µi and ∂PF ,2/∂σi for
i = 1, . . . , 5, which are also presented in Table 4. Alternative
sensitivity estimates from the finite-difference method involving
108 samples for each direct simulation run were also developed,
and can be found in the last column of Table 4. The agreement
between the results of the univariate method and the finite-
difference method is very good. It is worth noting that the finite-
difference method typically gives biased sensitivity estimates,
where slight fluctuations in the results are expected due to a finite
variance of the estimator.
4.3. Example 3: Nonlinear fracture reliability

Consider a circumferential, through-wall-cracked (TWC), non-
linearly elastic cylinder, which is subjected to a four-point bend-
ing, as shown in Fig. 1(a). The cylinder has a mid-thickness radius
R = 50.8 mm, a wall thickness t = 5.08 mm, and a symmetri-
cally centered through-wall crack with the normalized crack an-
gle θ/π = 1/8. The outer span Lo = 1.5 m and the inner span
Li = 0.6 m. The cross-sectional geometry at the cracked section
is shown in Fig. 1(b). The cylinder is composed of an ASTM Type
304 stainless steel, which follows the Ramberg–Osgood constitu-
tive equation [17]

εij =
1+ ν
E
Sij +

1− 2ν
3E

σkkδij +
3
2E
α

(
σe

σ0

)m−1
Sij, (30)

where σij and εij are stress and strain components, respectively, E
is the Young’s modulus, ν is the Poisson’s ratio, σ0 is a reference
stress, α is a dimensionless material coefficient, m is a strain
hardening exponent, δij is the Kronecker delta, Sij := σij − σkkδij/3
is the deviatoric stress, and σe :=

√
3SijSij/2 is the von Mises

equivalent stress. Table 5 lists the means, standard deviations, and
probability distributions of tensile parameters (E, α,m), four-point
bending load (F ), and fracture toughness (JIc). All random variables
are statistically independent, and θ comprises all ten second-
moment statistics of the random input. Also, σ0 = 154.78 MPa
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Table 5
Statistical properties of random input for a through-wall-cracked cylinder

Random variable Mean Standard deviation Probability distribution

Elastic modulus (E), GPa 182.7 18.27 Gaussian
Ramberg–Osgood coefficient (α) 8.073 3.544 Lognormal
Ramberg–Osgood exponent (m) 3.8 0.5548 Lognormal
Four-point bending load (F ), kN 28 2.8 Gaussian
Initiation toughness (JIc ), kJ/m2 1242.6 584.02 Lognormal
Fig. 2. A ten-bar truss; a boxed or unboxed number indicates a member or node
number.

and ν = 0.3. A finite-element mesh of the quarter-cylinder model,
consisting of 236 elements and 1805 nodes, is shown in Fig. 1(c).
Twenty-noded, isoparametric, solid elements from the ABAQUS
library [18] were used with focused singular elements at the crack
tip. This type of TWC cylinder is frequently analyzed for fracture
evaluation of pressure boundary integrity in the nuclear industry.
For nonlinear fracture, the J-integral is a useful crack-driving

force that uniquely characterizes the asymptotic crack-tip stress
and strain fields [17]. Therefore, a fracture criterion, where
the J exceeds the fracture toughness of the material, can be
used to calculate the probability of fracture initiation: PF :=
Pθ [J(X) > JIc(X)], in which the thickness-averaged J depends
only on the first four random variables of X defined in Table 5.
The bivariate decomposition method, using n = 5, L = 107,
and only 113 ABAQUS-aided finite-element analyses, predicts a
fracture-initiation probability of 5.91× 10−4 — a value reasonably
close to 5 × 10−4, obtained from a J-estimation-based Monte
Carlo simulation [19,20]. The J-estimation-based analysis entails
response surface approximation from a small, but fixed number
of deterministic finite-element analyses, leading to an explicit
expression of the J-integral with respect to the random input, and
then conducting Monte Carlo simulation on the explicit functional
form. Due to expensive, nonlinear, finite-element analysis, the
direct Monte Carlo simulation was not feasible to verify the low
probability in this example.
The bivariate method also predicts the sensitivities of the

fracture-initiation probability with respect to the means of E, α,
m, F , and JIc , which after being scaled [11] by respective standard
deviations, are−2.45×10−4, 5.88×10−4, 1.11×10−4, 1.84×10−2,
and −2.81 × 10−3, respectively. With respect to the standard
deviations, the scaled sensitivities are 1.33 × 10−4, 1.22 × 10−3,
1.42 × 10−5, 3.19 × 10−2, and 3.01 × 10−3, respectively. A
comparison of scaled sensitivities with respect to means reveals
that the load and fracture toughness of the material are the most
important input variables. Based on the scaled sensitivities with
respect to standard deviations, the uncertainties in the load and
fracture toughness properties are more significant than those in
others.
4.4. Example 4: Reliability-based design optimization

The final example demonstrates how sensitivity analysis can be
exploited for the optimal design of mechanical systems. A linear-
elastic, ten-bar truss, shown in Fig. 2, is simply supported at nodes
1 and 4, and is subjected to two concentrated loads of 105 lb at
nodes 2 and 3. The truss material is made of an aluminum alloy
with the Young’s modulus E = 107 psi. The random input is X =
{X1, . . . , X10}T ∈ R10, where Xi denotes the cross-sectional area of
the ith bar. The randomvariables are independent and lognormally
distributed with means µi, i = 1, . . . , 10, each of which
has a ten percent coefficient of variation. From a linear-elastic
finite-element analysis, themaximumvertical displacement v3(X)
occurs at node 3, where a permissible displacement is limited to
14 in. The trusswas designed byminimizing itsmean volume given
that the displacement-based failure probability is no greater than
Φ(−2.5) = 0.00621. The reliability-based design optimization is
formulated to

min h0(θ) = 360Eθ[X1 + X2 + X3 + X4 + X5 + X8
+
√
2 (X6 + X7 + X9 + X10)]

subject to h1(θ) := Pθ [14− v3 (X) < 0] ≤ Φ(−2.5)

1 in.2 ≤ θi ≤ 10 in.2; i = 1, . . . , 10, (31)

where the design vector is θ = {µ1, . . . , µ10}
T
∈ R10. Since the

state function is linear in X , h0(θ) = 360[µ1 + µ2 + µ3 + µ4 +
µ5 + µ8 +

√
2 (µ6 + µ7 + µ9 + µ10)]. The initial design point

is θ0 = {3, . . . , 3}T in.2, which corresponds to the initial volume
h0(θ0) = 12, 589 in.3. For the decomposition methods, n = 5 and
L = 105.
A modified algorithm of feasible directions [21] was employed

to solve this optimization problem, where the failure probability
and its sensitivities with respect to the mean cross-sectional
areas were supplied by decomposition methods at each design
iteration. Fig. 3(a) presents the optimization history, which reveals
convergence in nine iterations by both univariate and bivariate
methods. The optimal volumes [h0(θ∗)] achieved by the univariate
and bivariate methods are 9707 in.3 and 9691 in.3, respectively.
The optimal solutions, listed in Table 6, suggest that redistribution
of cross-sectional areas can lead to not only lower volumes of
the truss, but also lower failure probabilities. Fig. 3(b) tracks the
evolution of the failure probability by each decompositionmethod
during the optimization process.

5. Limitation

The score functions employed in the decompositionmethod de-
veloped here are applicable to sensitivity analysis of a mechanical
system, where the performance function g does not depend on the
parameter vector θ, and θ solely describes the probability density
fX (x; θ). Many sensitivity analyses of mechanical systems, includ-
ing all numerical examples presented in this paper, fall under this
class of problems, which is the focus of the current work. How-
ever, there are also exceptions that require delving into broader
classes of problems. For instance, consider a probabilistic response
h(θ) = Eθ [g(X; θ)] :=

∫
RN g(x; θ)fX (x; θ)dx under a general set-

ting, where g and fX both depend on θ ∈ RM and the sensitivity



286 S. Rahman / Probabilistic Engineering Mechanics 24 (2009) 278–287
Fig. 3. Optimization histories; (a) objective function; (b) probability of failure.

Table 6
Optimization results of a ten-bar truss

Initial design Final design
Univariate Bivariate

µ1 , in.2 3 4.863 4.688
µ2 , in.2 3 1.695 1.971
µ3 , in.2 3 1 1
µ4 , in.2 3 1 1
µ5 , in.2 3 4.688 4.619
µ6 , in.2 3 2.614 2.754
µ7 , in.2 3 2.796 2.372
µ8 , in.2 3 1 1
µ9 , in.2 3 1 1
µ10 , in.2 3 2.584 2.814
PF 0.096/0.098a 0.00639 0.00628
Volume, in.3 12,589 9707 9691
a 0.096 by univariate; 0.098 by bivariate.

∂h(θ)/∂θi is sought. Under regularity conditions similar to those
presented in Section 2.2 and following the same argument, the
corresponding score functions can be derived, but now they will
involve the partial derivative ∂g(X; θ)/∂θi that must exist and be
finite. In addition, the multivariate decomposition presented in
Section 3 needs to be developed for not only the performance func-
tion, but also the more complicated score functions. Such develop-
ments are not trivial, and extensions of the decompositionmethod
to solve this rather generalized class of problems are left as future
efforts.
6. Conclusions and outlook

A new class of computational methods, referred to as di-
mensional decomposition methods, was developed for calculating
stochastic sensitivities ofmechanical systemswith respect to prob-
ability distribution parameters. Themethods are based on a hierar-
chical decomposition of a multivariate response function in terms
of variables with increasing dimensions and score functions as-
sociated with the probability distribution of a random input. The
decomposition permits (1) univariate and bivariate approxima-
tions of stochastic response and sensitivity, (2) lower-dimensional
numerical integrations for sensitivity of statistical moments, and
(3) lower-variate Lagrange interpolations and Monte Carlo simu-
lation for sensitivity of reliability or moments. Both the probabilis-
tic response and its sensitivities can be estimated from a single
stochastic analysis, without requiring performance function gradi-
ents. Thesemethods canhelp solve both component and system re-
liability problems. The effort in obtaining probabilistic sensitivities
can be viewed as calculating the response at a selected determin-
istic input, defined by either integration points or sample points.
Therefore, themethods can be easily adapted for solving stochastic
problems involving third-party, commercial finite-element codes.
Univariate and bivariate decomposition methods were em-

ployed to solve four numerical problems, where the performance
functions are linear or nonlinear, include Gaussian and/or non-
Gaussian random variables, and are described by simple math-
ematical functions or mechanical responses from finite-element
analysis. The results indicate that the decomposition methods de-
veloped, in particular the bivariate version, provide very accu-
rate estimates of sensitivities of statistical moments or reliabil-
ity. The computational effort by the univariate method varies lin-
early with respect to the number of random variables or the num-
ber of integration or interpolation points, and therefore the uni-
variate method is economic. In contrast, the bivariate method,
which generally outperforms the univariate method, demands a
quadratic cost scaling, making it alsomore expensive than the uni-
variate method. Nonetheless, both decomposition methods are far
less expensive than the finite-difference method or the existing
score functionmethod entailing directMonte Carlo simulation. The
last example highlights the usefulness of the decompositionmeth-
ods in generating sensitivities that lead to reliability-based design
optimization of mechanical systems.
Compared with the existing direct differentiation method,

which can calculate sensitivities with respect to both distribu-
tion and performance function parameters, the decomposition
methods in their current form are limited to sensitivity analysis
with respect to the distribution parameters only. Therefore, future
effort in extending these decomposition methods to account for
the performance function parameters should be undertaken.
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