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A B S T R A C T

This article highlights new spline-empowered computational methods for solving robust design optimization
(RDO) problems in complex mechanical systems. The methods are predicated on a spline dimensional
decomposition (SDD) of a high-dimensional, discontinuous, or nonsmooth stochastic response for statistical
moment analysis, a novel fusion of SDD and score functions for calculating the second-moment sensitivities
with respect to the design variables, and standard gradient-based optimization algorithms. New closed-form
formulae are derived for the design sensitivities that are concurrently determined along with the moments.
The methods depend on how the statistical moment and sensitivity analyses are engaged with an optimization
algorithm, engendering direct and multi-point single-step design processes. Numerical results reveal that the
proposed methods deliver accurate and computationally efficient optimal solutions to RDO problems, including
an industrial-scale shape design of a robotic gripper jaw.
1. Introduction

Robust design optimization (RDO) is an outstanding paragon for
esigning an engineering system under uncertainty [1]. Whether or not
ncertainty stems from loads, material, the manufacturing process, or
perational environments, RDO explicitly treats such randomness by
ropagating input uncertainties to the objective and constraint func-
ions, ultimately leading to insensitive designs [2]. Thus, RDO can yield
higher-quality and more economical design rather than a conservative
esign optimization employing heuristically derived safety factors. The
ccomplishments of RDO have been well reported in various real-
orld applications, such as those found in the design of aerospace,
utomotive, civil, and electronic structures, systems, or devices [2–11].
More often than not, in engineering design problems, the objective

nd/or constraint functions are composed of expensive-to-run func-
ions, such as those stemming from finite element analysis (FEA).
ence, numerous studies have been directed towards employing a
urrogate model, for instance, Taylor series or perturbation expan-
ion [12], the point estimate method [13], polynomial chaos expan-
ion (PCE) [2], the tensor-product quadrature rule [14], dimension-
eduction methods [14], the polynomial dimensional decomposition
PDD) method [9], Kriging or Gaussian process regression [15], and
rtificial neural network [10]. While the preceding methods, including
any others not listed here for brevity, have been successful in mitigat-
ng the extensive computational cost over crude Monte Carlo simulation
MCS), these methods mostly presume a globally continuous, smooth
utput response over the entire domain of input random variables. As
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a result, such surrogate methods can be easily degraded or are not
suitable for dealing with locally significant changes, including disconti-
nuity or nonsmoothness, in stochastic responses of interest. Therefore,
one should approach employing smoothly connected piecewise polyno-
mials, referred to as splines, with low expansion orders through smaller
subdomains.

Most recently, a spline dimensional decomposition (SDD), composed
of dimension-wise, orthonormalized basis splines (B-splines), has been
introduced in papers [16,17]. This method has been proven to be
effective and computationally efficient in treating locally pronounced,
high-dimensional, highly nonlinear, or nonsmooth responses. Conse-
quently, a low-variate and/or low-degree SDD approximation with an
adequate subinterval size is capable of delivering a more accurate
estimate of the response second-moment than the higher-order ones of
the existing popular methods, such as PCE or PDD. However, the SDD
method is limited to forward uncertainty quantification (UQ) analysis.
Therefore, this study focuses on solving RDO problems with SDD by
developing new methods to address three challenges: (1) how to syn-
chronously determine design sensitivities with statistical moments of
output functions for a given design with no additional computational
cost, (2) how to avoid repeated calculations of statistical moments and
design sensitivities to the extent possible during design iterations, and
(3) how to remarkably lessen the number of function evaluations or
FEA, in conjunction with standard gradient-based optimization algo-
rithms for problems with large design spaces. Only by addressing all
three challenges successfully will the SDD method be further equipped
to solve RDO problems in real-life applications.
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The ultimate goal of this work is to create a solid theoretical
oundation with a robust computational algorithm for UQ analysis
nd design optimization of complex engineering systems with high-
imensional, discontinuous, or nonsmooth stochastic responses. The
ovel design method to meet the goal is based on (1) SDD for determin-
ng the second-moment statistics of a high-dimensional, discontinuous,
r nonsmooth stochastic response; (2) a novel fusion of SDD and score
unctions for calculating the second-moment sensitivities with respect
o design variables; and (3) standard gradient-based optimization algo-
ithms, constructing direct and multi-point single-step design processes.
herefore, the paper is organized as follows. In Section 2, mathematical
tatements of a general RDO problem are presented. Section 3 provides
brief description of SDD. In Section 4, new closed-form formulae for
esign sensitivities of statistical moments are disclosed, and in Sec-
ion 5, new RDO methods are introduced. In Section 6, three numerical
xamples ranging from simple mathematical functions to an industrial-
cale engineering application prove the efficacy of new RDO methods.
ecessary future works are discussed in Section 7, and finally, the
onclusions are presented in Section 8.

. Robust design optimization

Let N, N0, R, and R+
0 be the sets of positive integer, non-negative in-

eger, real number, and non-negative real number, respectively. Given
∈ N, denote by R𝑁 the 𝑁-dimensional vector space of real numbers,

nd denote by [𝑎𝑘, 𝑏𝑘] a finite closed interval, where 𝑎𝑘, 𝑏𝑘 ∈ R and
𝑘 > 𝑎𝑘. Then, A𝑁 = ×𝑁𝑘=1[𝑎𝑘, 𝑏𝑘] is a closed bounded domain of R

𝑁 .
Consider a measurable space (𝛺𝐝,𝐝), where 𝛺𝐝 is a sample space

nd 𝐝 is a 𝜎-field on𝛺𝐝. Defined over (𝛺𝐝,𝐝), let {P𝐝 ∶ 𝐝 → [0, 1]} be
family of probability measures where, given 𝑀 ∈ N and 𝑁 ∈ N, 𝐝 =
𝑑1,… , 𝑑𝑀 )𝑇 ∈  is an 𝑀-dimensional design vector with non-empty
losed set  ⊂ R𝑀 . Here, 𝐗 ∶= (𝑋1,… , 𝑋𝑁 )𝑇 ∶ (𝛺𝐝,𝐝) → (A𝑁 ,𝑁 )
s an A𝑁 -valued input random vector with 𝑁 representing the Borel
-field on A𝑁 , specifying the statistical uncertainties or randomness in
oads, material properties, or geometry of complex mechanical systems.
he probability law of 𝐗 is completely defined by a family of the joint
robability density functions (PDFs)

{

𝑓𝐗(𝐱;𝐝) ∶ 𝐱 ∈ R𝑁 , 𝐝 ∈ 
}

that
re related to probability measures {P𝐝 ∶ 𝐝 ∈ }, so that the probability
riple (𝛺𝐝,𝐝,P𝐝) of 𝐗 depends on 𝐝. In theory, a design variable 𝑑𝑙 can
be any distribution parameter or a statistic; however, here, 𝑑𝑙 is limited
to the mean of random variable 𝑋𝑙. Indeed, the design parameters as
mean values are commonly applied in most engineering problems.

2.1. Problem definition

Let 𝑦𝑎(𝐗) ∶= 𝑦𝑎(𝑋1,… , 𝑋𝑁 ), 𝑎 = 0, 1,… , 𝐾, represent a collection
of 𝐾 + 1 real-valued, square-integrable, measurable transformations on
(𝛺𝐝,𝐝), describing output functions of a complex system. They are
also referred to as response or performance functions in applications.
It is assumed that 𝑦𝑎 ∶ (A𝑁 ,𝑁 ) → (R,) is not an explicit function
of 𝐝, but 𝑦𝑙 implicitly depends on 𝐝 via the probability law of 𝐗.
This is not a major limitation, as most, if not all, RDO problems
involve means of random variables as design variables. In addition, let
 = ×𝑀𝑙=1[𝑑𝑙,𝐿, 𝑑𝑙,𝑅] be a closed rectangular subdomain of R

𝑀 . From a
undamental viewpoint, RDO is performed by minimizing the mean and
tandard deviation of the performance individually. It usually leads to
bi-objective optimization problem, asking one to

min
𝐝∈⊆R𝑀

{E𝐝[𝑦0(𝐗)],
√

var𝐝[𝑦0(𝐗)]},

subject to 𝛼𝑎
√

var𝐝[𝑦𝑎(𝐗)] − E𝐝[𝑦𝑎(𝐗)] ≤ 0,
𝑎 = 1,… , 𝐾, 1 ≤ 𝐾 <∞

𝑑𝑙,𝐿 ≤ 𝑑𝑙 ≤ 𝑑𝑙,𝑈 , 𝑙 = 1,… ,𝑀,

where

E𝐝[𝑦𝑎(𝐗)] ∶= 𝑦𝑎(𝐱)𝑓𝐗(𝐱;𝐝)𝑑𝐱
∫A𝑁

2

is the mean of 𝑦𝑎(𝐗) and

var𝐝[𝑦𝑎(𝐱)] ∶= E𝐝
[

𝑦𝑎(𝐗) − E𝐝[𝑦𝑎(𝐗)]
]2

s the variance of 𝑦𝑎(𝐗). Here, E𝐝 and var𝐝 are the expectation and vari-
nce operators, respectively, with respect to the probability measure
𝐝 or 𝑓𝐗(𝐱;𝐝)𝑑𝐱; 𝛼𝑎 ∈ R+

0 , 𝑎 = 1,… , 𝐾, are non-negative, real-valued
constants associated with the probabilities of constraint satisfaction;
and 𝑑𝑙,𝐿 and 𝑑𝑙,𝑈 are the lower and upper bounds of the 𝑙th design
ariable 𝑑𝑙.
In many practical cases, the bi-objective optimization problem
ay demand to make optimal decisions in the presence of trade-
ffs between two clashing single-objective functions E𝐝

[

𝑦0(𝐗)
]

and
var𝐝

[

𝑦0(𝐗)
]

. In such a case, there exist an infinite number of optimal
solutions, commonly named Pareto optimal solutions, where none of
the single-objective function values can be enhanced without under-
mining the other. To obtain either multiple Pareto optimal solutions
or a single solution that satisfies the preference of a decision-maker,
the commonly used scalarization approach converts the bi-objective
optimization problem into a single-objective optimization problem.
As representative scalarization approaches, there exist the weighted-
sum approach [18], the 𝜖-constraint approach [19], the weighted-
Tchebycheff approach [20,21], goal programming [22], the lexico-
graphic approach [23], and others [24]. In this study, the weighted-
sum approach is mainly used, but there is no limit on the choice
of scalarization approaches in solving the bi-objective optimization
problem.

2.2. Proposed formulations

Two mathematical formulations of RDO—one expressed with re-
spect to the original input random variables and the other described
with respect to transformed input random variables—are presented
in the remainder of this section. Although the two formulations are
equivalent to each other, having identical optimal solutions, the latter
(alternative formulation) is more useful than the former (original for-
mulation) in light of SDD approximations, as will be discussed in the
forthcoming sections.

2.2.1. Original formulation
The mathematical formulation for RDO in most engineering prob-

lems comprising an objective function 𝑐0 ∶  → R and constraint
functions 𝑐𝑎 ∶  → R, where 𝑎 = 1,… , 𝐾 and 1 ≤ 𝐾 < ∞, calls for
one to [3,4,9]

min
𝐝∈⊆R𝑀

𝑐0(𝐝) ∶= 𝐺
(

E𝐝[𝑦0(𝐗)],
√

var𝐝[𝑦0(𝐗)]
)

,

subject to 𝑐𝑎(𝐝) ∶= 𝛼𝑎
√

var𝐝[𝑦𝑎(𝐗)] − E𝐝[𝑦𝑎(𝐗)] ≤ 0,
𝑎 = 1,… , 𝐾,
𝑑𝑙,𝐿 ≤ 𝑑𝑙 ≤ 𝑑𝑙,𝑈 , 𝑙 = 1,… ,𝑀,

(1)

here 𝐺(⋅, ⋅) is an arbitrary function associated with any scalarization
pproach mentioned before. As a choice of scalarization, the weighted
um approach gives a certain weight to the distinct single-objective
unctions, say, E𝐝[𝑦0(𝐗)] and

√

var𝐝[𝑦0(𝐗)], and then transforms them
into a single-objective function, as follows:

𝐺
(

E𝐝[𝑦0(𝐗)],
√

var𝐝[𝑦0(𝐗)]
)

∶= 𝑤1
E𝐝[𝑦0(𝐗)]

𝜇∗0
+𝑤2

√

var𝐝[𝑦0(𝐗)]
𝜎∗0

,

where 𝑤1 ∈ R+
0 and 𝑤2 ∈ R+

0 are two non-negative, real-valued weights
such that 𝑤1 + 𝑤2 = 1; 𝜇∗0 ∈ R ⧵ {0} and 𝜎∗0 ∈ R+

0 ⧵ {0} are two
non-zero, real-valued scaling factors. In the weighted-sum approach,
equal weights are usually chosen, but they can be distinct or biased,
depending on the objective set forth by a designer. In contrast, the
scaling factors are relatively arbitrary but usually chosen to normalize
the objective functions for a better condition to obtain an optimal
solution.
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2.2.2. Alternative formulation
Since the design variables are the means of part or all of the

input random variables, a linear transformation, such as some shifting
or scaling of random variables, creates an alternative formulation of
RDO. Let (𝑋𝑘1 ,… , 𝑋𝑘𝑀 )⊺ be an 𝑀-dimensional sub-vector of 𝐗 ∶=
(𝑋1,… , 𝑋𝑁 )⊺, 1 ≤ 𝑘1 ≤ ⋯ ≤ 𝑘𝑀 ≤ 𝑁 , 𝑀 ≤ 𝑁 , such that the means of
its components are 𝑀 design variables, say, E𝐝[𝑋𝑖𝑘 ] = 𝑑𝑘, 𝑘 = 1,… ,𝑀 .

Shifting. Let 𝐙 ∶= (𝑍1,… , 𝑍𝑁 )⊺ be an 𝑁-dimensional vector of
transformed random variables obtained by shifting 𝐗 as

𝐙 = 𝐗 + 𝐫, (2)

where 𝐫 ∶= (𝑟1,… , 𝑟𝑁 )⊺ is an 𝑁-dimensional vector of deterministic
variables. Define 𝑔𝑘 ∶= E𝐝[𝑍𝑘] as the mean of the 𝑘th component of 𝐙.
Denote by (𝑍𝑘1 ,… , 𝑍𝑘𝑀 )⊺ a subvector of 𝐙, where the 𝑘𝑙th transformed
random variable 𝑍𝑘𝑙 corresponds to the 𝑘𝑙th original random variable
𝑋𝑘𝑙 . From the shifting transformation, the mean of 𝑍𝑘𝑙 is

E𝐝[𝑍𝑘𝑙 ] = 𝑑𝑙 + 𝑟𝑘𝑙 = 𝑔𝑙 (3)

and the PDF of 𝐙 is

𝑓𝐙(𝐳; 𝐠) = |𝐉|𝑓𝐗(𝐱;𝐝) = 𝑓𝐗(𝐱;𝐝) = 𝑓𝐗(𝐳 − 𝐫;𝐝),

supported on Ā𝑁 ⊆ R𝑁 (say). Here, the absolute value of the de-
terminant of the Jacobian matrix is |𝐉| = |det[𝜕𝐱∕𝜕𝐳]| = 1 and the
𝑀-dimensional vector 𝐠 ∶= (𝑔1,… , 𝑔𝑀 )⊺ has its 𝑙th component 𝑔𝑙 =
E𝐝[𝑍𝑘𝑙 ], 𝑙 = 1,… ,𝑀 .

Scaling. Let 𝐙 ∶= (𝑍1,… , 𝑍𝑁 )⊺ be an 𝑁-dimensional vector of
transformed random variables obtained by scaling 𝐗 as

𝐙 = diag[𝑟1,… , 𝑟𝑁 ]𝐗, (4)

where 𝐫 ∶= (𝑟1,… , 𝑟𝑁 )⊺ is an 𝑁-dimensional vector of deterministic
variables. Define 𝑔𝑘 ∶= E𝐝[𝑍𝑘] as the mean of the 𝑘th component of 𝐙.
Denote by (𝑍𝑘1 ,… , 𝑍𝑘𝑀 )⊺ a subvector of 𝐙, where the 𝑘𝑙th transformed
random variable 𝑍𝑘𝑙 corresponds to the 𝑘𝑙th original random variable
𝑋𝑘𝑙 . From the scaling transformation, the mean of 𝑍𝑘𝑙 is

E𝐝[𝑍𝑘𝑙 ] = 𝑑𝑙𝑟𝑘𝑙 = 𝑔𝑙 (5)

and the PDF of 𝐙 is

𝑓𝐙(𝐳; 𝐠) = |𝐉| 𝑓𝐗(𝐱;𝐝) =
|

|

|

|

1
𝑟1 … 𝑟𝑁

|

|

|

|

𝑓𝐗(𝐱;𝐝)

=
|

|

|

|

1
𝑟1 … 𝑟𝑁

|

|

|

|

𝑓𝐗(diag[1∕𝑟1,… , 1∕𝑟𝑁 ]𝐳;𝐝),

supported on Ā𝑁 ⊆ R𝑁 (say). Here, the absolute value of the deter-
minant of the Jacobian matrix is |𝐉| = |det[𝜕𝐱∕𝜕𝐳]| = |

|

1∕(𝑟1 … 𝑟𝑁 )|
|

and the 𝑀-dimensional vector 𝐠 ∶= (𝑔1,… , 𝑔𝑀 )⊺ has its 𝑙th component
𝑔𝑙 = E𝐝[𝑍𝑘𝑙 ], 𝑙 = 1,… ,𝑀 .

For each 𝑎 = 1, 2,… , 𝐾, define ℎ𝑎(𝐙; 𝐫) ∶= 𝑦𝑎(𝐗) to be the generic
utput function of the transformed random variables 𝐙, where the re-
ation between 𝐙 and 𝐗 is obtained by either shifting transformation in
2) or scaling transformation in (4). In both cases, the RDO formulation
calls for one to

min
𝐝∈⊆R𝑀

𝑐0(𝐝) ∶= 𝐺
(

E𝐠(𝐝)[ℎ0(𝐙; 𝐫)],
√

var𝐠(𝐝)[ℎ0(𝐙; 𝐫)]
)

,

subject to 𝑐𝑎(𝐝) ∶= 𝛼𝑎
√

var𝐠(𝐝)[ℎ𝑎(𝐙; 𝐫)]
− E𝐠(𝐝)[ℎ𝑎(𝐙; 𝐫)] ≤ 0,

𝑎 = 1,… , 𝐾,
𝑑𝑙,𝐿 ≤ 𝑑𝑙 ≤ 𝑑𝑙,𝑈 , 𝑙 = 1,… ,𝑀,

(6)

here

𝐠(𝐝)[ℎ𝑎(𝐙; 𝐫)] ∶= ∫Ā𝑁
ℎ𝑎(𝐳; 𝐫)𝑓𝐙(𝐳; 𝐠)𝑑𝐳

s the mean of ℎ𝑎(𝐙; 𝐫) and

ar [ℎ (𝐙; 𝐫)] ∶= E
[

ℎ (𝐙; 𝐫) − E [ℎ (𝐙; 𝐫)]
]2
𝐠(𝐝) 𝑎 𝐠(𝐝) 𝑎 𝐠(𝐝) 𝑎

3

s the variance of ℎ𝑎(𝐙; 𝐫). Here, E𝐠(𝐝) and var𝐠(𝐝) are the expectation and
ariance operators, respectively, with respect to the probability mea-
ure 𝑓𝐙(𝐳; 𝐠)𝑑𝐳, which depends on 𝐝. For brevity, the subscript ‘‘𝐠(𝐝)"
f the expectation operator will be denoted by ‘‘𝐠" in the remainder of
he paper.
The alternative formulation in (6) is only a rephrasing of (1) in

erms of the transformed input random variables 𝐙. As a result, the
robability measure of 𝐙 can be unchanged during design iterations,
voiding the need to recalculate measure-associated quantities. For
he rest of the paper, RDO problems will be described with respect
o the alternative formulation. In addition, 𝐗 or 𝐙 and 𝑦𝑙 or ℎ𝑙 will
e referred to, interchangeably, as input random vector and output
unction, respectively.

.2.3. Construction of sub-problems
A gradient-based solution to the RDO problem in (6) mandates suit-

ble smoothness in objective and constraint functions. Therefore, both
unctions are assumed to be differentiable with respect to design vari-
bles. More often than not, as these functions are nonlinear, iterative
pproximations of (6), resulting in a sequence of RDO sub-problems,
re required.
Let 𝑞 = 1, 2,… , 𝑄, 𝑄 ∈ N, be a design iteration count describing the

th RDO sub-problem for (6). Given 𝑞, let 𝐝{𝑞}, 𝐠{𝑞}, and 𝐫{𝑞} be the
th iterative versions of 𝐝, 𝐠, and 𝐫, respectively. Then, the 𝑞th RDO
ub-problem requires one to

min
𝐝{𝑞}∈⊆R𝑀

𝑐{𝑞}0 (𝐝{𝑞}) ∶= 𝑇

[

𝐺
(

E𝐠{𝑞} [ℎ0(𝐙; 𝐫{𝑞})],

√

var𝐠{𝑞} [ℎ0(𝐙; 𝐫{𝑞})]
)

]

,

subject to 𝑐{𝑞}𝑎 (𝐝{𝑞}) ∶= 𝑇
[

𝛼𝑎
√

var𝐠{𝑞} [ℎ𝑎(𝐙; 𝐫{𝑞})]

− E𝐠{𝑞} [ℎ𝑎(𝐙; 𝐫{𝑞})]
]

≤ 0,
𝑎 = 1,… , 𝐾,
𝑑𝑙,𝐿 ≤ 𝑑{𝑞}𝑙 ≤ 𝑑𝑙,𝑈 , 𝑙 = 1,… ,𝑀,

(7)

where 𝑐{𝑞}0 and 𝑐{𝑞}𝑎 are the 𝑞th objective and constraint functions,
respectively. They are obtained iteratively from first- or higher-order
Taylor series expansions 𝑇 of 𝑐0 and 𝑐𝑎 at 𝐝

{𝑞}
0 = (𝑑{𝑞}1,0 ,… , 𝑑{𝑞}𝑀,0)

⊺. The
olution of (7), denoted by 𝐝{𝑞}∗ = (𝑑{𝑞}1,∗ ,… , 𝑑{𝑞}𝑀,∗), is conventionally
roduced using a suitable programming method, such as the well-
nown sequential linear and quadratic programming methods. In such
case, the 𝑞th RDO sub-problem solution 𝐝{𝑞}∗ is used as the initial

design for the (𝑞 + 1)th RDO sub-problem by setting 𝐝{𝑞+1}0 = 𝐝{𝑞}∗ . This
process is repeated from a chosen initial design 𝐝0 = 𝐝{1}0 until reaching
convergence through all 𝑄 ∈ N iterations, yielding the final optimal
design 𝐝∗ = 𝐝{𝑄}∗ . In this paper, the iterations with respect to 𝑞 are
referred to as design iterations.

The RDO problem described so far does not explicitly mention a
specific probability measure of 𝐗 or 𝐙. This is because the proposed
RDO formulation, whether (1) or (6), is applicable for a general input
random vector endowed with independent or dependent probability
measures. While most works on RDO mandate independent probability
measures, a generalized PCE, capable of tackling dependent random
variables, has been reported by the authors in a past work [2].

3. Spline dimensional decomposition

The application of SDD in solving the RDO problem posed in this
work requires a number of assumptions on random input: (1) all
component random variables 𝑋𝑙, 𝑍𝑙, 𝑙 = 1,… , 𝑁 , are statistically
independent, but not necessarily identical; (2) each random variable
𝑋𝑙 or 𝑍𝑙 is defined on a bounded interval, ensuring existence of all
moments; and (3) the joint PDFs of 𝐗 and 𝐙 are product-type, that is,

𝑓𝐗(𝐱;𝐝) =
𝑁
∏

𝑓𝑋𝑙 (𝑥𝑙;𝐝) and 𝑓𝐙(𝐳; 𝐠) =
𝑁
∏

𝑓𝑍𝑙 (𝑧𝑙; 𝐠),

𝑙=1 𝑙=1



D. Lee, R. Jahanbin and S. Rahman Probabilistic Engineering Mechanics 68 (2022) 103218

s
(
i

ℎ
a
H

𝐿

T

r
r

w

𝑖

k

3

t
r
i
a
k
a
t
v
s

i
d

e
D
d
C

E
i
𝑖
t
b

𝝃

w
b

r

f

where 𝑓𝑋𝑙 (𝑥𝑙;𝐝) and 𝑓𝑍𝑙 (𝑧𝑙; 𝐠) are the marginal PDFs of 𝑋𝑙 and 𝑍𝑙, re-
pectively. Therefore, 𝐙 is defined over the probability triple
𝛺𝐠,𝐠,P𝐠), depending on 𝐠, where 𝛺𝐠 is the sample space of 𝐙, 𝐠
s a 𝜎-algebra on 𝛺𝐠, and P𝐠 is a probability measure.
Denote by ℎ(𝐙; 𝐫) one of the stochastic performance functions

𝑎(𝐙; 𝐫), 𝑎 = 1,… , 𝐾, used in RDO problems (6). The function ℎ(𝐙; 𝐫) is
ssumed to be in a reasonably large class of random variables, say, the
ilbert space

2(𝛺𝐠,𝐠,P𝐠)∶=

{

ℎ ∶ 𝛺𝐠 → R∶ ∫𝛺𝐠

ℎ2(𝐙; 𝐫)𝑑P𝐠 <∞

}

.

his is tantamount to saying that the real-valued function ℎ(𝐳; 𝐫) lives
in the equivalent Hilbert space
{

ℎ ∶ Ā𝑁 → R ∶ ∫Ā𝑁
ℎ2(𝐳; 𝐫)𝑓𝐙(𝐳; 𝐠)𝑑𝐳 < ∞

}

.

The assumption guarantees the existence of the first two moments of
ℎ(𝐙; 𝐫), facilitating a solution of the RDO problem in (6).

3.1. Knot vector

For the coordinate direction 𝑘 = 1,… , 𝑁 , denote by a positive
integer 𝑛𝑘 ∈ N and a non-negative integer 𝑝𝑘 ∈ N0 the number of basis
functions and degree, respectively. Then, a knot sequence or vector 𝝃𝑘
for the interval [𝑎𝑘, 𝑏𝑘] ⊂ R, given 𝑛𝑘 > 𝑝𝑘 ≥ 0, is a non-decreasing
sequence of real numbers

𝝃𝑘 ∶= {𝜉𝑘,𝑖𝑘}
𝑛𝑘+𝑝𝑘+1
𝑖𝑘=1

= {𝑎𝑘 = 𝜉𝑘,1, 𝜉𝑘,2,… , 𝜉𝑘,𝑛𝑘+𝑝𝑘+1 = 𝑏𝑘},
𝜉𝑘,1 ≤ 𝜉𝑘,2 ≤ ⋯ ≤ 𝜉𝑘,𝑛𝑘+𝑝𝑘+1,

(8)

where 𝜉𝑘,𝑖𝑘 is the 𝑖𝑘th knot with 𝑖𝑘 = 1, 2,… , 𝑛𝑘 + 𝑝𝑘 + 1 representing
the knot index for the coordinate direction 𝑘. The 𝑛𝑘 + 𝑝𝑘 + 1 knots in
(8) may be equally spaced or unequally spaced, resulting in a uniform
or non-uniform distribution. Furthermore, the knots, whether they are
exterior or interior, may be repeated; for instance, the 𝑖𝑘th knot of
𝝃𝑘 may appear 1 ≤ 𝑚𝑘,𝑖𝑘 ≤ 𝑝𝑘 + 1 times, where 𝑚𝑘,𝑖𝑘 is referred
to as its multiplicity. The multiplicity has important consequences on
the regularity properties of B-spline functions. Interested readers are
strongly recommended to read the papers [16,25]. To define knots
without repetitions, consider 𝑟𝑘 distinct knots 𝜁𝑘,1,… , 𝜁𝑘,𝑟𝑘 in 𝝃𝑘 with
espective multiplicities 𝑚𝑘,1,… , 𝑚𝑘,𝑟𝑘 . Then the knot vector in (8) is
e-expressed as

𝝃𝑘 ∶= {𝑎𝑘 =

𝑚𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,

… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1 … , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜉𝑘,𝑟𝑘 ,… , 𝜉𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑟𝑘 = 𝑏𝑘,

hich consists of
𝑟𝑘
∑

𝑘=1
𝑚𝑘,𝑖𝑘 = 𝑛𝑘 + 𝑝𝑘 + 1

nots.

.1.1. Non-uniformly spaced knot sequence
A uniformly spaced knot vector is generally recommended when

here is no prior knowledge of the output function and the input
andom variable 𝑍𝑘 follows a uniform distribution. However, when an
nput random variable 𝑍𝑘 follows a non-uniform distribution, such as
Gaussian or lognormal distribution, one may have a free choice of
not vectors for a better result. Since it is not well-known how to set
suitable knot vector, it is often determined arbitrarily at hand. In
his section, a new method for generating a non-uniformly spaced knot
ector is introduced for the first time, which transforms a uniformly
paced knot vector to following the non-uniform distribution of the
4

nput random variable 𝑍𝑘 or its modified version having different
istribution parameters.
For each coordinate direction 𝑘, let the knots of 𝝃𝑘 in (8) be

qually spaced, resulting in the uniform distribution on Ā = [𝑎𝑘, 𝑏𝑘].
efining the 𝑘th new random variable 𝑈𝑘 following the same uniform
istribution of the knot vector 𝝃𝑘, denote by 𝐹𝑈𝑘 ∶ Ā → [0, 1] the
DF of 𝑈𝑘. Also, define another new random variable �̄�𝑘 that follows
the same distribution type of the input random variable 𝑍𝑘 but may
have different values of distribution parameters, such as its mean or
standard deviation. This is because the output function may have an
uncontrolled fluctuation at a place far from the mean point (say). In
such a case, placing the knot near the place can be critical for better
prediction. Thus, using the knot vector following a modified version of
input distribution allows flexibility to deal with such output functions,
thus becoming more beneficial than the original one. To explain this
in more detail, let the input random variable 𝑍𝑘 follow a Guassian or
lognormal distribution. As mentioned before, consider a new random
variable �̄�𝑘 following a Gaussian distribution with E[�̄�𝑘] = E[𝑍𝑘] and
√

var[�̄�𝑘] = 𝑡
√

var[𝑍𝑘] or a lognormal distribution with E[ln(�̄�𝑘)] =

[ln(𝑍𝑘)] and
√

var[ln(�̄�𝑘)] = 𝑡
√

var[ln(𝑍𝑘)], respectively, where 𝑡 ∈ R+

s a controlling factor. Then, regarding the uniformly spaced knots 𝜉𝑘,𝑖𝑘 ,
𝑘 = 1, 2,… , 𝑛𝑘 + 𝑝𝑘 + 1, as arbitrary points of a random variable 𝑈𝑘,
ransform the knot sequence 𝝃𝑘 to one following the distribution of �̄�𝑘
y

̄𝑘 = 𝐹−1
�̄�𝑘

(𝐹𝑈𝑘 (𝝃𝑘)),

here 𝐹−1
�̄�𝑘

is the inverse CDF of �̄�𝑘. The resulting knot vector �̄�𝑘 can
e expressed as

�̄�𝑘 ∶= {

𝑚𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,

… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1 … , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘},

𝜁𝑘,1 < 𝜁𝑘,2 <⋯ < 𝜁𝑘,𝑟𝑘−1 < 𝜁𝑘,𝑟𝑘 .

Since the left and right exterior knots must be placed at 𝑎𝑘 and 𝑏𝑘,
espectively, the non-uniformly spaced knot sequence 𝝃∗𝑘, used here, is

𝝃∗𝑘 ∶= {𝑎𝑘 =

𝑚𝑘,1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,1,… , 𝜁𝑘,1,

𝑚𝑘,2 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,2,… , 𝜁𝑘,2,

… ,

𝑚𝑘,𝑟𝑘−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘−1 … , 𝜁𝑘,𝑟𝑘−1,

𝑚𝑘,𝑟𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜁𝑘,𝑟𝑘 ,… , 𝜁𝑘,𝑟𝑘 = 𝑏𝑘},

𝑎𝑘 = 𝜁𝑘,1 < 𝜁𝑘,2 < ⋯ < 𝜁𝑟𝑘−1 < 𝜁𝑟𝑘 = 𝑏𝑘.

For the remainder of the sections, 𝝃𝑘 is used to represent a general knot
vector including the uniformly or non-uniformly spaced knot vector 𝝃∗𝑘.

3.2. Measure-consistent orthonormalized B-splines

For the coordinate direction 𝑘, denote by 𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝜉𝑘 (𝑧𝑘) the 𝑖𝑘th uni-
variate B-spline with degree 𝑝𝑘 ∈ N0. Given either a uniformly or
non-uniformly spaced knot vector 𝝃𝑘 and zero-degree basis functions,
all higher-order B-spline functions on [𝑎𝑘, 𝑏𝑘] are defined recursively,
where 1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, and 1 ≤ 𝑝𝑘 < ∞. See the recursive
ormula in Appendix A.1 for deriving 𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝜉𝑘 (𝑧𝑘).
The B-splines are bestowed with several desirable properties, which

can generally deliver tremendous approximating power to numerical
methods. For more specific details, see Appendix A.2.

3.2.1. Univariate orthonormalized B-splines
The aforementioned B-splines, although they form a basis of the

spline space of degree 𝑝𝑘 and knot vector 𝝃𝒌, are not orthogonal with
respect to the probability measure 𝑓𝑍𝑘 (𝑧𝑘; 𝐠)𝑑𝑧𝑘 of 𝑍𝑘. A linear trans-
formation, originally proposed in the prequel [16,25], is summarized
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in Appendix B in three steps to generate an 𝑛𝑘-dimensional vector
𝝍𝑘(𝑧𝑘; 𝐠), consisting of orthonormalized B-splines

𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘), 𝑖𝑘 = 1,… , 𝑛𝑘, 𝑘 = 1,… , 𝑁.

The resulting orthonormalized B-splines 𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘), 𝑖𝑘 = 2,… , 𝑛𝑘,
have zero means. Furthermore, the orthonormalized B-splines are nei-
ther non-negative nor locally supported. However, an orthonormal
basis is an essential ingredient in constructing an SDD expansion.

3.2.2. Multivariate orthonormalized B-splines
Due to the product-type probability measure of input random vari-

ables, measure-consistent multivariate orthonormalized B-splines in 𝑁
variables are easily constructed from the 𝑁-dimensional tensor prod-
uct of measure-consistent univariate splines. However, building such
a tensor product in a high-dimensional setting is not recommended.
Instead, the authors advocate constructing a series of tensor products
in a dimensionwise manner.

For a subset ∅ ≠ 𝑢 = {𝑘1,… , 𝑘
|𝑢|} ⊆ {1,… , 𝑁}, let 𝐙𝑢 ∶=

(𝑍𝑘1 ,… , 𝑍𝑘
|𝑢|
)⊺ be a subvector of 𝐙 defined on the abstract probability

space (𝛺𝑢
𝐠,

𝑢
𝐠 ,P

𝑢
𝐠), where 𝛺𝑢

𝐠 is the sample space of 𝐙𝑢, 𝑢
𝐠 is a 𝜎-algebra

on 𝛺𝑢
𝐠, and P𝑢𝐠 is a probability measure. As 𝐙 comprises independent

random variables, the PDF of 𝐙𝑢 is

𝑓𝐙𝑢 (𝐳𝑢) =
∏

𝑘∈𝑢
𝑓𝑍𝑘 (𝑧𝑘; 𝐠) =

|𝑢|
∏

𝑙=1
𝑓𝑍𝑘𝑙 (𝑧𝑘𝑙 ),

where 𝐳𝑢 ∶= (𝑧𝑘1 ,… , 𝑧𝑘
|𝑢|
)⊺ and, for 𝑀 ∈ N, 𝐠 = (𝑔1,… , 𝑔𝑀 )⊺ obtained

from the scaling or shifting transformation of an𝑀-dimensional design
vector with non-empty closed set  ⊂ R𝑀 , as presented in (3) or
(5), respectively. Thus, the probability triple (𝛺𝑢

𝐠,
𝑢
𝐠 ,P

𝑢
𝐠) of 𝐙𝑢 depends

on 𝐠. Define three multi-indices 𝐢𝑢 ∶= (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∈ N|𝑢|

0 , 𝐧𝑢 ∶=
(𝑛𝑘1 ,… , 𝑛𝑘

|𝑢|
) ∈ N|𝑢|

0 , and 𝐩𝑢 ∶= (𝑝𝑘1 ,… , 𝑝𝑘
|𝑢|
) ∈ N|𝑢|

0 , representing
the knot indices, numbers of basis functions, and degrees of splines,
respectively, in all |𝑢| coordinate directions. Associated with 𝐢𝑢, define
an index set

𝑢,𝐧𝑢 ∶=
{

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∶ 1 ≤ 𝑖𝑘𝑙 ≤ 𝑛𝑘𝑙 ,

𝑙 = 1,… , |𝑢|
}

⊂ N|𝑢|

with cardinality

|𝑢,𝐧𝑢 | =
∏

𝑘∈𝑢
𝑛𝑘.

For the coordinate direction 𝑘𝑙, denote by

𝐼𝑘𝑙 = 𝑟𝑘𝑙 − 1,

the number of subintervals corresponding to the knot vector 𝝃𝑘𝑙 with
𝑟𝑘𝑙 distinct knots. Then, the partition, defined by the knot sequences
𝝃𝑘1 ,… , 𝝃𝑘

|𝑢|
, decomposes the |𝑢|-dimensional rectangle Ā𝑢 ∶= ×𝑘∈𝑢

[𝑎𝑘, 𝑏𝑘] into smaller rectangles

Ā𝑢𝐢𝑢 =
{

𝐳𝑢 = (𝑧𝑘1 ,… , 𝑧𝑘
|𝑢|
) ∶ 𝜁𝑘𝑙 ,𝑖𝑘𝑙 ≤ 𝑧𝑘𝑙 ≤ 𝜁𝑘𝑙 ,𝑖𝑘𝑙+1 ,

𝑙 = 1,… , |𝑢|
}

,

𝐢𝑢 ∈
{

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∶ 1 ≤ 𝑖𝑘𝑙 ≤ 𝐼𝑘𝑙 ,

𝑙 = 1,… , |𝑢|
}

⊆ 𝑢,𝐧𝑢 ,

where 𝜁𝑘𝑙 ,𝑖𝑘𝑙 is the 𝑖𝑘𝑙 th distinct knot in the coordinate direction 𝑘𝑙. A
mesh is defined by the partition of Ā𝑢 into rectangular elements Ā𝑢𝐢𝑢 ,
𝐢𝑢 ∈ 𝑢,𝐧𝑢 .

For ∅ ≠ 𝑢 = {𝑘1,… , 𝑘
|𝑢|} ⊆ {1,… , 𝑁}, with 𝐩𝑢 = (𝑝𝑘1 ,… , 𝑝𝑘

|𝑢|
) ∈ N|𝑢|

0
and 𝜩 = {𝝃 ,… , 𝝃 }, the multivariate splines in 𝐳 = (𝑧 ,… , 𝑧 )
𝑢 𝑘1 𝑘

|𝑢| 𝑢 𝑘1 𝑘
|𝑢|

5

consistent with the probability measure 𝑓𝐙𝑢 (𝐳𝑢; 𝐠)𝑑𝐳𝑢 are

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳𝑢; 𝐠) =
∏

𝑘∈𝑢
𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘; 𝐠) =

|𝑢|
∏

𝑙=1
𝜓𝑘𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙

(𝑧𝑘𝑙 ; 𝐠),

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∈ 𝑢,𝐧𝑢 .

(9)

When the input random variables 𝑍1,… , 𝑍𝑁 , instead of real variables
𝑧1,… , 𝑧𝑁 , are inserted in (9), the multivariate splines 𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳𝑢; 𝐠),
∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, 𝐢𝑢 ∈ 𝑢,𝐧𝑢 , become functions of input random
variables. To describe their second-moment properties succinctly, limit
the range of the index 𝑖𝑘𝑙 , 𝑙 = 1,… , |𝑢|, associated with the 𝑘𝑙th variable
𝑧𝑘𝑙 , to 2,… , 𝑛𝑘𝑙 . The exclusion of 𝑖𝑘𝑙 = 1 is essentially the first constant
element of 𝛹𝑘(𝑍𝑘). Hence, define a reduced index set

̄𝑢,𝐧𝑢 ∶=
{

𝐢𝑢 = (𝑖𝑘1 ,… , 𝑖𝑘
|𝑢|
) ∶ 2 ≤ 𝑖𝑘𝑙 ≤ 𝑛𝑘𝑙 ,

𝑙 = 1,… , |𝑢|
}

⊂ (N∖{1})|𝑢|,

which has cardinality

|̄𝑢,𝐧𝑢 | ∶=
∏

𝑘∈𝑢
(𝑛𝑘 − 1).

The omission of 𝑖𝑘𝑙 = 1 in ̄𝑢,𝑛𝐮 prevents reduction of the degree of
interaction of the corresponding multivariate spline basis below |𝑢|.
Then, for ∅ ≠ 𝑢, 𝑣 ⊆ {1,… , 𝑁}, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , and 𝐣𝑣 ∈ ̄𝑣,𝐧𝑣 , the first-
and second-order moments of multivariate orthonormalized B-splines
are [16]

E𝐠[𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠)] = 0 (10)

and
E𝐠[𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠)𝛹

𝑣
𝐣𝑣 ,𝐩𝑣 ,𝜩𝑣

(𝐙𝑣; 𝐠)]

=

{

1, 𝑢 = 𝑣 and 𝐢𝑢 = 𝐣𝑣,
0, otherwise,

(11)

respectively.
Note that the three steps mentioned earlier to create orthonormal-

ized B-splines are described in terms of 𝐳, not 𝐱. This is intended
to employ invariant 𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳; 𝐠) throughout all design iterations by
assigning unchanged values to 𝐠 while the design vector 𝐝 is updated
at each iteration. To explain this further, consider the 𝑞th RDO sub-
problem in (7), where the shifting or scaling transformation for the 𝑘th
initial design variable yield

E𝐝{𝑞}
[

𝑍𝑖𝑘
]

= 𝑔{𝑞}𝑘 =

{

𝑑{𝑞}𝑘 + 𝑟{𝑞}𝑖𝑘
, shifting,

𝑑{𝑞}𝑘 𝑟{𝑞}𝑖𝑘
, scaling.

(12)

Here, when setting 𝑑{𝑞}𝑘 to 𝑑{𝑞}𝑘,0 at the 𝑞th iteration, one is free to
choose the value of 𝑔{𝑞}𝑘 with respect to 𝑑{𝑞}𝑘,0 in (12). However, for
the sake of convenience, choose the value of 𝑔{𝑞}𝑘 as zero or one
in the shifting or scaling transformation, respectively. Then, 𝑟{𝑞}𝑖𝑘

is
determined to be −𝑑{𝑞}𝑘,0 and 1∕𝑑{𝑞}𝑘,0 , respectively, from (12). Solving
the 𝑞th RDO sub-problem with the initial design 𝐝{𝑞}0 yields 𝐝{𝑞}∗ ;
thereby 𝑔{𝑞}𝑘 becomes 𝑑{𝑞}𝑘,∗ −𝑑{𝑞}𝑘,0 and 𝑑

{𝑞}
𝑘,∗ ∕𝑑

{𝑞}
𝑘,0 in the shifting or scaling

transformation, respectively. In the repetitively updating process from
𝑞th to (𝑞 + 1)th design iterations, choosing the same values of 𝑔{𝑞}𝑘 for
𝑞 = 1, 2,… , 𝑄 contributes to only one sequence of calculation of the
measure-consistent orthonormal polynomials 𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳; 𝐠) throughout
all design iterations.

3.3. SDD approximation

Suppose the degree and family of knot sequences in all coordi-
nate directions have been specified as 𝐩 = (𝑝1,… , 𝑝𝑁 ) ∈ N𝑁0 and
𝛯 = {𝜉1,… , 𝜉𝑁}, respectively. For ∅ ≠ 𝑢 ⊆ {1,… , 𝑁} and 𝐙𝑢 ∶=
(𝑍𝑘1 ,… , 𝑍𝑘𝑢 )

⊺ over (𝛺𝑢
𝐠,

𝑢
𝐠 ,P

𝑢
𝐠), with 𝐩𝑢 = (𝑝𝑘1 ,… , 𝑝𝑘

|𝑢|
) ∈ N|𝑢|

0 and
𝛯 = {𝜉 ,… , 𝜉 }, denote by {𝛹 𝑢 (𝐙 ) ∶ 𝐢 ∈ ̄ } a set
𝑢 𝑘1 𝑘

|𝑢| 𝐢𝑢 ,𝐩𝑢 ,𝛯𝑢 𝑢 𝑢 𝑢,𝐧𝑢
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comprising multivariate orthonormalized B-splines that is consistent
with the probability measure 𝑓𝐙𝑢 (𝐳𝑢)𝑑𝐳𝑢. Then, for any random variable
(𝐙) ∈ 𝐿2(𝛺𝐠,𝐠,P𝐠), there exists a hierarchically expanded Fourier-
ike series in multivariate orthonormal splines in 𝐙𝑢, referred to as the
DD [16],

ℎ𝐩,𝜩 (𝐙; 𝐫) ∶= ℎ∅(𝐫) +
∑

∅≠𝑢⊂{1,…,𝑁}

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)

×𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠)
(13)

ith its expansion coefficients

∅(𝐫) ∶= ∫Ā𝑁
ℎ(𝐳; 𝐫)𝑓𝐙(𝐳; 𝐠)𝑑𝐳. (14)

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫) ∶= ∫Ā𝑁
ℎ(𝐳; 𝐫)𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳𝑢; 𝐠)𝑓𝐙(𝐳; 𝐠)𝑑𝐳,

𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 .
(15)

In a practical setting, the output function ℎ(𝐙; 𝐫) is likely to have an
ffective dimension much lower than 𝑁 , indicating that the right side
f (13) can be effectively approximated by a sum of lower dimensional
omponent functions of ℎ𝐩,𝛯 (𝐙; 𝐫) but still preserve all random variables
f𝑁-dimension. Furthermore, the dimensional hierarchical structure of
he basis functions permits ignoring safely a negligible amount to the
unction value. A straightforward approach is to keep all orthonormal-
zed B-splines in at most 1 ≤ 𝑆 ≤ 𝑁 variables, resulting in an 𝑆-variate
DD approximation

ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫) ∶= ℎ∅(𝐫) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)

×𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠)
(16)

f ℎ(𝐙; 𝐫), comprising

𝑆,𝐩,𝜩 = 1 +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∏

𝑘∈𝑢
(𝑛𝑘 − 1) ≤

𝑁
∏

𝑘=1
𝑛𝑘 = 𝐿𝐩,𝜩

xpansion coefficients, including ℎ∅. Due to its additive structure, the
pproximation in (16) includes degrees of interaction among at most
input variables 𝑍𝑘1 ,… , 𝑍𝑘𝑆 , 1 ≤ 𝑘1 ≤ ⋯ ≤ 𝑘𝑆 ≤ 𝑁 . For example,
y selecting 𝑆 = 1 and 2, the respective univariate and bivariate SDD
pproximations are

1,𝐩,𝜩 (𝐙; 𝐫) = ℎ∅(𝐫) +
𝑁
∑

𝑘=1

𝑛𝑘
∑

𝑖𝑘=2
𝐶𝑘𝑖𝑘 (𝐫)𝛹

𝑘
𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘

(𝑍𝑘; 𝐫)

nd

ℎ2,𝐩,𝜩 (𝐙; 𝐫) = ℎ∅(𝐫) +
𝑁
∑

𝑘=1

𝑛𝑘
∑

𝑖𝑘=2
𝐶𝑘𝑖𝑘 (𝐫)𝛹

𝑘
𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘

(𝑍𝑘; 𝐫)

+
𝑁−1
∑

𝑘1=1

𝑁
∑

𝑘2=𝑘1+1

𝑛𝑘1
∑

𝑖𝑘1=2

𝑛𝑘2
∑

𝑖𝑘2=2
𝐶𝑘1𝑘2𝑖𝑘1 𝑖𝑘2 (𝐫)

×𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐫)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐫).

Note that the univariate and bivariate SDD approximations should
ot be viewed as first- and second-order approximations, nor as limiting
he nonlinearity of ℎ. When 𝑆 → 𝑁 and 𝑛𝑘 → ∞, ℎ𝑆,𝐩,𝜩 converges to
in the mean-square sense, permitting (16) to generate a hierarchical
onvergent sequence of approximation of ℎ.

.4. Standard least-squares for expansion coefficient estimation

The SDD expansion coefficients are naturally computed by apply-
ng their respective definitions in (14) and (15). However, they are
etermined by various numerical integrations, which can be costly,
n particular for high-dimensional problems. As an alternative, the
tandard least-squares (SLS) regression is an efficient way to estimate
nknown coefficients in linear systems. In this work, the SLS method is
sed to estimate the SDD expansion coefficients, thereby sidestepping
 a

6

he expensive numerical integration. This is performed in the context
f a single-index description of SDD as follows.
Consider the set of measure-consistent multivariate orthonormal-

zed B-splines

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠) ∶ 1 ≤ |𝑢| ≤ 𝑆, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢
}

, (17)

s previously defined in Section 3.2.2, which consists of 𝐿𝑆,𝐩,𝜩 basis
unctions. Without loss of generality and consistency of the orthonor-
alization procedure discussed in Section 3.2.1, with an arbitrary order
f choice, arrange the elements of the set in (17) as

{

𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐙𝑢; 𝐠) ∶ 1 ≤ |𝑢| ≤ 𝑆, 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢
}

=
{

𝛹2(𝐙; 𝐠,𝜩),… , 𝛹𝐿𝑆,𝐩,𝜩 (𝐙; 𝐠,𝜩)
}

, 𝛹1(𝐙; 𝐠,𝜩) = 1,

uch that 𝛹𝑖(𝐙; 𝐠,𝜩), 𝑖 = 1,… , 𝐿𝑆,𝐩,𝜩 represents the 𝑖th basis function in
he truncated SDD approximation. For each basis function, there exists
he corresponding expansion coefficient 𝐶𝑖(𝐫,𝜩) ∈ R, 𝑖 = 1,… , 𝐿𝑆,𝐩,𝜩 .
ence, the SDD approximation in (16) is rewritten as

ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫) ∶=
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
𝐶𝑖(𝐫,𝜩)𝛹𝑖(𝐙; 𝐠,𝜩). (18)

Then, employing the SLS method, the approximate SDD expansion
coefficients of ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫) in (18) are computed through minimizing

E𝐠

[

ℎ(𝐙; 𝐫) −
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
𝐶𝑖(𝐫,𝜩)𝛹𝑖(𝐙; 𝐠,𝜩)

]2
.

From random input 𝐙 with known distributions and an output func-
tion ℎ ∶ Ā𝑁 → R, consider an input–output data set {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫)}𝐿𝑡=1
of a sample size 𝐿 ∈ N, where 𝐫 is determined in (3) and (4). The
data set, often referred to as the experimental design, is generated by
evaluating the function ℎ at each input sample 𝐳(𝑡). There exist various
sampling methods, such as standard MCS, quasi MCS (QMCS), and
Latin hypercube sampling (LHS), for constructing the input–output data
set or the experimental design. In this work, an optimal LHS method,
presented in Appendix C, is employed for all numerical examples. From
the constructed data set {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫)}𝐿𝑡=1, the SLS method minimizes
the mean-square error

𝑒𝑆,𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑡=1

⎡

⎢

⎢

⎣

ℎ(𝐳(𝑡); 𝐫) −
𝐿𝑆,𝐩,𝜩
∑

𝑖=1
𝐶𝑖(𝐫,𝜩)𝛹𝑖(𝐳(𝑡); 𝐠,𝜩)

⎤

⎥

⎥

⎦

2

,

hich is done by estimating the expansion coefficients through

�̂� ∶=
(

�̂�1(𝐫,𝜩),… , �̂�𝐿𝑆,𝐩,𝜩 (𝐫,𝜩)
)⊺

= (𝐀⊺𝐀)−1 𝐀⊺𝐛

s the best estimation of 𝐜 ∶= (𝐶1(𝐫,𝜩),… , 𝐶𝐿𝑆,𝐩,𝜩 (𝐫,𝜩))
⊺, where

𝐀 ∶=

⎡

⎢

⎢

⎢

⎣

𝛹1(𝐳(1); 𝐠,𝜩) ⋯ 𝛹𝐿𝑆,𝐩,𝜩 (𝐳
(1); 𝐠,𝜩)

⋮ ⋱ ⋮
𝛹1(𝐳(𝐿); 𝐠,𝜩) ⋯ 𝛹𝐿𝑆,𝐩,𝜩 (𝐳

(𝐿); 𝐠,𝜩)

⎤

⎥

⎥

⎥

⎦

,

𝐛 ∶=
(

ℎ(𝐳(1); 𝐫),… , ℎ(𝐳(𝐿); 𝐫)
)⊺ .

Here, the 𝐿×𝐿𝑆,𝐩,𝜩 -matrix 𝐀 carries the information about the basis
unctions evaluated at {𝐳(𝑡)}𝐿𝑡=1, and the 𝐿-dimensional column vector 𝐛
as the responses by a deterministic solver, such as the finite element
ethod.
Furthermore, the 𝐿𝑆,𝐩,𝜩 × 𝐿𝑆,𝐩,𝜩 -square matrix 𝐀⊺𝐀, which is re-

erred to as the information matrix, plays a pivotal role in the SLS
ethod. The accuracy of the regression method hinges on the condi-
ion number of the information matrix, which itself depends on how
any samples are used in the data set and how they are chosen for
nalysis. In other words, the matrix 𝐀⊺𝐀 should be nonsingular and
ell-conditioned. While there are rules of thumb stating that two or
hree times the number of expansion coefficients 𝐿𝑆,𝐩,𝜩 is ordinarily

cceptable for the sample size 𝐿, the selection of 𝐿 heavily depends
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on applications at hand and may yield either inaccurate, if attainable,
results or unnecessarily expensive computations if 𝐿 is too small or too
large, respectively. Having said this, a necessary condition for the SLS
method reads 𝐿 > 𝐿𝑆,𝐩,𝜩 .

3.5. Statistical moment analysis

The 𝑆-variate SDD approximation ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫) can be viewed as
an inexpensive surrogate of an expensive-to-calculate function ℎ(𝐙; 𝐫).
Therefore, pertinent statistical properties of ℎ(𝐙), such as its first two
moments, can be estimated from those of ℎ𝑆,𝐩,𝜩 (𝐙).

Applying the expectation operator on ℎ𝑆,𝐩,𝜩 (𝐙), its mean

E𝐠[ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫)] = ℎ∅(𝐫) = E𝐠[ℎ(𝐙; 𝐫)]

is independent of 𝑆, 𝐩, and 𝜩. More importantly, the SDD approx-
imation always yields the exact mean, provided that the expansion
coefficient ℎ∅(𝐫) is determined exactly.

Applying the expansion operator again, such that E𝐠[ℎ𝑆,𝐩,𝜩 (𝐙) −
ℎ∅(𝐫)]2, then the result of the variance of ℎ𝑆,𝐩,𝜩 (𝐙) is

E𝐠[ℎ𝑆,𝐩,𝜩 (𝐙) − ℎ∅(𝐫)]2 = var𝐠[ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫)]
=

∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢2𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)

≤ var[ℎ(𝐙; 𝐫)]

of ℎ(𝐙; 𝐫).
In this paper, only a brief exposition of SDD is given. Readers

interested in theoretical details of SDD [16], including applications to
isogeometric analysis [17], are referred to the authors’ past works.

4. Proposed method for design sensitivity analysis

Solving an RDO problem by any gradient-based optimization
method, such as linear or sequential quadratic programming, demands
at least the computations of the first-order derivatives of the first- and
second-order moments of ℎ(𝐙; 𝐫) with respect to each design variable
𝑑𝑙 , 𝑙 = 1,… ,𝑀 . Here, a novel analytical sensitivity formulation is
derived by coupling SDD expansion coefficients with score functions
for input random variables. The assessment of the following regularity
conditions should precede the sensitivity analysis:

1. The probability density function 𝑓𝐙(𝐳; 𝐠) of 𝐙 is continuous. Also,
the partial derivative 𝜕𝑓𝐙(𝐳; 𝐠)∕𝜕𝑔𝑙, 𝑙 = 1,… ,𝑀 , exists for all
possible values of 𝐳 and 𝑔𝑙. Furthermore, the statistical moments
of ℎ(𝐙; 𝐫) are differentiable with respect to 𝑔𝑙.

2. There exists a Lebesgue integrable dominating function 𝑏(𝐳) such
that
|

|

|

|

ℎ𝑟(𝐳; 𝐫)
𝜕𝑓𝐙(𝐳; 𝐠)
𝜕𝑔𝑙

|

|

|

|

≤ 𝑏(𝐳), 𝑟 = 1, 2; 𝑙 = 1,… ,𝑀.

4.1. Score functions

Taking the partial derivative of the first two moments with respect
to 𝑑𝑙 and then interchanging the order of the differential and integral
operators, by the Lebesgue dominated convergence theorem, yields the
sensitivities
𝜕E𝐠 [ℎ𝑟(𝐙; 𝐫)]

𝜕𝑑𝑙
=

𝜕𝑔𝑙
𝜕𝑑𝑙

𝜕
𝜕𝑔𝑙 ∫Ā𝑁

ℎ𝑟(𝐳; 𝐫)𝑓𝐙(𝐳; 𝐠)𝑑𝐳

=
𝜕𝑔𝑙
𝜕𝑑𝑙 ∫Ā𝑁

ℎ𝑟(𝐳; 𝐫)
𝜕 ln 𝑓𝐙(𝐳; 𝐠)

𝜕𝑔𝑙
𝑓𝐙(𝐳; 𝐠)𝑑𝐳,

𝑟 = 1, 2; 𝑙 = 1,… ,𝑀.

(19)

In (19), 𝜕 ln 𝑓𝐙(𝐙; 𝐠)∕𝜕𝑔𝑙 is known as the first-order score function
for 𝑔𝑙 or, simply, the 𝑙th score function. As input 𝐙 are assumed as
independent random variables, the log of multivariate density function

ln 𝑓𝐙(𝐙; 𝐠) =
𝑁
∑

ln 𝑓𝑍𝑘 (𝑍𝑘; 𝐠),

𝑘=1

7

which is a sum of univariate functions. If 𝑔𝑙 is any distribution pa-
rameter of 𝑍𝑘𝑙 , then the score function for the 𝑔𝑙 can be simplified
o 𝜕 ln 𝑓𝐙(𝐙; 𝐠)∕𝜕𝑔𝑙 = 𝜕 ln 𝑓𝑍𝑘𝑙 (𝑍𝑘𝑙 ; 𝐠)∕𝜕𝑔𝑙. Denoting by 𝑠𝑙(𝑍𝑘𝑙 ; 𝐠) ∶=
𝜕 ln 𝑓𝑍𝑘𝑙 (𝑍𝑘𝑙 ; 𝐠)∕𝜕𝑔𝑙 the 𝑙th score function, the sensitivity is obtained
from
𝜕E𝐠 [ℎ𝑟(𝐙; 𝐫)]

𝜕𝑑𝑙
=

𝜕𝑔𝑙
𝜕𝑑𝑙 ∫Ā𝑁

ℎ𝑟(𝐳; 𝐫)𝑠𝑙(𝑧𝑘𝑙 ; 𝐠)𝑓𝐙(𝐳; 𝐠)𝑑𝐳

=∶
𝜕𝑔𝑙
𝜕𝑑𝑙

E𝐠[ℎ𝑟(𝐙; 𝐫)𝑠𝑙(𝑍𝑘𝑙 ; 𝐠)],

𝑟 = 1, 2; 𝑙 = 1,… ,𝑀.

(20)

4.2. Design sensitivities

For independent coordinates of 𝐙, consider the Fourier spline ex-
pansion of the 𝑙th score function 𝑠𝑙(𝑍𝑘𝑙 ; 𝐠)

𝑠𝑙,𝑝𝑘𝑙 ,𝜉𝑘𝑙 (𝑍𝑘𝑙 ; 𝐠) = 𝑠𝑙,∅(𝐠) +
𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)𝜓𝑘𝑙𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙
(𝑍𝑘𝑙 ; 𝐠)

=
𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)𝜓𝑘𝑙𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙
(𝑍𝑘𝑙 ; 𝐠),

(21)

where

𝐷𝑘𝑙 ,𝑖𝑘𝑙
(𝐠) ∶= ∫Ā{𝑘𝑙}

𝑠𝑙(𝑧𝑘𝑙 ; 𝐠)𝜓
𝑘𝑙
𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙

(𝑧𝑘𝑙 ; 𝐠)𝑓𝑍𝑘𝑙 (𝑧𝑘𝑙 ; 𝐠)𝑑𝑧𝑘𝑙

and

𝑠𝑙,∅(𝐠) = ∫Ā{𝑘𝑙}
𝑠𝑙(𝑧𝑘𝑙 ; 𝐠)𝑓𝑍𝑘𝑙 (𝑧𝑘𝑙 ; 𝐠)𝑑𝑧𝑘𝑙

=∶ E𝐠[𝑠𝑙,∅(𝑍𝑘𝑙 ; 𝐠)] = 0.

Then, applying the SDD approximation of an output ℎ in (16) and
the Fourier spline expansion of the 𝑙th score function in (21) to the
integrand ℎ𝑟(𝐙; 𝐫)𝑠𝑙(𝑍𝑘𝑙 ; 𝐠) of (20) yields

ℎ𝑟𝑆,𝐩,𝜩 (𝐙; 𝐫)𝑠𝑙,𝑝𝑘𝑙 ,𝜉𝑘𝑙 (𝑍𝑘𝑙 ; 𝐠)

=

(

ℎ∅(𝐫) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)𝛹
𝑢
𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢

(𝐙𝑢, 𝐠)
)𝑟

×

( 𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)𝜓𝑘𝑙𝑖𝑘𝑙 ,𝑝𝑘𝑙 ,𝝃𝑘𝑙
(𝑍𝑘𝑙 ; 𝐠)

)

.

(22)

Thereafter, applying the expectation operator on (22) and using the
second-moment properties in (10) and (11), the sensitivities of the first-
order (𝑟 = 1) and second-order (𝑟 = 2) moments with respect to 𝑑𝑙 are
derived as

𝜕E𝐠[ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫)]
𝜕𝑑𝑙

=
𝜕𝑔𝑙
𝜕𝑑𝑙

𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐶𝑘𝑙 𝑖𝑘𝑙 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠), (23)

and
𝜕E𝐠[ℎ2𝑆,𝐩,𝜩 (𝐙; 𝐫)]

𝜕𝑑𝑙
=

𝜕𝑔𝑙
𝜕𝑑𝑙

(

2ℎ∅(𝐫)
𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐶𝑘𝑙 𝑖𝑘𝑙 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)

+
𝐽
∑

𝑗=1
𝑇𝑙,𝑗

)

, 𝐽 ∈ N,

(24)

respectively. The closed-form expressions of the moment sensitivities in
(23) and (24) mainly consist of the SDD and Fourier spline expansion
oefficients of the response and score functions, respectively. For (24),
he last terms 𝑇𝑙,𝑗 , 𝑗 = 1, 2, 3, if 𝐽 = 3, are

𝑇𝑙,1 =
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

𝑛𝑘1
∑

𝑖𝑘1=2

𝑛𝑘2
∑

𝑖𝑘2=2

𝑛𝑘3
∑

𝑖𝑘3=2
𝐶𝑘1𝑖𝑘1 (𝐫)𝐶𝑘2𝑖𝑘2 (𝐫)

×𝐷𝑘𝑙 ,𝑖𝑘3
(𝐠)E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)

×𝛹𝑘2 (𝑍 ; 𝐠)𝛹𝑘𝑙 (𝑍 ; 𝐠)
]

,
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2
𝑘2 𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

𝑘3
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where

E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐠)𝛹
𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)
]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐠)

×𝛹𝑘3𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3
(𝑍𝑘3 ; 𝐠)

]

, if 𝑘1 = 𝑘2 = 𝑘3,

0, otherwise,

(25)

𝑇𝑙,2 = 2
𝑁
∑

𝑘1=1

𝑁−1
∑

𝑘2=1

𝑁
∑

𝑘3=𝑘2+1

𝑛𝑘1
∑

𝑖𝑘1=2

𝑛𝑘2
∑

𝑖𝑘2=2

𝑛𝑘3
∑

𝑖𝑘3=2

𝑛𝑘4
∑

𝑖𝑘4=2
𝐶𝑘1𝑖𝑘1 (𝐫)

×𝐶𝑘2𝑘3𝑖𝑘2 𝑖𝑘3 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘4
(𝐠)E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)

×𝛹𝑘2𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2
(𝑍𝑘2 ; 𝐠)𝛹

𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)

×𝛹𝑘𝑙𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4
(𝑍𝑘𝑙 ; 𝐠)

]

,

where

E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐠)𝛹
𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)

×𝛹𝑘𝑙𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4
(𝑍𝑘𝑙 ; 𝐠)

]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if 𝑘1 = 𝑘2; 𝑘3 = 𝑘𝑙; 𝑝𝑘1 = 𝑝𝑘2 ; 𝑝𝑘3 = 𝑝𝑘𝑙
; 𝝃𝑘1 = 𝝃𝑘2 ; 𝝃𝑘3 = 𝝃𝑘𝑙 ,
if 𝑘1 = 𝑘3; 𝑘2 = 𝑘𝑙; 𝑝𝑘1 = 𝑝𝑘3 ; 𝑝𝑘2 = 𝑝𝑘𝑙
; 𝝃𝑘1 = 𝝃𝑘3 ; 𝝃𝑘2 = 𝝃𝑘𝑙 ,

0, otherwise,

(26)

and

𝑇𝑙,3 =
𝑁−1
∑

𝑘1=1

𝑁
∑

𝑘2=𝑘1+1

𝑁−1
∑

𝑘3=1

𝑁
∑

𝑘4=𝑘3+1

𝑛𝑘1
∑

𝑖𝑘1=2

𝑛𝑘2
∑

𝑖𝑘2=2

𝑛𝑘3
∑

𝑖𝑘3=2

𝑛𝑘4
∑

𝑖𝑘4=2

𝑛𝑘5
∑

𝑖𝑘5=2

×𝐶𝑘1𝑘2𝑖𝑘1 𝑖𝑘2 (𝐫)𝐶𝑘3𝑘4𝑖𝑘3 𝑖𝑘4 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘5
(𝐠)

×E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐠)

×𝛹𝑘3𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3
(𝑍𝑘3 ; 𝐠)𝛹

𝑘4
𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4

(𝑍𝑘4 ; 𝐠)

×𝛹𝑘𝑙𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5
(𝑍𝑘𝑙 ; 𝐠)

]

,

where

E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘2
𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2

(𝑍𝑘2 ; 𝐠)𝛹
𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)

×𝛹𝑘4𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4
(𝑍𝑘4 ; 𝐠)𝛹

𝑘𝑙
𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5

(𝑍𝑘𝑙 ; 𝐠)
]

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E𝐠

[

𝛹𝑘2𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2
(𝑍𝑘2 ; 𝐠)𝛹

𝑘4
𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4

(𝑍𝑘4 ; 𝐠)𝛹
𝑘𝑙
𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5

(𝑍𝑘𝑙 ; 𝐠)
]

,

if 𝑘1 = 𝑘3; 𝑘2 = 𝑘4 = 𝑘𝑙; 𝑝𝑘1 = 𝑝𝑘3 ; 𝝃𝑘1 = 𝝃𝑘3 ,
E𝐠

[

𝛹𝑘2𝑖𝑘2 ,𝑝𝑘2 ,𝝃𝑘2
(𝑍𝑘2 ; 𝐠)𝛹

𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)𝛹
𝑘𝑙
𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5

(𝑍𝑘𝑙 ; 𝐠)
]

,

if 𝑘1 = 𝑘4; 𝑘2 = 𝑘3 = 𝑘𝑙; 𝑝𝑘1 = 𝑝𝑘4 ; 𝝃𝑘1 = 𝝃𝑘4 ,
E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘3
𝑖𝑘3 ,𝑝𝑘3 ,𝝃𝑘3

(𝑍𝑘3 ; 𝐠)𝛹
𝑘𝑙
𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5

(𝑍𝑘𝑙 ; 𝐠)
]

,

if 𝑘2 = 𝑘4; 𝑘1 = 𝑘3 = 𝑘𝑙; 𝑝𝑘2 = 𝑝𝑘4 ; 𝝃𝑘2 = 𝝃𝑘4
E𝐠

[

𝛹𝑘1𝑖𝑘1 ,𝑝𝑘1 ,𝝃𝑘1
(𝑍𝑘1 ; 𝐠)𝛹

𝑘4
𝑖𝑘4 ,𝑝𝑘4 ,𝝃𝑘4

(𝑍𝑘4 ; 𝐠)𝛹
𝑘𝑙
𝑖𝑘5 ,𝑝𝑘5 ,𝝃𝑘5

(𝑍𝑘𝑙 ; 𝐠)
]

,

if 𝑘2 = 𝑘3; 𝑘1 = 𝑘4 = 𝑘𝑙; 𝑝𝑘2 = 𝑝𝑘3 ; 𝝃𝑘2 = 𝝃𝑘3
0, otherwise.

(27)

The last 𝐽 additive terms 𝑇𝑙,𝑗 in (24) are determined by at most
degree (𝑆) of interaction among input variables. For example, select-
ing 𝑆 = 1 and 2 produces the univariate second-moment sensitivity
approximation

𝜕E𝐠[ℎ21,𝐩,𝜩 (𝐙; 𝐫)]

𝜕𝑑𝑙
=

𝜕𝑔𝑙
𝜕𝑑𝑙

(

2ℎ∅(𝐫)
𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐶𝑘𝑙 𝑖𝑘𝑙 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)

+ 𝑇𝑙,1

)

t

8

and the bivariate second-moment sensitivity approximation

𝜕E𝐠[ℎ22,𝐩,𝜩 (𝐙; 𝐫)]

𝜕𝑑𝑙
=

𝜕𝑔𝑙
𝜕𝑑𝑙

(

2ℎ∅(𝐫)
𝑛𝑘𝑙
∑

𝑖𝑘𝑙=2
𝐶𝑘𝑙 𝑖𝑘𝑙 (𝐫)𝐷𝑘𝑙 ,𝑖𝑘𝑙

(𝐠)

+ 𝑇𝑙,1 + 𝑇𝑙,2 + 𝑇𝑙,3

)

,

respectively.
Note that the sensitivities in (23) and (24) are exact as 𝑆 → 𝑁

and 𝑛𝑘𝑙 → ∞, provided that expansion coefficients and expectations
of products of orthonormalized B-splines are exact. However, for (24),
given the last 𝐽 additive terms 𝑇𝑙,𝑗 for 𝑗 = 1 (𝐽 = 1) or 𝑗 = 1, 2, 3 (𝐽 = 3),
the second-moment sensitivity is exact when the response function
ℎ is univariate or at most bivariate, respectively. One may further
exploit the formulations of 𝑇𝑙,𝑗 for 𝑗 ≥ 4 (𝐽 ≥ 4) if high degrees of
interaction among input variables are critical to the sensitivity solution.
However, in many practical problems, such a high-variate interaction
effect is often negligible for sensitivity analysis to find an optimal
solution.

In (25), (26), and (27), many solutions of their expectations are
ither one or zero, depending on the spline indices. Otherwise, the
xpectations of various products of three random orthonormalized B-
plines can be determined numerically, using Gauss quadrature or
ampling methods, such as MC, QMC, or LHS, without any generic out-
ut function evaluations, say, FEA. Therefore, the calculations are not
omputationally expensive. More importantly, in the design process,
he expectations of products of these splines need not be recalculated
ince the orthonormalized B-splines of the transformed input 𝐙 are
reserved throughout all design iterations.

. Proposed method for design optimization

The SDD approximations described in the preceding sections are
asily employed to evaluate the objective and constraint functions,
long with their sensitivity analysis. Such SDD-based stochastic and
esign sensitivity analyses are now integrated into any gradient-based
lgorithm to solve RDO problems, in which there are multiple meth-
ds. This section describes two distinct methods for the integration,
esulting in the direct SDD and multi-point single-step (MPSS) SDD
ethods.

.1. Direct SDD

The direct SDD method is the most straightforward way to com-
ine the SDD-based stochastic and design sensitivity analyses with a
hosen gradient-based optimization algorithm. During a design opti-
ization process, given a current design vector and the corresponding
alues of the objective and/or constraint functions and their sen-
itivities, the following design is calculated from the optimization
lgorithm. In such a design update, recalculations of the SDD expansion
oefficients, used for new statistical moment and sensitivity analy-
es, are only performed through new original output function evalu-
tions that are usually expensive to run and required at every design
teration.
Consider a change of design variables, say, from an old design
to a new design 𝐝′ during the design iteration process. Thereby,

he probability measure of 𝐗 varies from 𝑓𝐗(𝐱;𝐝)𝑑𝐱 to 𝑓𝐗(𝐱;𝐝′)𝑑𝐱,
orresponding to the old and new designs, respectively. However,
rom either shifting or scaling transformations, the probability measure
𝐙(𝐳; 𝐠)𝑑𝐳 of 𝐙 remains unchanged as 𝐠 is assigned as the same value
ero or one, respectively, throughout all design iterations. Instead, the
espective old vector 𝐫 of an output function evolves to its new vector
′, as described in Section 2. As a result, a new set of output data is
alled for whenever the design changes.
Let the input–output data sets generated independently for the old

nd new designs be {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫)}𝐿𝑡=1 and {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫′)}𝐿𝑡=1, respec-

ively. In these two sets, note that the input data are the same, but the
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output data are different due to two distinct vectors 𝐫 and 𝐫′. Denote
by 𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫) and 𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫

′) the expansion coefficients for the old
and new designs, respectively. Then the expansion coefficients for both
designs are obtained by minimizing the associated mean square error

𝑒𝑆,𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑡=1

[

[

ℎ(𝐳(𝑡); 𝐫) −
[

ℎ∅(𝐫) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)𝛹
𝑢
𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢

(𝐳(𝑡); 𝐠)
]

]2

,

(28)

nd

𝑒′𝑆,𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑡=1

[

[

ℎ(𝐳(𝑡); 𝐫′) −
[

ℎ∅(𝐫′) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫
′)𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳

(𝑡); 𝐠)
]

]2

,

(29)

respectively, using the SLS method explained in Section 3. According
to (28) and (29), there is no demand for any regeneration of the input
data or any recalculation of the multivariate orthonormalized B-splines,
but, still, new output data sets are mandated throughout all design
iterations. Consequently, the direct SDD method can be expensive, de-
pending on the cost of evaluating the objective and constraint functions
and the requisite number of design iterations to attain convergence.

In addition, the direct SDD method is not limited to using the SLS
method. That is, the SDD expansion coefficients can be determined
using an analytical or numerical integration method, although such
methods are generally more expensive than the SLS method. In this
work, due to its simplicity in the optimization algorithm, the direct
SDD method was mainly employed to evaluate the accuracy power of
the SDD-based stochastic and sensitivity methods to find an optimal
solution in solving an elementary RDO problem.

5.2. Multi-point single-step SDD

The multi-point single-step SDD method, fusing statistical moment
and sensitivity analyses, and a suitable gradient-based optimization
algorithm, is intended to solve RDO problems for large design space
from a smaller number of stochastic analyses through single-step, SDD
approximations on a series of local subregions of the design space.
Therefore, this method is built on (1) the multi-point approximation
and (2) the single-step procedure.

5.2.1. Multi-point approximation
For the rectangular design space

 =
𝑙=𝑀
⨉

𝑙=1
[𝑑𝑙,𝐿, 𝑑𝑙,𝑈 ] ⊆ R𝑀

of the RDO problem described in (6), denote by 𝑞′ = 1, 2,… , 𝑄′, 𝑄′ ∈ N,
an index representing the 𝑞′th subregion of  with the initial design
vector 𝐝(𝑞

′)
0 = (𝑑(𝑞

′)
1,0 ,… , 𝑑(𝑞

′)
𝑀,0)

⊺. Given a sizing factor 0 < 𝛽(𝑞
′)

𝑙 ≤ 1, the
domain of the 𝑞′th subregion is expressed by

(𝑞′) =
𝑙=𝑀
⨉

𝑙=1

[

𝑑(𝑞
′)

𝑙,𝐿 , 𝑑
(𝑞′)
𝑙,𝑈

]

=
𝑙=𝑀
⨉

𝑙=1

[

𝑑(𝑞
′)

𝑙,0 − 𝛽(𝑞
′)

𝑙

(𝑑𝑙,𝑈 − 𝑑𝑙,𝐿)
2

, 𝑑(𝑞
′)

𝑙,0 + 𝛽(𝑞
′)

𝑙

(𝑑𝑙,𝑈 − 𝑑𝑙,𝐿)
2

]

⊆  ⊆ R𝑀 ,

𝑞′ = 1,… , 𝑄′,

(30)

where 𝑑(𝑞
′)

𝑙,𝑈 = 𝑑(𝑞
′)

𝑙,0 +𝛽(𝑞
′)

𝑙 (𝑑𝑙,𝑈−𝑑𝑙,𝐿)∕2 and 𝑑
(𝑞′)
𝑙,𝐿 = 𝑑(𝑞

′)
𝑙,0 −𝛽(𝑞

′)
𝑙 (𝑑𝑙,𝑈−𝑑𝑙,𝐿)∕2.

According to the multi-point approximation [2,9,26], the RDO prob-
lem in (6) is converted to a succession of local RDO problems defined
9

or 𝑄′ subregions. For the 𝑞′th subregion, the local RDO problem
equires one to

min
𝐝∈(𝑞′)⊆R𝑀

𝑐(𝑞
′)

0,𝑆,𝐩,𝜩 (𝐝) ∶= 𝑤1

E𝐠[ℎ̃
(𝑞′)
0,𝑆,𝐩,𝜩 (𝐙; 𝐫)]

𝜇0∗

+𝑤2

√

var𝐠[ℎ̃
(𝑞′)
0,𝑆,𝐩,𝜩 (𝐙; 𝐫)]

𝜎∗0
,

subject to 𝑐(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐝) ∶= 𝛼𝑎
√

var𝐠[ℎ̃
(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)]

− E𝐠[ℎ̃
(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)] ≤ 0,

[

𝑑(𝑞
′)

𝑙,0 − 𝛽(𝑞
′)

𝑙 (𝑑𝑙,𝑈 − 𝑑𝑙,𝐿) ∕ 2, 𝑑
(𝑞′)
𝑙,0

+ 𝛽(𝑞
′)

𝑙 (𝑑𝑙,𝑈 − 𝑑𝑙,𝐿)∕2
]

,
𝑎 = 1,… , 𝐾, 𝑙 = 1,… ,𝑀,

(31)

here

𝐠
[

ℎ̃(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)
]

∶= ∫Ā𝑁
ℎ̃(𝑞

′)
𝑎,𝑆,𝐩,𝜩 (𝐳; 𝐫)𝑓𝐙

(

𝐳; 𝐠(𝐝)
)

𝑑𝐳,

var𝐠
[

ℎ̃(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)
]

∶= E𝐠
[

ℎ̃(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)

−E𝐠[ℎ̃
(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫)]

]2
,

nd 𝑐(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐝), �̃�
(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐗), and ℎ̃

(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐙; 𝐫), 𝑎 = 0, 1,… , 𝐾, are local 𝑆-

ariate SDD approximations of 𝑐𝑎(𝐝), 𝑦𝑎(𝐗), and ℎ𝑎(𝐙; 𝐫), respectively,
for the 𝑞′th subregion; 𝑤1 ∈ R+

0 and 𝑤2 ∈ R+
0 , such that 𝑤1 + 𝑤2 =

1, are two non-negative, real-valued weights; and 𝜇∗0 ∈ R∖{0} and
𝜎∗0 ∈ R+

0 ∖{0} are two non-zero, real-value scaling factors. Furthermore,
𝑑(𝑞

′)
𝑙,0 − 𝛽(𝑞

′)
𝑙 (𝑑𝑙,𝑈 − 𝑑𝑙,𝐿)∕2 and 𝑑

(𝑞′)
𝑙,0 + 𝛽(𝑞

′)
𝑙 (𝑑𝑙,𝑈 − 𝑑𝑙,𝐿)∕2, also known as

the move limits, are the lower and upper bounds, respectively, of the
subregion (𝑞′). Here, the iterations with respect to 𝑞′ are associated
with solving 𝑞′th local RDO problems and should not be confused with
𝑞 describing the iteration count for design iterations in (6).

5.2.2. Single-step procedure
The single-step method is intended to solve each local RDO problem

in (31) from a single stochastic analysis by sidestepping the demand
for the recalculation of new input–output data sets to determine new
SDD expansion coefficients at every design iteration. However, it is
predicated on two important assumptions: (1) an 𝑆-variate SDD ap-
proximation ℎ𝑆,𝐩,𝜩 (𝐙; 𝐫) of ℎ(𝐙; 𝐫) at the initial design is adequate for
evaluating objective and/or constraint functions and their sensitivities
on the entire design space; and (2) the SDD expansion coefficients for
a new design, derived by reusing those generated for an old design, are
acceptably accurate.

Under the above two assumptions, consider the vectors 𝐫 and 𝐫′,
determined by 𝐝 and 𝐝′, respectively. Assume that the SDD expan-
sion coefficients 𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫), 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , for the old design have been
calculated from the input–output data {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫)}𝐿𝑡=1 already. Then
the SDD expansion coefficients 𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫

′), 𝐢𝑢 ∈ ̄𝑢,𝐧𝑢 , for the new
design are estimated by changing the old input data (say) {𝐳(𝑡)}𝐿𝑡=1 to
the new input data (say) {𝐳′(𝑡)}𝐿𝑡=1, depending on the scaling or shifting
transformation, as follows.

𝐳′(𝑡) =
⎧

⎪

⎨

⎪

⎩

𝐳(𝑡) − 𝐫′ + 𝐫, shifting,

diag
(

𝑟1
𝑟′1
,… ,

𝑟𝑁
𝑟′𝑁

)

𝐳(𝑡), scaling.

To further explain these modifications, first, consider the shifting trans-
formation. In this case, the 𝑡th sample of the output function is

ℎ(𝐳(𝑡); 𝐫′) ∶= 𝑦(𝐳(𝑡) − 𝐫′) = 𝑦(𝐳(𝑡) − 𝐫′ + 𝐫 − 𝐫)
′(𝑡) ′(𝑡)
= 𝑦(𝐳 − 𝐫) =∶ ℎ(𝐳 ; 𝐫),
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where 𝐳′(𝑡) ∶= 𝐳(𝑡) − 𝐫′ + 𝐫 is the modified 𝑡th input sample. Secondly,
for the scaling transformation, the 𝑡th sample of the output function is

ℎ(𝐳(𝑡); 𝐫′) ∶= 𝑦

(

diag

[

1
𝑟′1
,… , 1

𝑟′𝑁

]

𝐳(𝑡)
)

= 𝑦
(

diag
[

1
𝑟1
,… , 1

𝑟𝑁

]

× diag
[

𝑟1
𝑟′1
,… ,

𝑟𝑁
𝑟′𝑁

]

𝐳(𝑡)
)

= 𝑦
(

diag
[

1
𝑟1
,… , 1

𝑟𝑁

]

𝐳′(𝑡)
)

=∶ ℎ(𝐳′(𝑡); 𝐫),

where 𝐳′(𝑡) ∶= diag[𝑟1∕𝑟′1,… , 𝑟𝑁∕𝑟′𝑁 ]𝐳(𝑡) is the modified 𝑡th input sample.
These modifications are intended to evaluate the output function at the
new design to be approximated by the output function at the old design,
that is,

ℎ(𝐳(𝑡); 𝐫′) = ℎ(𝐳′(𝑡); 𝐫)
≈ ℎ∅(𝐫) +

∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)

×𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳
′(𝑡); 𝐠),

(32)

where the second and third lines reflect the 𝑆-variate SDD approxima-
tion. Applying (32) to (29) produces the following mean square error:

𝑒′′𝑆,𝐩,𝜩 ∶= 1
𝐿

𝐿
∑

𝑡=1

[

ℎ∅(𝐫) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫)

×𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳
′(𝑡); 𝐠) −

(

ℎ∅(𝐫′) +
∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐢𝑢∈̄𝑢,𝐧𝑢

×𝐶𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐫
′)𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳

(𝑡); 𝐠)
)]2

,

(33)

the minimization of which by the SLS method yields SDD expansion
coefficients for the new design. Compared with the minimization of 𝑒′𝑚
in (29), new output data obtained from the generic output function,
that is, ℎ(𝐳(𝑙); 𝐫′), are not demanded. Instead, the output data, involved
in (33), are generated by reusing the old expansion coefficients, initially
obtained, and employing their SDD approximation for estimating new
output data. Subsequently, new statistical moment and design sensi-
tivity analyses, all employing an 𝑆-variate SDD approximation at the
initial design, are conducted with little extra cost throughout all design
iterations. However, notwithstanding that the single-step procedure
holds the potential to substantially curtail such computational effort,
employing it alone easily produces inaccurate or computationally in-
efficient RDO solutions for large design spaces because of the two
assumptions mentioned above.

5.2.3. Computational flow
When combining the multi-point approximation with the single-step

procedure, the result is an accurate and efficient design process to solve
the RDO problem [2,9]. The multi-point single-step SDD method is
schematically illustrated in Fig. 1a. Here, 𝐝(𝑞

′)
∗ is the optimal design

solution obtained by the single-step procedure for the 𝑞′th local RDO
problem in (31). The local optimal design solution is assigned to the
initial design at the next local RDO problem, which is successively re-
peated along the design process to obtain the final convergent solution
𝐝∗.

As mentioned in Section 5.2.2, in the single step procedures to solve
each local subregion problem, SDD approximations at the respective
initial design 𝐝(𝑞

′)
0 , including orthonormalized B-splines with the closed

boundary domain ×𝑁𝑘=1[𝑎
(𝑞′)
𝑘 , 𝑏(𝑞

′)
𝑘 ], are reused to represent new output

data. Therefore, the corresponding new input data should exist within
the supports of the splines. For the 𝑞′th subregion problem, consider
𝐿 number of arbitrary points 𝐱(𝑡) = (𝑥(𝑡)1 ,… , 𝑥(𝑡)𝑁 )⊺ of 𝐗, 𝑡 = 1,… , 𝐿,
and an 𝑀 dimensional design vector 𝐝(𝑞′) ⊆ (𝑞′), where (𝑞′) =
10
×𝑀𝑙=1[𝑑
(𝑞′)
𝑙,𝐿 , 𝑑

(𝑞′)
𝑙,𝑈 ], 𝑀 ≤ 𝑁 . Let 𝑥(𝑞

′)
𝑘𝑙 ,max = max{𝑥(𝑡)𝑘𝑙 ∶ 𝑡 = 1,… , 𝐿 ∈ N} be

he maximum value among the total arbitrary points of 𝑋𝑘𝑙 following

𝑋𝑘𝑙
(𝑥𝑘𝑙 ; 𝑑

(𝑞′)
𝑙,𝑈 ), and let 𝑥(𝑞

′)
𝑘𝑙 ,min = min{𝑥(𝑡)𝑘𝑙 ∶ 𝑡 = 1,… , 𝐿 ∈ N} be

he minimum value among the total arbitrary points of 𝑋𝑘𝑙 following

𝑋𝑘𝑙
(𝑥𝑘𝑙 ; 𝑑

(𝑞′)
𝑙,𝐿 ). Then, the conditions which must be satisfied to place

he input data within the supports of the splines are

𝑏(𝑞
′)

𝑘𝑙
− 𝑑(𝑞

′)
𝑙,𝑈 | > |𝑥(𝑞

′)
𝑘𝑙 ,max − 𝑑

(𝑞′)
𝑙,𝑈 | (34)

and

|𝑎(𝑞
′)

𝑘𝑙
− 𝑑(𝑞

′)
𝑙,𝐿 | > |𝑥(𝑞

′)
𝑘𝑙 ,min − 𝑑

(𝑞′)
𝑙,𝐿 |. (35)

Fig. 1b illustrates the above conditions in a two-dimensional case (𝑁 =
2 and 𝑀 = 2). Applying (34) and (35) to (30) produces the inequality
conditions of sizing factors 𝛽(𝑞

′)
𝑙 , 𝑙 = 1,… ,𝑀 , as

𝛽(𝑞
′)

𝑙 < min

⎡

⎢

⎢

⎢

⎣

2
(

𝑏(𝑞
′)

𝑘𝑙
− 𝑑(𝑞

′)
𝑙,0 − |𝑥(𝑞

′)
𝑘𝑙 ,max − 𝑑

(𝑞′)
𝑙,𝑈 |

)

𝑑𝑙,𝑈 − 𝑑𝑙,𝐿
,

2
(

𝑑(𝑞
′)

𝑙,0 − 𝑎(𝑞
′)

𝑘𝑙
− |𝑑(𝑞

′)
𝑙,𝐿 − 𝑥(𝑞

′)
𝑘𝑙 ,min|

)

𝑑𝑙,𝑈 − 𝑑𝑙,𝐿

⎤

⎥

⎥

⎥

⎦

.

(36)

Finally, the computational flow of the multi-point single-step SDD
method, including the step to satisfy (34) and (35) in sizing subregions,
is presented in Figs. 2 and 3 with supplementary descriptions of each
step as follows.

1. Set termination criteria 0 < 𝜖1, 𝜖2 ≪ 1; set tolerances for sizing
subregions 0 < 𝜖3, 𝜖4, 𝜖5, 𝜖6, 𝜖7 < 1; initialize size parameters
0 < 𝛽(𝑞

′)
𝑘 ≤ 1, 𝑘 = 1,… ,𝑀 , of (𝑞′); set an initial design vector

𝐝(𝑞
′)

0 = (𝑑(𝑞
′)

1,0 ,… , 𝑑(𝑞
′)

𝑀,0). The initial design can be in either feasible
or infeasible domains with respect to the probabilistic constraints.

2. Transform the input random vector 𝐗 to a new random vector 𝐙
such that E𝐝[𝑍𝑘𝑙 ] = 𝑔𝑙 = 0 or 1, 𝑙 = 1,… ,𝑀 , by the shifting or
the scaling, respectively, described in Section 2.2.

3. Select the at most degree (𝑆) of interaction among input variables
for the SDD approximations of performance functions ℎ𝑎(𝐳; 𝐫),
𝑎 = 0, 1,… , 𝐾. For the coordinate direction 𝑘, 𝑘 = 1,… , 𝑁 , choose
𝑝𝑘, and create a knot sequence 𝝃𝑘, following in Section 3.1. Con-
struct measure-consistent univariate orthonormalized B-splines
𝛹𝑘𝑖𝑘 ,𝑝𝑘 ,𝜉𝑘 (𝑧𝑘; 𝐠) through three steps in Section 3.2.1. Then, con-
struct measure-consistent multivariate orthonormalized B-splines
𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳; 𝐠) in a dimensionwise manner in
Section 3.2.2.

4. Update the current design vector 𝐝, as follows. If 𝑞′ = 1, create
input samples 𝐳(𝑡), 𝑡 = 1,… , 𝐿, via the optimal LHS method,
introduced in Appendix C. Then, construct an input–output data
set {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫)}𝐿𝑡=1 of a sample size 𝐿 > 𝐿𝑆,𝐩,𝜩 , 𝐿∕𝐿𝑆,𝐩,𝜩 ≥ 3
(say). If 𝑞′ > 1, reuse the input samples to generate new input–
output data sets {𝐳(𝑡), ℎ(𝐳(𝑡); 𝐫′)}𝐿𝑡=1. In every 𝑞

′ step, use SLS to
estimate SDD expansion coefficients with respect to 𝛹 𝑢𝐢𝑢 ,𝐩𝑢 ,𝜩𝑢 (𝐳; 𝐠)
for a performance function ℎ.

5. In each iteration, conduct the SDD-based statistical moment and
sensitivity analyses. For the design sensitivity analysis, if 𝑞′ = 1,
construct an input–output data set for score functions,
{𝐳(𝑡), 𝑠𝑙(𝐳(𝑡); 𝐠)}𝐿𝑡=1, 𝑙 = 1,… ,𝑀 . Otherwise, reuse the input–output
data set created in 𝑞′ = 1. Then, obtain the objective and/or
constraint function values and their gradient values at 𝐝 = 𝐝(𝑞

′)
0 .

6. If 𝑞′ = 1 and 𝑠 = 1, use the initial values of size parameters
0 < 𝛽(𝑞

′)
𝑙 ≤ 1, 𝑙 = 1,… ,𝑀 , in Step 1. If 𝑞′ > 1 and 𝑠 = 1, modify

the size parameters according to three criteria: (1) an estimated
accuracy of SDD approximations, (2) an active/inactive condition
of subregion boundaries, and (3) a converged condition of current
designs. Otherwise, skip Step 6. Detail explanations of the above
three conditions are presented in the following.
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Fig. 1. A schematic description of the multi-point single-step SDD: (a) design process during 𝑄′ iterations to get the final optimum 𝐝∗; (b) the necessity condition of the 𝑞′th subregion
size relative to the intervals of spline supports at the initial design 𝐝(𝑞

′ )
0 for the single-step procedure; for 𝑙 = 1, 2, 𝑙(𝑞

′ )
𝑙,𝑈 = |𝑏(𝑞

′ )
𝑙 − 𝑑(𝑞

′ )
𝑙,𝑈 | > |𝑥(𝑞

′ )
𝑙,max − 𝑑

(𝑞′ )
𝑙,𝑈 |, 𝑙(𝑞

′ )
𝑙,𝐿 = |𝑎(𝑞

′ )
𝑙 − 𝑑(𝑞

′ )
𝑙,𝐿 | > |𝑥(𝑞

′ )
𝑙,min − 𝑑

(𝑞′ )
𝑙,𝐿 |,

where 𝑥(𝑞
′ )

𝑙,max = max{𝑥(𝑡)𝑙 ∶ 𝑡 = 1,… , 𝐿} for 𝑋𝑙 following 𝑓𝑋𝑙
(𝑥𝑙 ; 𝑑

(𝑞′ )
𝑙,𝑈 ) and 𝑥(𝑞

′ )
𝑙,min = min{𝑥(𝑡)𝑙 ∶ 𝑡 = 1,… , 𝐿} for 𝑋𝑙 following 𝑓𝑋𝑙

(𝑥𝑙 ; 𝑑
(𝑞′ )
𝑙,𝐿 ), 𝐿 ∈ N.
6–1. First condition: For any 𝑎 = 0, 1,… , 𝐾, if
‖𝑐(𝑞

′)
𝑎,𝑆,𝐩,𝜩 (𝐝

(𝑞′)
0 ) − 𝑐(𝑞

′−1)
𝑎,𝑆,𝐩,𝜩 (𝐝

(𝑞′)
0 )‖ ≤ 𝜖3‖𝑐

(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐝

(𝑞′)
0 )‖, increase 𝛽(𝑞

′)
𝑙

for all 𝑙 = 1,… ,𝑀 . Otherwise, go to Step 6-2. One may need
to control the enlargement rate, depending on the problems at
hand. For instance, set 𝛽(𝑞

′)
𝑙 = (2 − 1∕𝜙)𝛽(𝑞

′−1)
𝑙 , where the golden

ratio 𝜙 ≈ 1.618.
6–2. First condition: For any 𝑎 = 0, 1,… , 𝐾, if

‖𝑐(𝑞
′)

𝑎,𝑆,𝐩,𝜩 (𝐝
(𝑞′)
0 ) − 𝑐(𝑞

′−1)
𝑎,𝑆,𝐩,𝜩 (𝐝

(𝑞′)
0 )‖ ≥ 𝜖4‖𝑐

(𝑞′)
𝑎,𝑆,𝐩,𝜩 (𝐝

(𝑞′)
0 )‖, decrease 𝛽(𝑞

′)
𝑙

for all 𝑙 = 1,… ,𝑀 . As an instance of the decrement rate, set
𝛽(𝑞

′)
𝑙 = 𝛽(𝑞

′−1)
𝑙 ∕𝜙, where the golden ratio 𝜙 ≈ 1.618. Otherwise,

go to Step 6-3.
6–3. Second condition: If ‖𝑑(𝑞

′)
𝑙,0 − 𝑑(𝑞

′−1)
𝑙,𝐿 ‖ ≤ 𝜖5 or ‖𝑑

(𝑞′)
𝑙,0 − 𝑑(𝑞

′−1)
𝑙,𝑈 ‖ ≤ 𝜖5,

increase 𝛽(𝑞
′)

𝑙 , 𝑙 = 1,… ,𝑀 . As an instance of the enlargement
rate, set 𝛽(𝑞

′)
𝑙 = (2 − 1∕𝜙)𝛽(𝑞

′−1)
𝑙 , where the golden ratio 𝜙 ≈ 1.618.

Otherwise, go to Step 6-4.
6–4. Third condition: If ‖𝑑(𝑞

′)
𝑙,0 −𝑑(𝑞

′−1)
𝑙,0 ‖ ≤ 𝜖6, decrease 𝛽

(𝑞′)
𝑙 , 𝑙 = 1,… ,𝑀 .

As an instance of the decrement rate, set 𝛽(𝑞
′)

𝑙 = 𝛽(𝑞
′−1)

𝑙 ∕𝜙, where
the golden ratio 𝜙 ≈ 1.618. Otherwise, go to Step 6–5.
11
6–5. Move limit: If 𝛽(𝑞
′)

𝑙 (𝑑𝑙,𝑈 − 𝑑𝑙,𝐿) < 𝜖7, set 𝛽
(𝑞′)
𝑙 = 𝜖7∕(𝑑𝑙,𝑈 − 𝑑𝑙,𝐿).

Otherwise, go to Step 6–6.
6–6. If 𝑥(𝑞

′)
𝑘𝑙 ,𝑚𝑎𝑥

, 𝑥(𝑞
′)

𝑘𝑙 ,𝑚𝑖𝑛
∉ [𝑎(𝑞

′)
𝑘𝑙
, 𝑏(𝑞

′)
𝑘𝑙

] through checking the conditions
(34) and (35), decrease 𝛽(𝑞

′)
𝑙 , 𝑙 = 1,… ,𝑀 . One may use the

inequalities of sizing parameters in (36). Otherwise, 𝑙 = 𝑙 + 1,
and repeat the process until the loop condition 𝑙 ≤𝑀 is satisfied.

7. If the current design 𝐝 is not feasible, that is, at least one con-
straint is violated, go to Step 8. Otherwise, set 𝐝 to the current
feasible design 𝐝(𝑞

′)
𝑓 , then go to Step 9.

8. Interpolate between the current design 𝐝 and the previous feasible
design 𝐝(𝑞

′−1)
𝑓 . For instance, set 𝐝 = 𝐝(𝑞

′−1)
𝑓 ∕𝜙+(1−1∕𝜙)𝐝, where the

golden ratio 𝜙 ≈ 1.618. If an initial design at 𝑞′ = 1 is infeasible,
interpolate it with upper or lower bounds of the design space, or
another initial guess, depending on the problems at hand.

9. If any of the two termination conditions, such that (1) ‖𝐝(𝑞
′)

𝑓 −

𝐝(𝑞
′−1)

𝑓 ‖ ≤ 𝜖1 and/or (2) ‖𝑐(𝑞
′)

0,𝑚 (𝐝
(𝑞′)
𝑓 ) − 𝑐(𝑞

′)
0,𝑚 (𝐝

(𝑞′−1)
𝑓 )‖ ≤ 𝜖2, are

met, terminate the optimization process and set the final optimal
design as 𝐝∗ = 𝐝(𝑞

′). Otherwise, go to Step 10.
𝑓
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Fig. 2. A flow chart of the multi-point single-step SDD method.
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10. Solve the 𝑞′th local RDO problem with the single-step process
using a gradient-based algorithm, such as sequential quadratic
programming, to obtain a local optimal solution 𝐝(𝑞

′)
∗ . Then, in-

crease the subregion count as 𝑞′ = 𝑞′ +1. Set 𝐝(𝑞
′)

0 = 𝐝(𝑞
′−1)

∗ and go
to Step 4.

. Numerical examples

Four numerical examples are presented to demonstrate the effi-
acy of the proposed methods, as follows: the direct SDD method
n Examples 1 and 2 and the multi-point single-step SDD method in
xamples 3 and 4. All examples employed a single objective function
r the weighted sum approach. The objective and constraint functions
re associated with elementary mathematical functions or engineering
pplications from a simple truss to an industrial-scale robotic gripper
aw design problem. In such practical engineering problems, both sizing
nd shape design optimizations in the context of RDO were studied. In
ll examples, the design variables are the statistical means of the two
 P

12
hrough at most the twenty-six dimensional input random variables,
hich are mutually statistically independent.
For all examples, the coordinate degrees of the SDD approximation

re identical, say, 𝑝1 = ⋯ , 𝑝𝑁 = 𝑝. The selected degree of interaction 𝑆,
oordinate spline degree 𝑝, or subinterval number 𝐼 of the SDD methods
re tabulated in Table 1. Also, all knot sequences of input 𝐙 or 𝐗, used
n Examples 1–4, are (𝑝 + 1)-open and were transformed from uniform
pacing to ones following the probability distributions of input random
ariables. The controlling factors, chosen to generate knot sequences in
xamples 1–4, are listed in Table 1. In all examples, orthonormalized
-splines were determined by the Cholesky factorization of the spline
oment matrix obtained analytically.
In Examples 1–3, the proposed SDD-based solutions are compared

ith those obtained by the corresponding PCE-based methods when-
ver possible. For instance, in Examples 1 and 2, the PCE approximation
as employed in the direct method, resulting in the direct PCE method
or RDO solution. In Example 3, the PCE approximation was applied
o the multi-point single-step method as well, then named the MPSS
CE method, for comparison with the proposed MPSS SDD method.
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Fig. 3. A flow chart of sizing the 𝑞′th sub-region in the multi-point single-step SDD method.
w
E

o

owever, while in Example 1, the PCE approximation consists of
ermite orthonormal polynomials as their basis functions, in Examples
and 3, the PCE bases were determined by the Cholesky factorization
f the monomial moment matrix, introduced in the literature [27]. For
oth the SDD and PCE methods, the respective expansion coefficients,
 p

13
ith respect to their basis functions, were calculated analytically in
xample 1 and numerically using SLS in Examples 2–4.
To show the computational efficiency of the proposed RDO methods

r others, in Example 1 the requisite numbers of basis functions are
rovided, invoked by the fact that the computational cost increases in
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Table 1
The list of parameters (Examples 1–4): SDD truncation parameters (𝑆, 𝑝, 𝐼), sample sizes (𝐿), and quadrature point sizes (�̄�).
Methods 𝑆(a) 𝑝(b) 𝐼 (c) 𝑡(d) 𝐿(e) �̄�(f)

𝑦0 𝑦1 𝑦0 𝑦1 𝑦0 𝑦1 – 𝑦0, 𝑦1 –

Example 1 (Case 1)
Direct SDD 1 1 1 1 4 4 2 – –

1 1 1 1 6 6 2 – –
1 1 2 2 2 2 2 – –
1 1 2 2 4 4 2 – –

Example 1 (Case 2)
Direct SDD 1 1 1 1 2(g) 2(g) 1 – –

1 1 1 1 4(g) 4(g) 1 – –
1 1 2 2 2(g) 2(g) 1 – –
1 1 2 2 4(g) 4(g) 1 – –
2 2 2 2 2(g) 2(g) 1 – –

𝑦0 𝑦1–𝑦3 𝑦0 𝑦1–𝑦3 𝑦0 𝑦1–𝑦3 – 𝑦0 𝑦1–𝑦3 –

Example 2
Direct SDD 1 1 1 1 4 4 1.7(h)/1(i) 65 105 32

1 1 2 2 3 3 1.7(h)/1(i) 65 105 34
1 1 2 2 4 4 1.7(h)/1(i) 80 130 34
2 2 2 2 2 2 1.7(h)/1(i) 185 530 34

𝑦0 𝑦1–𝑦11 𝑦0 𝑦1–𝑦11 𝑦0 𝑦1–𝑦11 – 𝑦0–𝑦11 –

Example 3 (Case 1)
Multi-point single-step SDD 1 1 1 1 2 2 1.5 105 32

1 1 1 1 4 4 1.5 205 32
1 1 2 2 2 2 1.5 155 34
1 1 2 2 4 4 1.5 255 34

𝑦0 𝑦1–𝑦3 𝑦0 𝑦1–𝑦3 𝑦0 𝑦1–𝑦3 – 𝑦0–𝑦3 –

Example 3 (Case2)
Multi-point single-step SDD 1 1 1 1 4 4 1 205 32

1 1 1 1 6 6 1 305 32
1 1 2 2 2 2 1 155 34
1 1 2 2 4 4 1 255 34

𝑦0 𝑦1 𝑦0 𝑦1 𝑦0 𝑦1 – 𝑦0, 𝑦1 –

Example 4
Multi-point single-step SDD 1 1 1 1 2 2 1 159 32

(a)The degree of interaction of the SDD approximation for an output function or a score function.
(b)The spline degree or order of the SDD approximation for an output function or a score function.
(c)The number of subintervals of the SDD approximation for an output function or a score function.
(d)A controlling factor, used for the transformation of a knot vector, introduced in Section 3.1.
(e)The sample size of the input–output data set used for estimating expansion coefficients of an output function or a score
function.
(f)The number of quadrature points used for calculating the expectation of multiple products of three orthonormal polynomials
on a subinterval ([𝜉𝑘,𝑖𝑘 , 𝜉𝑘,𝑖𝑘+1]) of a coordinate (𝑘).
(g)Repeated knots (multiplicity of two) at (6, 6)⊺ were employed during the design iterations. At every iteration, if any knots
are not initially placed at (6, 6)⊺, additional repeated knots (multiplicity of two) are inserted at (6, 6)⊺.
(h)A controlling factor, used for the transformation of a knot vector, for 𝑍1–𝑍3.
(i)A controlling factor, used for the transformation of a knot vector, for 𝑋5.
I

a
f

he proportion to the number of basis functions employed. In contrast,
n Examples 2–4, the numbers of function evaluations or FEA required
o obtain input–output data set for SLS are provided to ascertain the
omputational cost. The input samples were created by the optimal
HS, explained in Appendix C. The sample sizes 𝐿, three to five times
he number of basis functions or expansion coefficients, say, 3 ×𝐿𝑆,𝐩,𝜩
r 5 × 𝐿𝑆,𝐩,𝜩 , are listed in Table 1 for Examples 2–4. The expectations
f various products of three random orthonormalized B-splines, in (25),
26), and (27), are determined analytically in Example 1 and estimated
umerically employing a Gauss quadrature rule in Examples 2–4. The
elected numbers of Gauss points (�̄�) in each coordinate direction, used
n Examples 2–4, are reported in Table 1.
As a gradient-based optimization, the sequential quadratic pro-

ramming was used to solve RDO problems in all examples. For the
ulti-point, single-step design SDD or PCE methods used in Examples 3
nd 4, their used tolerances or parameters are 𝜖1 = 1×10−3, 𝜖2 = 1×10−3,
𝜖3 = 0.01, 𝜖4 = 0.07, 𝜖5 = 0.01, 𝜖6 = 0.5, 𝜖7 = 0.05, and 𝜖8 = 1× 10−4. The
sizing parameters 𝛽(1)𝑙 , 𝑙 = 1,… ,𝑀 , are 0.3 and 0.5 in Examples 3 and
4, respectively.

All numerical results were generated using MATLAB [28], CREO
parametric [29], and ABAQUS [30] on an Intel Core i7-7700 K 4.20
GHz processor with 64 GB of RAM.
14
6.1. Example 1: Optimization of mathematical functions

Consider a mathematical problem involving a bivariate, indepen-
dent Gaussian random vector 𝐗 = (𝑋1, 𝑋2)⊺ which has means E𝐝[𝑋1] =
𝑑1 and E𝐝[𝑋2] = 𝑑2. Given the design vector 𝐝 = (𝑑1, 𝑑2)⊺, the problem
requires one to

min
𝐝∈

𝑐0(𝐝) ∶=

√

var𝐝[𝑦0(𝐗)]
√

var𝐝0 [𝑦0(𝐗)]
,

subject to 𝑐1(𝐝) ∶= 3
√

var𝐝[𝑦1(𝐗)] − E𝐝[𝑦1(𝐗)] ≤ 0.

(37)

n (37), the initial design vector 𝐝0 = (5, 5)⊺, and 𝑦0 and 𝑦1 are two
random functions of 𝐗. The approximate optimal solution is denoted
by 𝐝∗ = (𝑑∗1 , 𝑑

∗
2 )

⊺. The performance functions 𝑦0 and 𝑦1, used in 𝑐0(𝐝)
nd 𝑐1(𝐝), respectively, are considered in two distinct cases: smooth
unctions (Case 1) and non-smooth functions (Case 2), as follows:

Case 1: The smooth functions 𝑦0 and 𝑦1 are defined as

𝑦0(𝐗) = (𝑋1 − 4)3 + (𝑋1 − 3)4 + (𝑋2 − 5)2 + 10

and
𝑦1(𝐗) = 𝑋1 +𝑋2 − 6.45.
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Fig. 4. Graphs of functions (Example 1): (a) smooth function 𝑦0 (Case 1); (b) smooth function 𝑦1 (Case 1); (c) nonsmooth function 𝑦0 (Case 2); (d) nonsmooth function 𝑦1 (Case
).
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a
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o

The standard deviations 𝜎1 and 𝜎2 of 𝑋1 and 𝑋2 are the same
as 0.4. The bounds of the two design variables are given as
1 ≤ 𝑑1, 𝑑2 ≤ 10.
Case 2: The non-smooth functions 𝑦0 and 𝑦1 are defined as

𝑦0(𝐗) = 𝑔1(𝑋1) + 𝑔1(𝑋2) +
1
50
𝑔1(𝑋1)𝑔1(𝑋2),

where, for 𝑘 = 1, 2,

𝑔1(𝑥𝑘) =

{

10 exp(3𝑥𝑘 − 18), 𝑥𝑘 < 6,
10 exp(−3𝑥𝑘 + 18), 𝑥𝑘 ≥ 6,

and

𝑦1(𝐗) = 8𝑔2(𝑋1) + 10𝑔2(𝑋2) +
1
10
𝑔2(𝑋1)𝑔2(𝑋2) − 165,

where, for 𝑘 = 1, 2,

𝑔2(𝑥𝑘) =

{

3𝑥𝑘, 𝑥𝑘 < 6,
−3𝑥𝑘 + 36, 𝑥𝑘 ≥ 6.

The standard deviations 𝜎1 and 𝜎2 of 𝑋1 and 𝑋2 are the same
as 0.8. The bounds of the two design variables are given as
1 ≤ 𝑑1, 𝑑2 ≤ 5.

Since SDD basis functions are defined on a finite domain, it is
ssumed that the PDF of 𝑋𝑙 is truncated Gaussian with an adequately
arge support. Subsequently, the shifting transformation leads to 𝑍𝑙,
hich is also truncated Gaussian. Consequently, the PDFs of 𝑋𝑙 and
𝑙 used in this example are as follows:

𝑋𝑙 (𝑥𝑙; 𝑑𝑙) =
𝜙
(

𝑥𝑙 − 𝑑𝑙
𝜎𝑙

)

𝛷
(

𝐷𝑙
)

−𝛷
(

−
𝐷𝑙

) , 𝑙 = 1, 2,
𝜎𝑙 𝜎𝑙

15
when 𝑑𝑙 −𝐷𝑙 ≤ 𝑥𝑙 ≤ 𝑑𝑙 +𝐷𝑙, and zero otherwise, and

𝑓𝑍𝑙 (𝑧𝑙; 𝑔𝑙) =
𝜙
(

𝑧𝑙 − 𝑔𝑙
�̄�𝑙

)

𝛷
(

�̄�𝑙
�̄�𝑙

)

−𝛷
(

−
�̄�𝑙
�̄�𝑙

)
, 𝑙 = 1, 2,

when 𝑔𝑙 − �̄�𝑙 ≤ 𝑧𝑙 ≤ 𝑔𝑙 + �̄�𝑙, and zero otherwise. Here, 𝛷(⋅) and
(⋅) are the cumulative distribution and probability density functions,
espectively, of a standard Gaussian random variable; for 𝑙 = 1, 2,
≤ 𝑑𝑙 ≤ 10 or 1 ≤ 𝑑𝑙 ≤ 5 in Case 1 or 2, respectively, 𝑔𝑙 = 0, 𝜎𝑙 = �̄�𝑙 = 0.4

or 0.8 in Case 1 or 2, respectively; and for 𝑙 = 1, 2, 𝐷𝑙 = �̄�𝑙 = 6𝜎𝑙.
Figs. 4a–b illustrate that for Case 1, the functions 𝑦0 and 𝑦1 have

smooth, continuous derivatives on the region [0, 10]2. In contrast,
Figs. 4c–d indicate that for Case 2, the functions 𝑦0 and 𝑦1 have a peak
point at (6, 6), and then they fall off along all directions exponentially
and linearly, respectively, both forming sharp corners along 𝑥1 = 6 and
𝑥2 = 6. As a result, the functions 𝑦0, 𝑦1 in Case 2 have discontinuous
partial derivatives while they are all continuous. Such functions are
generally difficult to approximate by polynomials.

Table 2 presents the means and variances of 𝑦0(𝐗) and 𝑦1(𝐗) in
Cases 1 and 2, including their first-order design sensitivities, obtained
by the SDD and PCE methods, at the initial design 𝐝0 = (5, 5)⊺. For
comparison between the two methods, the respective exact solutions,
existing for smooth or nonsmooth functions 𝑦0 and 𝑦1 in the two cases,
are reported in the eighth (Case 1) or ninth (Case 2) column from
the left in Table 2. In Case 1, for the fourth-order function 𝑦0, the
univariate, linear (𝑆 = 1, 𝑝 = 1) and univariate, quadratic (𝑆 = 1, 𝑝 = 2)
SDD approximations, presented in the second through fifth columns,
yield practically identical estimates of response moments and their
design sensitivities with exact ones, while the second-order (𝑚 = 2) PCE
pproximation has relatively less accuracy than the SDD methods or
he fourth-order (𝑚 = 4) PCE approximation. However, the estimates
f the means and the first-order sensitivities by all aforementioned
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Table 2
The results of the first two moments and design sensitivities of 𝑦0 and 𝑦1 at 𝐝0 = (5, 5)⊺ in Cases 1 and 2 (Example 1).

SDD approximations PCE approximations Exact(a)

Case 1 (Smooth functions 𝑦0 and 𝑦1)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2
𝐼 = 4 𝐼 = 6 𝐼 = 2 𝐼 = 4 𝑚 = 2(b) 𝑚 = 4(b)

(1) 𝑦0(𝑋1 , 𝑋2) = (𝑋1 − 4)3 + (𝑋1 − 3)4 + (𝑋2 − 5)2 + 10

E𝐝[𝑦0(𝐗)] 31.5568 31.5568 31.5568 31.5568 31.5568 31.5568 31.5568
var𝐝[𝑦0(𝐗)](c) 288.6518 289.2490 289.3101 289.4472 287.4474 289.4538 289.4538
𝜕E𝐝[𝑦0(𝐗)]∕𝜕𝑑1 39.3200 39.3200 39.3200 39.3200 39.3200 39.3200 39.3200
𝜕E𝐝[𝑦0(𝐗)]∕𝜕𝑑2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
𝜕E𝐝[𝑦20(𝐗)]∕𝜕𝑑1 3244.1178 3258.8149 3257.5744 3263.9702 3185.2346 3264.3078 3264.3078
𝜕E𝐝[𝑦20(𝐗)]∕𝜕𝑑2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
No. of basis functions 9(d) 13(d) 7(d) 11(d) 6 15 –

(2) 𝑦1(𝑋1 , 𝑋2) = 𝑋1 +𝑋2 − 6.45

E𝐝[𝑦1(𝐗)] 3.5500 3.5500 3.5500 3.5500 3.5500 3.5500 3.5500
var𝐝[𝑦1(𝐗)](c) 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200
𝜕E𝐝[𝑦1(𝐗)]∕𝜕𝑑1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
𝜕E𝐝[𝑦1(𝐗)]∕𝜕𝑑2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
𝜕E𝐝[𝑦21(𝐗)]∕𝜕𝑑1 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000
𝜕E𝐝[𝑦21(𝐗)]∕𝜕𝑑2 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000
No. of basis functions 9(d) 13(d) 7(d) 11(d) 6 15 –

Case 2 (Nonsmooth functions 𝑦0 and 𝑦1)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2 𝑆 = 2, 𝑝 = 2
𝐼 = 2 𝐼 = 4 𝐼 = 2 𝐼 = 4 𝐼 = 2 𝑚 = 5(b) 𝑚 = 7(b)

(1) 𝑦0(𝑋1 , 𝑋2) = 𝑔1(𝑋1)(e)+𝑔1(𝑋2)(e)+
1
50
𝑔1(𝑋1)(e)𝑔1(𝑋2)(e)

E𝐝[𝑦0(𝐗)] 3.2067 3.2067 3.2067 3.2067 3.2067 3.2067 3.2067 3.2067
var𝐝[𝑦0(𝐗)](c) 10.0067 10.6451 11.0350 11.0384 11.0458 7.7798 8.6212 11.2044
𝜕E𝐝[𝑦0(𝐗)]∕𝜕𝑑1 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810
𝜕E𝐝[𝑦0(𝐗)]∕𝜕𝑑2 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810 1.9810
𝜕E𝐝[𝑦20(𝐗)]∕𝜕𝑑1 16.7739 18.2764 18.0123 17.9950 18.4335 15.0469 16.4851 18.5946
𝜕E𝐝[𝑦20(𝐗)]∕𝜕𝑑2 16.7739 18.2764 18.0123 17.9950 18.4335 15.0469 16.4851 18.5946
No. of basis functions 7(f) 11(f) 11(g) 15(g) 26(g) 21 36 –

(2) 𝑦1(𝑋1 , 𝑋2) = 8𝑔2(𝑋1)(h)+10𝑔2(𝑋2)(h)+
1
10
𝑔2(𝑋1)(h)𝑔2(𝑋2)(h)−165

E𝐝[𝑦1(𝐗)] 122.4067 122.4067 122.4067 122.4067 122.4067 122.4067 122.4067 122.4067
var𝐝[𝑦1(𝐗)](c) 939.9974 939.9974 939.9974 939.9974 940.1775 930.0175 933.8534 940.1776
𝜕E𝐝[𝑦1(𝐗)]∕𝜕𝑑1 22.4205 22.4205 22.4205 22.4205 22.4205 22.4205 22.4205 22.4205
𝜕E𝐝[𝑦1(𝐗)]∕𝜕𝑑2 27.1527 27.1527 27.1527 27.1527 27.1527 27.1527 27.1527 27.1527
𝜕E𝐝[𝑦21(𝐗)]∕𝜕𝑑1 5250.5125 5250.5125 5250.5126 5250.5126 5273.4479 5259.6837 5267.9116 5273.4479
𝜕E𝐝[𝑦21(𝐗)]∕𝜕𝑑2 6297.7954 6297.7954 6297.7954 6297.7954 6316.7139 6296.7600 6308.6966 6316.7139
No. of basis functions 7(f) 11(f) 11(g) 15(g) 26(g) 21 36 –

(a)The exact closed-form solutions of sensitivities are used.
(b)The truncation order (𝑚) is total degree.
(c)var𝐝[𝑦𝑎(𝐗)] ∶= E𝐝[𝑦𝑎(𝐗) − E𝐝[𝑦𝑎(𝐗)]]2 , 𝑎 = 0, 1.
(d)Simple knots were used to determine the basis functions.

(e)𝑔1(𝑥𝑘) =

{

10 exp(3𝑥𝑘 − 18), 𝑥𝑘 < 6,
10 exp(−3𝑥𝑘 + 18), 𝑥𝑘 ≥ 6,

𝑘 = 1, 2.

(f)Simple knot (multiplicity of one) at (6, 6)⊺ was employed.
(g)Repeated knots (multiplicity of two) at (6, 6)⊺ were employed.

(h)𝑔2(𝑥𝑘) =

{

3𝑥𝑘 , 𝑥𝑘 < 6,
−3𝑥𝑘 + 36, 𝑥𝑘 ≥ 6,

𝑘 = 1, 2.
P
i
c

1
d
t
s
e
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o
i
t

methods are accurate, as expected for smooth functions. Also, in Case
1 of Table 2, for the linear function 𝑦1, both the SDD and PCE methods
with all cases of parameters (𝑝, 𝑚, 𝐼) reproduce response moments and
their sensitivities faithfully, since such linear function can be exactly
represented by at least first-order basis functions.

In contrast, Case 2 of Table 2 shows that the SDD estimates converge
ore rapidly to the exact ones than the PCE estimates when their
arameter values, 𝑝, 𝐼 , or 𝑚, increase. Between the SDD methods,
the bivariate (𝑆 = 2) SDD approximation yields the most close-to-
exact solutions for both nonsmooth functions 𝑦0 and 𝑦1. However, even
univariate, linear (𝑆 = 1, 𝑝 = 1) SDD approximations, presented in
the second and third columns, achieve more accurate results of the
second moment or its sensitivities than the seventh-order (𝑚 = 7)
PCE approximation. In particular, when comparing the first-order SDD
method and the seventh-order PCE method, presented in the second
and eighth columns, respectively, their estimates are very close to each
other, while the SDD’s number of basis functions (7) is much less than
 T

16
CE’s (36). Thus, the results clearly demonstrate the more outstand-
ng performance of the SDD method in terms of both accuracy and
omputational efficiency when dealing with such nonsmooth functions.

Table 3 summarizes the approximate optimal solutions for Cases
and 2, including the requisite numbers of design iterations, by the
irect SDD method. For comparison, the approximate solutions by
he direct PCE method are included in sixth to seventh (Case 1) or
eventh to eighth (Case 2) columns from the left in Table 3. Also, the
xact solution, obtained from the exact expressions of objective and
onstraint functions and their design sensitivities, are tabulated in its
ighth (Case 1) or ninth (Case 2) column. For Case 1 in Table 3, all SDD-
r PCE-based RDO solutions and the respective exact one are practically
dentical, all indicating that the constraint is inactive (𝑐1 < 0), although
he SDD solutions, presented in the second, third, and fifth columns of
able 3, are closer to the exact one than those by the second-order
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Table 3
Optimization results of mathematical formulations in Cases 1 and 2 (Example 1).

Direct SDD Direct PCE Exact(a)

Case 1 (Smooth functions 𝑦0 and 𝑦1)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2
𝐼 = 4 𝐼 = 6 𝐼 = 2 𝐼 = 4 𝑚(b)= 2 𝑚(b)= 4

𝑑1
∗ 3.3742 3.3637 3.3844 3.3595 3.3844 3.3577 3.3577

𝑑2
∗ 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

𝑐0(𝐝∗) 0.0661 0.0665 0.0662 0.0666 0.0624 0.0666 0.0666
𝑐1(𝐝∗) −0.2271 −0.2166 −0.2374 −0.2125 −0.2374 −0.2107 −0.2107
√

var̃∗ [𝑦0(𝐗)] 1.1234 1.1306 1.1252 1.1332 1.0574 1.1338 1.1338
No. of iterations 7 7 7 7 7 7 7
No. of basis functions 9 13 7 11 6 15 –

Case 2 (Nonsmooth functions 𝑦0 and 𝑦1)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2 𝑆 = 2, 𝑝 = 2
𝐼 = 2 𝐼 = 4 𝐼 = 2 𝐼 = 4 𝐼 = 2 𝑚(b)= 5 𝑚(b)= 7

𝑑1
∗ 4.4811 4.4516 4.4143 4.3678 4.3883 4.0086 4.3440 4.3022

𝑑2
∗ 4.6667 4.6889 4.7168 4.7512 4.7364 5.0000 4.7658 4.7993

𝑐0(𝐝∗) 0.6913 0.7323 0.7270 0.7375 0.7264 0.7528 0.7591 0.7369
𝑐1(𝐝∗) 2 × 10−7 −5 × 10−6 −1 × 10−4 3 × 10−6 −1 × 10−4 −3 × 10−10 −2 × 10−7 −4 × 10−8
√

var̃∗ [𝑦0(𝐗)] 2.1869 2.3892 2.4150 2.4569 2.4141 2.0996 2.2288 2.4666
No. of iterations 8 8 8 8 7 9 9 15
No. of basis functions 7 11 11 15 26 21 36 –

(a)The closed-form expressions of objective, constraint, and their gradient functions were used.
(b)The truncation order (𝑚) is total degree.
(𝑚 = 2) direct PCE method. For each order 𝑝 = 1 and 2 of the direct
DD method, the respective optimal solution converges to the exact one
s its subinterval number increases from 𝐼 = 4 to 𝐼 = 6 or from 𝐼 = 2
to 𝐼 = 4, respectively. However, since the fourth-order (𝑚 = 4) direct
PCE method achieves the exact RDO solution, the merit of the direct
SDD method over the direct PCE method is not fully realized in Case
1. In contrast, in Case 2, even the first- or second-order (𝑝 = 1, 2) direct
SDD methods yield more accurate optimal solutions than the fifth-order
(𝑚 = 5) direct PCE method. Furthermore, the proposed RDO solutions
by the bivariate, quadratic (𝑆 = 2, 𝑝 = 2) SDD approximation with two
subintervals (𝐼 = 2) or the univariate, quadratic (𝑆 = 1, 𝑝 = 2) SDD
approximation with four subintervals (𝐼 = 4) are very close to the exact
one. The direct PCE method, on the other hand, demands much higher
order, say, at least the seventh-order (𝑚 = 7) approximation, to get the
similar level of the accurate RDO solution. Indeed, the number (36) of
basis functions in the seventh-order (𝑚 = 7) PCE is more than those (15
or 26) in the univariate or bivariate, quadratic (𝑆 = 1, 𝑝 = 2, 𝐼 = 4)
or (𝑆 = 2, 𝑝 = 2, 𝐼 = 2) SDD, respectively, thus demanding more
computational cost than the SDD method when considering the 8–9
iterations to obtain the final optimal solution. Thus, the optimization
results in Case 2 also show the superiority of the proposed direct SDD
method over the PCE counterpart for such nonsmooth functions.

6.2. Example 2: Bi-objective optimization of an eccentric loaded column

The second example was created by recasting an eccentrically
loaded column problem, previously investigated by [31,32]. This ex-
ample intends to prove the technical merit of the proposed RDO
method when confronted with highly nonlinear performance functions
in solving a bi-objective optimization problem. As shown in Fig. 5, there
are five input random variables 𝐗 = (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5)⊺, where 𝑋1 and
𝑋2 are means of the average radius (average of outer and inner radii)

and the thickness, respectively, of a hollow circular tube of length 𝑋3.

17
Fig. 5. Configuration of the vertical column with an eccentric load (Example 2).

Table 4
Statistical properties of random variables of the column with an eccentric load (Example
2).
Random variables Mean Standard Probability

deviation distribution

𝑋1, m 𝑑1 0.05𝑑1 Lognormal
𝑋2, m 𝑑2 0.05𝑑2 Lognormal
𝑋3, m 𝑑3 0.15𝑑3 Lognormal
𝑋4 2 0.5 Weibull
𝑋5, kN 50 5 Normal

The tubular column is subject to a random load 𝑋5 with eccentricity
0.01𝑋4𝑋1 about its center axis. It is made of cast iron, which has
Young’s modulus 𝐸 = 210 GPa. The design variables are 𝑑1 = E𝐝[𝑋1],
𝑑2 = E𝐝[𝑋2], and 𝑑3 = E𝐝[𝑋3]. The probability distributions of all input
random variables are listed in Table 4.

The objective of this RDO problem is to minimize the second-
moment properties of the surface area of the hollow circular tube,
subject to three constraints described in (39), (40), and (41), limit-
ing the normal stress, buckling load, and deflection at or below the
respective thresholds of the allowable stress 𝜎𝑎 = 2.5 × 108 Pa and
lateral deflection 𝛥 = 0.25 m. The deterministic constraint 𝑐 in (38)
4
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Table 5
Optimization results of an eccentric loaded column (Example 2).

Direct SDD Direct PCE QMCS(a) , (b)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2 𝑆 = 2, 𝑝 = 2 𝑚 = 3 𝑚 = 4
𝐼 = 4 𝐼 = 3 𝐼 = 4 𝐼 = 2 𝑚′ = 3 𝑚′ = 3

𝑑1
∗ , m 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1014

𝑑2
∗ , 𝑚 0.0259 0.0388 0.0266 0.0299 0.0308 0.0329 0.0266

𝑑3
∗ , 𝑚 7.4953 7.6163 7.2634 7.5961 6.8263 7.2169 7.5939

𝑐0(𝐝∗) 0.1879 0.0989 0.0987 0.0990 0.0988 0.0989 0.1005
𝑐1(𝐝∗) −0.9765 −0.9873 −0.9776 −0.9820 −0.9819 −0.9842 −0.7812
𝑐2(𝐝∗) −0.0014 −0.3361 −0.0055 −0.1372 −0.1116 −0.1918 −0.0661
𝑐3(𝐝∗) −0.9237 −0.9838 −0.9330 −0.9668 −0.9515 −0.9693 0.2943
𝑐4(𝐝∗) −0.0239 −0.0368 −0.0246 −0.0279 −0.0288 −0.0309 −0.0246
E𝐝∗ [𝑦0(𝐗)] , m2 28.3108 28.1742 28.6047 28.1918 29.1595 28.6714 28.5730
√

var𝐝∗ [𝑦0(𝐗)] , m2 1.9900 2.0015 1.9665 2.0105 1.9456 1.9775 2.0374
No. of iterations 12 11 13 10 11 289 4
No. of 𝑦0 eval. 4,745 4,355 7,040 15,355 7,100 11,200 2, 660, 000, 000
No. of 𝑦𝑎 eval. 7,665 7,035 11,440 43,990 19,880 40,320 2, 660, 000, 000
𝑎 = 1 − 3
No. of 𝑦4 eval. 73 67 88 83 71 64 532

(a)QMCS with the sample size of 5 × 106 for statistical moment analysis and design sensitivity analysis based on the central finite difference method was employed.
(b)𝐝0 was signed as 𝐝∗ in its fifth column.
𝜎

restricts the ratio of 𝑑1∕𝑑2, not to exceed the value of 50 for practical
considerations. Mathematically, such an RDO problem is devised to

min
𝐝∈⊆R𝑀

𝑐0(𝐝) ∶= {E𝐝[𝑦0(𝐗)],
√

var𝐝[𝑦0(𝐗)]},

subject to 𝑐1(𝐝) ∶= 3
√

var𝐝[𝑦1(𝐗)] − E𝐝[𝑦1(𝐗)] ≤ 0,
𝑐2(𝐝) ∶= 3

√

var𝐝[𝑦2(𝐗)] − E𝐝[𝑦2(𝐗)] ≤ 0,
𝑐3(𝐝) ∶= 3

√

var𝐝[𝑦3(𝐗)] − E𝐝[𝑦3(𝐗)] ≤ 0,

𝑐4(𝐝) ∶= −1 +
𝑑1

50𝑑2
≤ 0,

0.1 m ≤ 𝑑1 ≤ 2.0 m,
0.005 m ≤ 𝑑2 ≤ 0.2 m,
4 m ≤ 𝑑3 ≤ 20 m,

(38)

where

𝑦0(𝐗) = 4𝜋𝑋1(30 −𝑋3 +𝑋2),

is the random surface area of the column, and

𝑦1(𝐗) = 1 −
𝑋5

2𝜋𝑋1𝑋2𝜎𝑎

[

1 +
2 × 0.01𝑋4(𝑋1 + 0.5𝑋2)

𝑋1

× sec

(√

2(30 −𝑋3)
𝑋1

√

𝑋5
𝐸(2𝜋𝑋1𝑋2)

)]

,
(39)

𝑦2(𝐗) = 1 −
4(30 −𝑋3)2𝑋5

𝜋3𝐸𝑋3
1𝑋2

, (40)

3(𝐗) = 1 −
0.01𝑋4𝑋1

𝛥

[

sec

(

(30 −𝑋3)

√

𝑋5

𝐸𝜋𝑋3
1𝑋2

)

− 1

]

(41)

re three random performance functions of the normal stress, buckling
oad, and deflection, respectively. The initial design is 𝐝0 = (1, 0.2, 5)⊺ m.
he approximate optimal solution is denoted by 𝐝∗ = (𝑑∗1 , 𝑑

∗
2 , 𝑑

∗
3 )

⊺.
Since SDD basis functions are defined on a finite domain, it is

ssumed that, for 𝑙 = 1–3, the PDF of 𝑋𝑙 is truncated lognormal with
n adequately large support. Subsequently, the scaling transformation
eads to 𝑍𝑙, which is also truncated lognormal. Consequently, the PDFs
f 𝑋𝑙 and 𝑍𝑙 used in this example are as follows:

𝑋𝑙 (𝑥𝑙; 𝑑𝑙) =

exp

[

− 1
2�̃�2𝑙

(

ln 𝑥𝑙 − �̃�𝑙
)2
]

√

2𝜋�̃�𝑙

[

𝛷
(

ln 2𝑑𝑙 − �̃�𝑙
�̃�𝑙

)]

𝑥𝑙

, 𝑙 = 1,… , 3,

if 0 ≤ 𝑥𝑙 ≤ 2𝑑𝑙, and zero otherwise, and

𝑍𝑙 (𝑧𝑙; 𝑔𝑙) =

exp

[

− 1
2 ̄̃𝜎2𝑙

(

ln 𝑧𝑙 − ̄̃𝜇𝑙
)2
]

√

2𝜋 ̄̃𝜎𝑙

[

𝛷
(

ln 2 − ̄̃𝜇𝑙
)]

𝑧𝑙

, 𝑙 = 1,… , 3,
̄̃𝜎𝑙
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if 0 ≤ 𝑧𝑙 ≤ 2, and zero otherwise. Here, 𝛷(⋅) is the cumulative
distribution function of a standard Gaussian random variable; for 𝑙 =
1, 2, �̃�𝑙 = ln

[

𝑑2𝑙 ∕
√

𝑑2𝑙 + (0.05𝑑𝑙)2
]

, ̄̃𝜇𝑙 = ln
[

𝑔2𝑙 ∕
√

𝑔2𝑙 + (0.05𝑔𝑙)2
]

, and

̃ 𝑙 = ̄̃𝜎𝑙 ≈ 0.05; for 𝑙 = 3, �̃�𝑙 = ln
[

𝑑2𝑙 ∕
√

𝑑2𝑙 + (0.15𝑑𝑙)2
]

, ̄̃𝜇𝑙 =

ln
[

𝑔2𝑙 ∕
√

𝑔2𝑙 + (0.15𝑔𝑙)2
]

, and �̃�𝑙 = ̄̃𝜎𝑙 ≈ 0.15; and for 𝑙 = 1–3, 𝑑𝑙,𝐿 ≤

𝑑𝑙 ≤ 𝑑𝑙,𝑈 , defined in (38), and 𝑔𝑙 = 1. Also, the PDFs of 𝑋4 and 𝑋5 are
assumed as being represented by the truncated version on the domain
[0, 7.6] of the Weibull defined in Table 4 and the truncated version on
[20, 80] of the Gaussian defined in Table 4, respectively.

The bi-objective functions in (38) are linearly aggregated by weights
𝑤1 ∈ R+

0 and 𝑤2 ∈ R+
0 , such that 𝑤1+𝑤2 = 1. By selecting the weighted

sum approach, the scalarized objective function is defined as

𝑐0(𝐝) ∶= 𝑤1
E𝐝[𝑦0(𝐗)]
E𝐝0 [𝑦0(𝐗)]

+𝑤2

√

var𝐝[𝑦0(𝐗)]
√

var𝐝0 [𝑦0(𝐗)]
.

Table 5 summarizes the approximate optimal solutions for the
case of 𝑤1 = 0.5 and 𝑤2 = 0.5, including the requisite numbers
of design iterations and function evaluations, by the direct SDD and
direct PCE methods. To confirm the accuracy of their results, the
reference solution, obtained by employing the QMCS method with
the sample size of 5 × 106 for stochastic analysis and central finite-
difference approximation for design sensitivities, are tabulated in the
eighth column from the left in Table 5. Four approximate optimal
designs, obtained by univariate (𝑆 = 1) direct SDD method—one with
linear SDD approximation (𝑝 = 1, 𝐼 = 4) and the other two with
quadratic SDD approximations (𝑝 = 2, 𝐼 = 3, 4)—and bivariate (𝑆 = 2)
direct SDD method with quadratic SDD approximations (𝑝 = 2, 𝐼 = 2),
are tabulated from the second to fifth columns, respectively, from the
left in Table 5. For the univariate (𝑆 = 1) cases, the respective optimal
designs converge with the increase to four subintervals regardless of
either linear or quadratic SDD approximations, while for the bivariate
(𝑆 = 2) case, the respective optimal design converges with only two
subintervals. On the other hand, the direct PCE method needs a higher-
order (𝑚 = 3 or 4) of polynomial basis to obtain the converged optimal
solutions compared with the order (𝑝 = 1 or 2) of spline basis in the
proposed method. Furthermore, the converged optimal designs by the
proposed method with the linear (𝑝 = 1) or quadratic (𝑝 = 2) SDD
approximation are closer to the reference solution by QMCS than one
by the PCE counterpart with the higher order (𝑚 = 4) of polynomial
basis. Having said so, the requisite numbers of function evaluations
(4,745 in 𝑐0 or 7,665 in 𝑐𝑎, 𝑎 = 1–3) by the proposed method (𝑆 =
1, 𝑝 = 1, 𝐼 = 4) are one-half or one-fifth of ones (11,200 in 𝑐 or
0
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Table 6
Bi-optimization results of an eccentric loaded column (Example 2).
Weights Pareto solutions(a) Mean Standard deviation

𝑤1 𝑤2 𝑑∗1 𝑑∗2 𝑑∗3 E𝐝∗
[

𝑦0(𝐗)
]

√

var𝐝∗
[

𝑦0(𝐗)
]

0.1 0.9 0.1000 0.1203 5.1447 31.3838 1.8399
0.15 0.85 0.1000 0.0342 5.2542 31.1379 1.8401
0.2 0.8 0.1000 0.0339 5.2304 31.1379 1.8401
0.25 0.75 0.1000 0.0314 5.2164 31.1820 1.8382
0.3 0.7 0.1000 0.0324 5.2115 31.1894 1.8381
0.35 0.65 0.1000 0.0328 5.2138 31.1870 1.8382
0.4 0.6 0.1000 0.0306 5.5103 30.8116 1.8524
0.45 0.55 0.1000 0.0481 6.3602 29.7653 1.9037
0.5 0.5 0.1000 0.0259 7.4953 28.3108 1.9900
0.55 0.45 0.1000 0.0242 8.5750 26.9514 2.0920
0.6 0.4 0.1000 0.0250 9.9705 25.1984 2.2469
0.65 0.35 0.1000 0.0169 13.2153 21.1098 2.6819
0.7 0.3 0.1000 0.0090 20.0000 12.5721 3.7834
0.75 0.25 0.1000 0.0090 20.0000 12.5721 3.7834
0.8 0.2 0.1000 0.0090 20.0000 12.5721 3.7834
0.85 0.15 0.1000 0.0090 20.0000 12.5721 3.7834
0.9 0.1 0.1000 0.0090 20.0000 12.5721 3.7834

(a)Optimal solutions were obtained by the direct SDD of 𝑆 = 1, 𝑝 = 1, 𝐼 = 4.

Fig. 6. Pareto optimal set of mean and standard deviation of 𝑦0 for RDO problem
(Example 2).

40,320 in 𝑐𝑎, 𝑎 = 1–3) by the PCE counterpart (𝑚 = 4). The results
show that the proposed method is not only more accurate but also more
computationally efficient than the direct PCE method in obtaining an
optimal solution for the RDO problem with highly nonlinear functions.

The direct SDD with the univariate SDD approximation (𝑆 = 1, 𝑝 =
1, 𝐼 = 4) was selected to obtain Pareto optimal solutions for 17 cases
of evenly distributed combinations of weights 𝑤1 and 𝑤2. Table 6
summarizes the results of the weighted sum approach for aforemen-
tioned 17 cases of 𝑤1 and 𝑤2. For the middle values (0.3–0.7) of 𝑤1
and 𝑤2, the Pareto optimal solutions 𝑑∗1 , 𝑑

∗
2 , and 𝑑

∗
3 are noticeably or

slightly different in each case of the combinations of weights. Indeed, in
Fig. 6, the Pareto frontier, generated from the Pareto solutions, signifies
the trade-off between two individual objectives—the mean E𝐝∗ [𝑦0(𝐗)]
and standard deviation

√

var𝐝∗ [𝑦0(𝐗)]. From the Pareto frontier, the
esigner can select the most suitable design. The result demonstrates
ow the direct SDD can be employed in obtaining the Pareto optimal
olutions for the bi-objective RDO problem.

.3. Example 3: Optimal sizing design of a ten-bar truss

In Example 3, a linear-elastic ten-bar truss, studied in earlier work
2], was used to evaluate the multi-point single-step SDD method. As
hown in Fig. 7, the truss is simply supported at nodes 1 and 4 and
is subjected to two vertically downward concentrated forces of 𝐹 and
1
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𝐹2 at nodes 2 and 3, respectively, and a horizontal concentrated force
of 𝐹3 at node 3. The material is aluminum alloy, which has Young’s
modulus of 107 psi and a mass density of 0.1 lb∕in3. There are ten
(𝑁 = 10) random variables 𝐗 = (𝑋1,… , 𝑋10)⊺, representing random
cross-sectional areas of all ten bars. The ten random variables, 𝑋𝑘, 𝑘 =
1… , 10, are mutually independent, each of which follows a lognormal
distribution with the mean E𝐝[𝑋𝑘] and standard deviation 0.05E𝐝[𝑋𝑘].
There are ten (𝑀 = 10) design variables, such that 𝑑𝑙 = E𝐝[𝑋𝑙], 𝑙 =
1,… , 10. The objective is to minimize the second-moment properties of
the mass of the entire truss structure, subject to two cases of constraints:
(1) Case 1 involving axial stresses in all ten bars and the vertical
displacement (𝑣3) at node 3; (2) Case 2 entailing maximum of axial
stresses at nine bars, the axial stress of the tenth bar, and the vertical
displacement (𝑣3) at node 3. The scale factors of 3 in the constraints
are intended to satisfy the constraint conditions with at least 99.865%
probability if the performance functions 𝑦𝑎(𝐗), 𝑎 = 1,… , 11 (Case 1)
and 𝑎 = 1,… , 3 (Case 2), follow the standard Gaussian distribution.
More specifically, the RDO problem is defined to

min
𝐝∈⊆R𝑀

𝑐0(𝐝) ∶= 0.5
E𝐝[𝑦0(𝐗)]
E𝐝0 [𝑦0(𝐗)]

+ 0.5

√

var𝐝[𝑦0(𝐗)]
√

var𝐝0 [𝑦0(𝐗)]
,

subject to 𝑐𝑎(𝐝) ∶= 3
√

var𝐝[𝑦𝑎(𝐗)] − E𝐝[𝑦𝑎(𝐗)] ≤ 0,
𝑎 = 1,… , 𝐾, 𝐾 = 11 (Case 1) or 3 (Case 2),
1 in2 ≤ 𝑑𝑙 ≤ 35 in2, 𝑙 = 1,… , 10,

where

𝑦0(𝐗) = 0.1
10
∑

𝑘=1
𝑙𝑘𝑋𝑘

is the random mass of the truss with 𝑙𝑘, 𝑘 = 1,… , 10, representing bar
lengths. Two distinct cases of performance functions 𝑦𝑎 are as follows:

Case 1:

𝑦𝑎(𝐗) =
⎧

⎪

⎨

⎪

⎩

25, 000 − |𝜎𝑎(𝐗)| (psi), if 𝑎 = 1,… , 9,
75, 000 − |𝜎𝑎(𝐗)| (psi), if 𝑎 = 10,
5 − |𝑣3(𝐗)| (in), if 𝑎 = 11,

are eleven (𝐾 = 11) stochastic performance functions.
Case 2:

𝑦𝑎(𝐗) =
⎧

⎪

⎨

⎪

⎩

25, 000 − max (|𝜎1(𝐗)|,… , |𝜎9(𝐗)|) (psi), if 𝑎 = 1,
75, 000 − |𝜎10(𝐗)| (psi) if 𝑎 = 2,
5 − |𝑣3(𝐗)| (in), if 𝑎 = 3,

are three (𝐾 = 3) stochastic performance functions.

Cases 1 and 2 are devised with the same intention of limiting the
pper values of axial stresses and displacement. However, only Case 2
nvolves the maximum function of axial stresses between 𝑋1 and 𝑋9,
hich generally introduces discontinuities to the response. Case 2 is
ntended to evaluate the ability of the proposed method in handling
iscontinuities in the response ℎ2 to find an RDO solution. The initial
esign is 𝐝0 = (30,… , 30)⊺ in2. The approximate optimal solution is
denoted by 𝐝∗ = (𝑑∗1 ,… , 𝑑∗10)

⊺.
Since SDD basis functions are defined on a finite domain, it is

assumed that the PDF of 𝑋𝑙 is truncated lognormal with an adequately
large support. Subsequently, the scaling transformation leads to 𝑍𝑙,
which is also truncated lognormal. Consequently, the PDFs of 𝑋𝑙 and
𝑍𝑙 used in this example are as follows:

𝑓𝑋𝑙 (𝑥𝑙; 𝑑𝑙) =

exp

[

− 1
2�̃�2𝑙

(

ln 𝑥𝑙 − �̃�𝑙
)2
]

√

2𝜋�̃�𝑙

[

𝛷
(

ln 2𝑑𝑙 − �̃�𝑙
)]

𝑥𝑙

, 𝑙 = 1,… , 10,
�̃�𝑙
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Fig. 7. A ten-bar truss structure (Example 3).
if 0 ≤ 𝑥𝑙 ≤ 2𝑑𝑙, and zero otherwise, and

𝑍𝑙 (𝑧𝑙; 𝑔𝑙) =

exp

[

− 1
2 ̄̃𝜎2𝑙

(

ln 𝑧𝑙 − ̄̃𝜇𝑙
)2
]

√

2𝜋 ̄̃𝜎𝑙

[

𝛷
(

ln 2 − ̄̃𝜇𝑙
̄̃𝜎𝑙

)]

𝑧𝑙

, 𝑙 = 1,… , 10,

f 0 ≤ 𝑧𝑙 ≤ 2, and zero otherwise. Here, 𝛷(⋅) is the cumulative
istribution function of a standard Gaussian random variable; and for
= 1,… , 10, �̃�𝑙 = ln

[

𝑑2𝑙 ∕
√

𝑑2𝑙 + (0.05𝑑𝑙)2
]

, ̄̃𝜇𝑙 = ln
[

𝑔2𝑙 ∕
√

𝑔2𝑙 + (0.05𝑔𝑙)2
]

,
�̃�𝑙 = ̄̃𝜎𝑙 ≈ 0.05, 1 ≤ 𝑑𝑙 ≤ 35, and 𝑔𝑙 = 1.

Table 7 summarizes the assorted RDO results by multi-point single-
step SDD methods for the two cases of performance functions. For Case
1, four approximate optimal designs, presented in the second through
fifth columns from the left in Table 7, were obtained by univariate
(𝑆 = 1) multi-point single-step SDD methods—two with linear SDD
approximations (𝑝 = 1, 𝐼 = 2, 4) and the other two with quadratic
SDD approximations (𝑝 = 2, 𝐼 = 2, 4), respectively. For either linear or
quadratic SDD approximations of the proposed method, the respective
optimal designs converge with the increase in number of subintervals
in each coordinate direction from 𝐼 = 2 to 𝐼 = 4. For comparison, the
optimization results from the multi-point single-step PCE method using
the second-order (𝑚 = 2) and the third-order (𝑚′ = 3) PCE approxima-
tions for response and score functions, respectively, are tabulated in the
sixth column of Table 7. All of these optimal designs, obtained from the
proposed method and its PCE counterpart, are very close to each other,
rendering active or inactive constraints. To seek further credibility for
the accuracy of the proposed method’s RDO solutions, QMCS entailing
1 × 105 samples for stochastic moment analysis and design sensitivity
analysis based on the central finite-difference method was employed.
However, due to its extensive computational cost, the RDO problem

was resolved for two different initial designs assigned as two optimal

20
designs by the proposed method and its PCE counterpart, presented in
the fifth and sixth columns of Table 7, respectively. The resulting two
reference solutions, denoted by QMCS I and II for the former and the
latter cases of initial design, respectively, are listed in the seventh and
eighth columns of Table 7. As expected, the two reference solutions
are almost the same as their initial designs, indicating that the optimal
designs, obtained by the proposed method and its PCE counterpart,
are all accurate and reliable. Although the requisite numbers of FEA
(1, 785–4, 335) by four MPSS SDD methods are slightly less than one
(5,280) by the PCE counterpart, the advantage of the proposed method
over its PCE counterpart is not clearly visible in Case 1.

For Case 2, four approximate optimal designs, obtained by univari-
ate (𝑆 = 1) multi-point single-step SDD methods (two with linear SDD
approximations (𝑝 = 1, 𝐼 = 4, 6) and the rest two with quadratic SDD
approximations (𝑝 = 2, 𝐼 = 2, 4), are presented in second and fifth
columns from the left in Table 7, respectively. Whether the proposed
method’s RDO solutions are obtained from the linear (𝑝 = 1) or
quadratic (𝑝 = 2) SDD approximations, their optimal designs converge
as the number of subintervals increases from 𝐼 = 4 to 𝐼 = 6 or
𝐼 = 2 to 𝐼 = 4, respectively, yielding all active constraints (𝑐1 ≃
0, 𝑐2 ≃ 0, 𝑐3 ≃ 0). For comparison, the approximate optimal design,
obtained by the third-order (𝑚 = 3, 𝑚′ = 3) multi-point single-step PCE
method, is presented in the sixth column of Table 7. Notwithstanding
that the multi-point single-step PCE method employs higher-order (𝑚 =
3, 𝑚′ = 3) approximations than first- or second-order (𝑝 = 1 or
2) SDD approximations of the univariate (𝑆 = 1) proposed method,
the resultant PCE solution shows moderate to significant differences
with the converged one by the proposed method. Indeed, compared
with two reference solutions denoted by QMCS III and IV obtained
from QMCS for stochastic analysis and design sensitivity analysis based
on the central finite difference method for two different initial de-
signs assigned as optimal designs in the fifth and sixth columns of
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Table 7
Optimization results of a ten-bar truss in Cases 1 and 2 (Example 3).

MPSS SDD(a) MPSS PCE(b) QMCS(c)

Case 1 (Performance functions 𝑦𝑎, 𝑎 = 1,… , 11)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2
𝐼 = 2 𝐼 = 4 𝐼 = 2 𝐼 = 4 𝑚 = 2, 𝑚′ = 3 I(d) II(e)

𝑑1
∗ , in2 4.9433 5.0679 4.9421 5.1525 5.1564 5.1760 5.1759

𝑑2
∗ , in2 14.7865 14.7350 14.7802 14.6224 14.7813 14.7920 14.7920

𝑑3
∗ , in2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

𝑑4
∗ , in2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

𝑑5
∗ , in2 4.9433 5.0652 4.9411 5.1513 5.1478 5.1767 5.1767

𝑑6
∗ , in2 1.0000 1.3102 1.0000 1.5968 1.5320 1.6680 1.6679

𝑑7
∗ , in2 12.4335 12.2041 12.4368 12.0881 12.0903 12.0540 12.0541

𝑑8
∗ , in2 3.2491 3.1941 3.2520 3.1866 3.0266 3.0016 3.0016

𝑑9
∗ , in2 1.3733 1.2926 1.3740 1.1484 1.3812 1.3828 1.3828
̃𝑑10

∗ , in2 2.6274 2.7412 2.6289 2.9917 2.6185 2.6166 2.6166
𝑐0(𝐝∗) 0.1879 0.1876 0.1879 0.1879 0.1875 0.1878 0.1878
𝑐1(𝐝∗) −1.29 × 10−1 −1.45 × 10−1 −1.29 × 10−1 −1.82 × 10−1 −1.26 × 10−1 −1.28 × 10−1 −1.28 × 10−1

𝑐2(𝐝∗) −1.25 × 10−4 −2.73 × 10−3 2.36 × 10−6 −8.31 × 10−5 −3.83 × 10−3 −7.29 × 10−11 1.93 × 10−7

𝑐3(𝐝∗) −3.13 × 10−4 −6.61 × 10−4 4.15 × 10−5 −9.39 × 10−6 3.02 × 10−4 −7.02 × 10−11 −2.57 × 10−11

𝑐4(𝐝∗) −6.30 × 10−3 −6.07 × 10−2 −5.74 × 10−3 −1.65 × 10−1 −4.15 × 10−4 −1.50 × 10−4 −1.51 × 10−4

𝑐5(𝐝∗) −5.20 × 10−3 −6.11 × 10−2 −5.66 × 10−3 −1.65 × 10−1 −2.41 × 10−4 −1.52 × 10−10 −7.64 × 10−9

𝑐6(𝐝∗) 1.58 × 10−4 −1.97 × 10−3 −7.76 × 10−7 −5.52 × 10−5 −2.29 × 10−3 4.01 × 10−11 1.93 × 10−7

𝑐7(𝐝∗) −4.27 × 10−1 −4.30 × 10−1 −4.28 × 10−1 −4.40 × 10−1 −4.33 × 10−1 −4.42 × 10−1 −4.42 × 10−1

𝑐8(𝐝∗) 4.53 × 10−4 3.75 × 10−3 −1.26 × 10−6 3.25 × 10−4 2.23 × 10−3 1.71 × 10−11 −1.26 × 10−7

𝑐9(𝐝∗) 6.40 × 10−4 −2.28 × 10−3 −1.38 × 10−4 5.87 × 10−4 5.07 × 10−3 −1.70 × 10−10 −2.36 × 10−7

𝑐10(𝐝∗) 3.28 × 10−4 2.27 × 10−3 4.64 × 10−5 −1.09 × 10−3 7.78 × 10−4 −2.12𝐸 − 10 −9.01 × 10−9

𝑐11(𝐝∗) −3.63 × 10−1 −3.79 × 10−1 −3.63 × 10−1 −4.13 × 10−1 −3.61 × 10−1 −3.61𝐸 − 01 −3.61 × 10−1

E𝐝∗ [𝑦0(𝐗)] , lb 1964.8006 1975.6463 1964.8390 1991.5560 1981.2082 1987.4125 1987.4095
√

var𝐝∗ [𝑦0(𝐗)] , lb 44.4141 44.1036 44.4135 43.9781 43.9940 43.9904 43.9905
No. of iterations 291 334 266 249 289 3 13
No. of FEA 1,785 4,100 2,945 4,335 5,280 14, 700, 000 65, 100, 000

Case 2 (Performance functions 𝑦𝑎, 𝑎 = 1,… , 3)
𝑆 = 1, 𝑝 = 1 𝑆 = 1, 𝑝 = 2
𝐼 = 4 𝐼 = 6 𝐼 = 2 𝐼 = 4 𝑚 = 3, 𝑚′ = 3 III(f) IV(g)

𝑑1
∗ , in2 5.1082 5.0150 5.2165 5.2076 5.8179 5.3729 5.3728

𝑑2
∗ , in2 14.7759 14.9630 15.5024 14.9090 16.0398 14.7451 14.7451

𝑑3
∗ , in2 2.8592 1.5288 2.2347 1.5141 4.8875 1.0000 1.0000

𝑑4
∗ , in2 1.3469 1.8268 2.3502 1.4698 3.6214 1.0000 1.0000

𝑑5
∗ , in2 5.0852 5.0289 5.1988 5.2002 6.0391 5.3722 5.3723

𝑑6
∗ , in2 1.9325 1.0000 1.4037 1.2510 4.0446 1.6439 1.6438

𝑑7
∗ , in2 11.7774 12.2523 11.6594 12.0193 10.9542 12.0165 12.0166

𝑑8
∗ , in2 3.6045 2.8308 2.0302 2.8016 3.1001 3.1555 3.1555

𝑑9
∗ , in2 1.9147 1.9578 2.8631 1.9752 1.9222 1.3319 1.3319
̃𝑑10

∗ , in2 2.4432 2.2946 1.7094 2.4105 3.6412 2.7890 2.7890
𝑐0(𝐝∗) 0.1923 0.1899 0.1919 0.1893 0.2143 0.1889 0.1889
𝑐1(𝐝∗) 2.40 × 10−2 2.72 × 10−2 3.77 × 10−2 1.62 × 10−2 1.14 × 10−2 1.48 × 10−8 1.90 × 10−8

𝑐2(𝐝∗) −3.94 × 10−1 −3.74 × 10−1 −3.52 × 10−1 −3.85 × 10−1 −5.75 × 10−1 −3.88 × 10−1 −3.88 × 10−1

𝑐3(𝐝∗) −1.97 × 10−1 −1.43 × 10−1 −1.14 × 10−1 −1.50 × 10−1 −3.88 × 10−1 −1.57 × 10−1 −1.57 × 10−1

E𝐝∗ [𝑦0(𝐗)] , lb 2099.9415 2014.1591 2069.0385 2018.5866 2469.0707 2008.4488 2008.4456
√

var𝐝∗ [𝑦0(𝐗)] , lb 43.9958 44.4004 44.3570 44.0991 46.9739 44.1154 44.1155
No. of iterations 369 450 342 367 304 64 81
No. of FEA 5,330 9,760 3,720 7,140 32,890 294, 000, 000 392, 700, 000

(a)The multi-point single-step SDD method was employed.
(b)The multi-point single-step PCE method was employed.
(c)QMCS with the sample size of 1 × 105 for statistical moment analysis and design sensitivity analysis based on the central finite difference method was employed.
d)I: 𝐝0 was signed as 𝐝∗ in its fifth column in Case 1.
e)II: 𝐝0 was signed as 𝐝∗ in its sixth column in Case 1.
f)III: 𝐝0 was signed as 𝐝∗ in its fifth column in Case 2.
g)IV: 𝐝0 was signed as 𝐝∗ in its sixth column in Case 2.
e
a
T
h
a
t
a
w

f
s

able 7, respectively, the proposed method’s optimal design is closer
han that of the PCE counterpart. Furthermore, the proposed multi-
oint single-step SDD method requires only 3,720–7,140 FEA to obtain
he better optimal design, while the PCE counterpart demands 32,890
EA. Therefore, the proposed RDO method is not only accurate but also
ore computationally efficient than its PCE counterpart, particularly in
olving RDO problems involving discontinuous performance functions.

.4. Example 4: Shape optimization of a robotic gripper jaw

This last example demonstrates the high performance of the pro-
osed RDO method in solving an industrial-scale shape design problem,
 i

21
ncompassing an industrial robotic arm, as shown in Fig. 8. The robotic
rm includes a gripper jaw for holding and transmitting workpieces.
he gripper jaw is pivoted on a hinge in the interior of the gripper
ead, which has a rotation axis, and its rotation motion is caused by
rack gear. By rotating the gripper jaw, a friction force between the
wo surfaces of the gripper jaw and a workpiece is created, resulting in
gripping force for holding the workpiece while it is moved between
ork positions.
In general, such a gripper jaw needs to be designed to maintain

atigue durability under repetitive loading cycles during operations,
ustaining its performances during the expected service life. Otherwise,
t may cause manufacturing and maintenance costs to rise. However,
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Fig. 8. A robotic gripper jaw (Example 4): (a) photos of an industrial robotic arm (left) and the gripper jaw (right); (b) a CAD model of the gripper jaw in side view (upper) and
op view (lower) (unit: mm).
t

n

ncertainties in manufacturing variables or material properties exist
nherently, resulting in the randomness of fatigue life. As a conser-
ative design approach, a large safety factor is applied to ensure its
atisfactory long-term performance, but it may cause an unnecessary
ripper jaw weight increment, thereby resulting in operating efficiency
oss. Thus, uncertainty in fatigue life should be accounted for while
esigning a lightweight gripper jaw. Such optimal robust design can be
chieved by the RDO method developed.
Twenty-six input random variables were employed for modeling

he uncertainty in manufacturing tolerances of a robotic gripper jaw
eometry. Fig. 8b presents a computer-aided design (CAD) model of
he gripper jaw with the twenty-six random manufacturing variables
1 through 𝑋26, which are marked in the side and top views. The
irst two random variables 𝑋 and 𝑋 represent the outer shape of
1 2

22
the gripper jaw head, and 𝑋3 and 𝑋4 depict the thicknesses of the
outer/inner frames on the upper and lower sides of the gripper jaw
body, respectively. Also, 𝑋5 depicts the thickness of the total gripper
jaw body, and 𝑋6 through 𝑋26 describe the six holes of the jaw, devised
o reduce the weight of the gripper jaw as much as possible.
The random variables are statistically independent and follow log-

ormal distributions with the means E𝐝[𝑋𝑙], 𝑙 = 1,… , 26, and standard
deviations 0.02E𝐝[𝑋𝑙], 𝑙 = 1,… , 5, and 0.01E𝐝[𝑋𝑙], 𝑙 = 6,… , 26. There
are twenty-six design variables, that is, 𝑑𝑙 = E𝐝[𝑋𝑙], 𝑙 = 1,… , 26. The
gripper jaw is made of Titanium Alloy Ti-6A1-4V with the following
deterministic material properties: elastic modulus 𝐸 = 115 GPa and
Poisson’s ratio 𝜈 = 0.33. Also, the deterministic fatigue parameters are
as follows: fatigue strength coefficient 𝜎′ = 2, 030 MPa, fatigue ductility
𝑓
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Fig. 9. An FEA of the robotic gripper jaw (Example 4): (a) pressure load and boundary conditions; (b) a tetrahedral mesh comprising 114,599 elements.
coefficient 𝜖′𝑓 = 0.841, fatigue strength exponent 𝑏 = −0.104, and fatigue
ductility exponent 𝑐 = −0.69.

The stochastic performance of the gripper jaw was determined by
fatigue durability analysis under pressure loading conditions 𝑃 on the
ircular surface on the top side of the gripper jaw, as shown in Fig. 9a.
he loading condition is created when the gripper holds and then
eleases a rod-like specimen by closing and opening the jaw. As a
esult, the gripper jaw experiences constant-amplitude cyclic loads with
he maximum and minimum values of the load, as follows: 0 ≤ 𝑃 ≤
7.34∕𝑋5 MPa (normal direction to the contact surface of the gripper
aw). The essential boundary condition involves fixing the center of
he two holes of the gripper jaw in all three directions. The fatigue
urability analysis involved (1) calculating maximum principal strain
nd mean stress at a critical point; and (2) calculating the fatigue
rack-initiation life at the critical point from the well-known Coffin–
anson–Morrow equation [33]. The critical point is the location where
he von Mises stress is the largest, identified from an FEA where all
nput random variables are assigned as their mean values.
The objective is to minimize both the mean and the standard

eviation of the mass of the gripper jaw by changing the shape of
he geometry. At the same time, the fatigue crack-initiation life 𝑁1(𝐗),
nder the loading condition 𝑃 (𝐗) at the critical point, exceeds a de-
ign threshold of one hundred thousand loading cycles with 98.21%
robability. Mathematically, the RDO for this problem is defined to

min
𝐝∈

𝑐0(𝐝) ∶= 0.5
E𝐝[𝑦0(𝐗)]
E𝐝0 [𝑦0(𝐗)]

+ 0.5

√

var𝐝[𝑦0(𝐗)]
√

var𝐝0 [𝑦0(𝐗)]
,

subject to 𝑐1(𝐝) ∶= 2.1
√

var𝐝[𝑦1(𝐗)] − E𝐝[𝑦1(𝐗)] ≤ 0,

𝑑𝑙,𝐿 ≤ 𝑑𝑙 ≤ 𝑑𝑙,𝑈 , 𝑙 = 1,… , 26,

23
where

𝑦0(𝐗) = 𝜌∫′
𝑑′

is the random mass of the gripper jaw, and

𝑦1(𝐗) =
𝑁1(𝐗)
1 × 105

− 1,

is a stochastic performance function based on normalized fatigue crack-
initiation life. The initial design 𝐝0 = (𝑑1,0,… , 𝑑26,0)⊺ mm; the upper and
lower bounds of the design vector 𝐝 = (𝑑1,… , 𝑑26)⊺ mm ∈  ⊂ R26 are
tabulated in Table 8. Fig. 9b presents the FEA mesh for the initial grip-
per jaw design, which comprises 114,599 linear tetrahedral elements.
The approximate optimal solution is denoted by 𝐝∗ = (𝑑∗1 ,… , 𝑑∗26)

⊺.
Since SDD basis functions are defined on a finite domain, it is

assumed that the PDF of 𝑋𝑙 is truncated lognormal with an adequately
large support. Subsequently, the scaling transformation leads to 𝑍𝑙,
which is also truncated lognormal. Consequently, the PDFs of 𝑋𝑙 and
𝑍𝑙 used in this example are as follows:

𝑓𝑋𝑙 (𝑥𝑙; 𝑑𝑙) =

exp

[

− 1
2�̃�2𝑙

(

ln 𝑥𝑙 − �̃�𝑙
)2
]

√

2𝜋�̃�𝑙

[

𝛷
(

ln 2𝑑𝑙 − �̃�𝑙
�̃�𝑙

)]

𝑥𝑙

, 𝑙 = 1,… , 26,

if 0 ≤ 𝑥𝑙 ≤ 2𝑑𝑙, and zero otherwise, and

𝑓𝑍𝑙 (𝑧𝑙; 𝑔𝑙) =

exp

[

− 1
2 ̄̃𝜎2𝑙

(

ln 𝑧𝑙 − ̄̃𝜇𝑙
)2
]

√

2𝜋 ̄̃𝜎𝑙

[

𝛷
(

ln 2 − ̄̃𝜇𝑙
)]

𝑧𝑙

, 𝑙 = 1,… , 26,
̄̃𝜎𝑙
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Fig. 10. Contours of logarithmic fatigue crack-initiation life of the robotic gripper jaw (Example 4): (a) initial design; (b) iteration 100; (c) iteration 200; (d) iteration 511
(optimum), obtained from the multi-point single-step SDD method employing univariate linear (𝑆 = 1, 𝑝 = 1) SDD approximations with two subintervals (𝐼 = 2).
if 0 ≤ 𝑧𝑙 ≤ 2, and zero otherwise. Here, 𝛷(⋅) is the cumulative
distribution function of a standard Gaussian random variable; for 𝑙 =
1,… , 5, �̃�𝑙 = ln

[

𝑑2𝑙 ∕
√

𝑑2𝑙 + (0.02𝑑𝑙)2
]

, ̄̃𝜇𝑙 = ln
[

𝑔2𝑙 ∕
√

𝑔2𝑙 + (0.02𝑔𝑙)2
]

,

and �̃�𝑙 = ̄̃𝜎𝑙 ≈ 0.02; for 𝑙 = 6,… , 26, �̃�𝑙 = ln
[

𝑑2𝑙 ∕
√

𝑑2𝑙 + (0.01𝑑𝑙)2
]

,

̄̃𝜇𝑙 = ln
[

𝑔2𝑙 ∕
√

𝑔2𝑙 + (0.01𝑔𝑙)2
]

, and �̃�𝑙 = ̄̃𝜎𝑙 ≈ 0.01; and for 𝑙 = 1,… , 26,
𝑑𝑙,𝐿 ≤ 𝑑𝑙 ≤ 𝑑𝑙,𝑈 , defined in Table 8, and 𝑔𝑙 = 1.

The multi-point single-step method, employing univariate quadratic
𝑆 = 1, 𝑝 = 2) SDD approximations with two subintervals (𝐼 = 2), was
mployed to solve this robotic gripper jaw design problem. As a result,
he optimal design is presented in the third and eighth columns from
he left in Table 8. At the optima, the value of the fifth design variable
∗
5 reached the lower limit, and the values of the remaining design
ariables are between their lower and upper limits, satisfying inactive
onstraints 𝑐1 ≃ −27.99. The mean and the standard deviation of the
ptimal gripper jaw mass is 4.27 × 10−2 kg and 1.34 × 10−3 kg, which
epresent about 52% and 37% reductions, respectively, from the initial
ass of 8.91×10−2 kg and the initial standard deviation of 2.13×10−3 kg.
o complete the design process, the requisite number of FEA is 3,180.
Figs. 10a–d present the contour plots of the logarithm of the fatigue

rack-initiation life at the mean shapes of the robotic gripper jaw for
everal design iterations, including the initial and optimal designs. By
sing the proposed RDO method with tolerances and subregion size
arameters appropriately selected, a total of 511 iterations (𝑞) led to
he final optimal design. Indeed, there is a significant reduction of the
verall volume of the gripper jaw, satisfying the constraint condition
xceeding the logarithm of target fatigue life 11.51 = ln 105.
Fig. 11 presents the iteration histories of the objective function 𝑐0

nd the normalized twenty-six design variables 𝑑𝑙∕𝑑𝑙,0, 𝑙 = 1,… , 26,
uring the RDO process attained by the multi-point single-step SDD
ethod employing univariate, linear (𝑆 = 1, 𝑝 = 1, 𝐼 = 2) SDD ap-
roximations. In Fig. 11a, the value of the objective function converges
onotonically from 1.00 at the initial design to nearly 0.56 at the opti-
al design, about a 44% decrease. According to Figs. 11b–f, the values
24
Table 8
Initial and optimal values, and bounds of design variables for the robotic gripper jaw
problem (Example 4).
𝑙 𝑑𝑙,0 mm 𝑑𝑙

∗ mm 𝑑𝑙,𝐿 mm 𝑑𝑙,𝑈 mm 𝑙 𝑑𝑙,0 mm 𝑑𝑙
∗ mm 𝑑𝑙,𝐿 mm 𝑑𝑙,𝑈 mm

1 14 7.2288 5 14 14 3 1.3379 1 3
2 3 5.7282 3 6 15 3 1.4062 1 3
3 1 2.7416 1 3 16 2 1.3371 1 2
4 1 1.7170 1 2 17 5 2.3001 2 5
5 18 13.0000 13 18 18 2 1.3153 1 2
6 6 1.9828 1 6 19 2.5 1.4805 1 2.5
7 2 1.3444 1 2 20 6 2.4292 1 6
8 2 1.2839 1 2 21 6 2.3824 1 6
9 6 1.7168 1 6 22 2.5 1.6261 1 2.5
10 3 1.3698 1 3 23 2.5 1.4940 1 2.5
11 2 1.6774 1.5 2 24 6 1.7633 1 6
12 3 1.5084 1 3 25 6 1.5763 1 6
13 3 1.3881 1 3 26 2.5 1.4298 1 2.5

of all twenty-six design variables have changed significantly from their
initial values, thus resulting in substantial modifications of the gripper
jaw geometry and its hollow shapes and sizes. This concluding example
shows that the multi-point single step SDD method developed is capable
of solving industrial-scale engineering design problems using only a few
thousand FEA.

The accomplishments of the proposed RDO method in all four
examples are summarized in Table 9, which presents the percentage
changes in the mean and standard deviation of 𝑦0 from initial to optimal
designs. The second-moment statistics at optimal designs are averages
of all SDD-based method solutions. While the largest reduction of the
mean is 91.06%, the standard deviation decreases by at most 93.39%.
Apparently, the proposed RDO methods have played a crucial role in
lessening the statistical moments of objective functions, thus achieving
insensitive designs.
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Fig. 11. RDO iteration histories for the robotic gripper jaw (Example 4): (a) objective function value; (b) normalized design variables 𝑑1–𝑑5; (c) normalized design variables 𝑑6–𝑑10;
(d) normalized design variables 𝑑11–𝑑15; (e) normalized design variables 𝑑16–𝑑20; (f) normalized design variables 𝑑21–𝑑26.
7. Discussion

The computational efficiency of the multi-point single-step SDD
method largely relies on the total iteration count (𝑄′), where each 𝑞′th
iteration calls for a single stochastic analysis to solve the local RDO
problem for the 𝑞′th subregion. Since the 𝑞′th subregion size is always
less than the domain size of input random variables at the 𝑞′th initial
design as depicted in Fig. 1b, the smaller intervals of the input will
increase the total iteration count (𝑄′), causing a subsequent increase
in the computational costs of the proposed RDO method. In such cases,
a new optimization algorithm may need to be developed to tackle
25
the aforementioned computational issue. In addition, for unbounded
input, which occur in many engineering systems, the input domains
are assumed as large, closed, bounded ones, say, greater than or equal
to six times their standard deviations, as presented in Examples 1–4.
Therefore, for many real-life applications, this is not a limitation of the
multi-point single-step SDD method to solve the RDO problems at a
reasonable computational price.

The score functions and RDO problems studied in this work are
applicable when the design variables are solely the distributional pa-
rameters of 𝐗. Many engineering design tasks fall under this class
of problems. However, there are exceptions that require delving into
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Table 9
Reductions in the mean and standard deviation of 𝑦0 from initial to optimal designs.

Examples
E𝐝∗ [𝑦0(𝐗)] − E𝐝0 [𝑦0(𝐗)]

E𝐝0 [𝑦0(𝐗)]

√

var𝐝∗ [𝑦0(𝐗)] −
√

var𝐝0 [𝑦0(𝐗)]
√

var𝐝0 [𝑦0(𝐗)]

1-1(a) 68.83% 93.39%
1-2(b) 46.27% 27.95%
2(c) 91.06% 89.16%
3-1(d) 84.32% 78.11%
3-2(e) 83.71% 78.12%
4 52 % 37 %

(a)The value of E𝐝∗ [𝑦0(𝐗)] and
√

var𝐝∗ [𝑦0(𝐗)] is the average of all corresponding SDD
results in Table 3-(Case 1).
(b)The value of E𝐝∗ [𝑦0(𝐗)] and

√

var𝐝∗ [𝑦0(𝐗)] is the average of all corresponding SDD
results in Table 3-(Case 2).
(c)The value of E𝐝∗ [𝑦0(𝐗)] and

√

var𝐝∗ [𝑦0(𝐗)] is the average of all corresponding SDD
esults in Table 5.
d)The value of E𝐝∗ [𝑦0(𝐗)] and

√

var𝐝∗ [𝑦0(𝐗)] is the average of all corresponding SDD
esults in Table 7-(Case 1).
e)The value of E𝐝∗ [𝑦0(𝐗)] and

√

var𝐝∗ [𝑦0(𝐗)] is the average of all corresponding SDD
esults in Table 7-(Case 2).

esign problems that depend on structural parameters too, comprising
eterministic design variables [34]. Under similar regularity condi-
ions, the corresponding score functions can be derived, but will now
nvolve the partial derivatives of the performance function with respect
o both distributional and structural design parameters, which must
xist and be finite. However, RDO problems addressing both types of
esign parameters are outside the scope of this study. For the same
eason, considerations of dynamic problems or reliability analysis, not
ursued in this work, are left for future works.

. Conclusion

Two novel spline-based computational methods, comprising the
irect SDD and multi-point single-step SDD methods, were invented for
obust design optimization of complex engineering systems. The meth-
ds feature SDD of a high-dimensional, discontinuous, or nonsmooth
tochastic response for statistical moment analysis, a novel fusion of
DD and score functions for calculating the second-moment sensitivi-
ies with respect to the design variables, and standard gradient-based
ptimization algorithms, constructing direct and multi-point single-step
esign processes. In these SDD-based methods, the orthonormal basis
unctions are derived from compactly supported B-splines, resulting in
n excellent approximation power for locally pronounced, highly non-
inear, discontinuous, or nonsmooth stochastic output functions. Hence,
low-variate and/or low-degree SDD approximation with an adequate
esh size can produce a remarkably accurate and convergent estimates
f response moments. When integrated with score functions, SDD leads
o explicit formulae, expressed in terms of the expansion coefficients,
or approximating the design sensitivities of moments that are also
ccurate and theoretically convergent. More importantly, the statistical
oments and design sensitivities are determined simultaneously and
ence inexpensively from a single stochastic analysis or simulation.
Between the two methods developed, the direct SDD method is most

traightforward, but it demands re-calculations of the SDD expansion
oefficients at each design iteration. Therefore, it easily becomes com-
utationally expensive. However, due to simplicity in the optimization
lgorithm, it was employed to evaluate the performance of SDD ap-
roximations in solving the elementary mathematical RDO problems.
n contrast, the multi-point single-step SDD method adjusts local en-
orcement of SDD approximation, where the original RDO problem is
onverted into a series of local RDO problems defined on subregions
f the entire design space. As a result, the method permits employing
low-degree SDD approximation to obtain a reliable RDO solution in
he case of a large design space and locally highly nonlinear stochastic

esponses. Also, the latter method avoids the necessity of recomputing

26
the expansion coefficients by reprocessing the old expansion coeffi-
cients, thus dramatically reducing the computational cost. Therefore,
the multi-point single-step SDD method is capable of solving practical
engineering problems, as successfully demonstrated by shape design
optimization of an industrial-scale robotic gripper jaw.
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Appendix A. B-splines

A.1. Recursive formula

Let 𝝃𝑘 be a general knot vector of length at least 𝑝𝑘+2 for the interval
𝑎𝑘, 𝑏𝑘]. Denote by 𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝜉𝑘 (𝑧𝑘) the 𝑖𝑘th univariate B-spline function with
degree 𝑝𝑘 ∈ N0 for the coordinate direction 𝑘. Given the zero-degree
basis functions such that, for 𝑘 = 1,… , 𝑁 ,

𝐵𝑘𝑖𝑘 ,0,𝜉𝑘 (𝑧𝑘) =

{

1, 𝜉𝑘,𝑖𝑘 ≤ 𝑥𝑘 < 𝜉𝑘,𝑖𝑘+1,
0, otherwise,

all higher-order B-spline functions on R are determined recursively as

𝐵𝑘𝑖𝑘 ,𝑝𝑘 ,𝜉𝑘 (𝑧𝑘) ∶=
𝑧𝑘 − 𝜉𝑘,𝑖𝑘

𝜉𝑘,𝑖𝑘+𝑝𝑘 − 𝜉𝑘,𝑖𝑘
𝐵𝑘𝑖𝑘 ,𝑝𝑘−1,𝜉𝑘 (𝑧𝑘) +

𝜉𝑘,𝑖𝑘+𝑝𝑘+1 − 𝑧𝑘
𝜉𝑘,𝑖𝑘+𝑝𝑘+1 − 𝜉𝑘,𝑖𝑘+1

×𝐵𝑘𝑖𝑘+1,𝑝𝑘−1,𝜉𝑘 (𝑧𝑘),

where 1 ≤ 𝑘 ≤ 𝑁 , 1 ≤ 𝑖𝑘 ≤ 𝑛𝑘, 1 ≤ 𝑝𝑘 < ∞, and 0∕0 is considered as
zero.

A.2. Properties

The B-splines are: (1) non-negative; (2) locally supported on the in-
terval [𝜉𝑘,𝑖𝑘 , 𝜉𝑘,𝑖𝑘+𝑝𝑘+1) for all 𝑖𝑘; (3) linearly independent; (4) committed
to a partition of unity; and (5) pointwise 𝐶∞-continuous everywhere
except at the knots 𝜁𝑘,𝑗𝑘 of multiplicity 𝑚𝑘,𝑗𝑘 for all 𝑗𝑘 = 1,… , 𝑟𝑘, where
they are 𝐶𝑝𝑘−𝑚𝑘,𝑗𝑘 -continuous, provided that 1 ≤ 𝑚𝑘,𝑗𝑘 < 𝑝𝑘 + 1.

Appendix B. Three-steps for orthonormalized B-splines

1. Given a set of B-splines of degree 𝑝𝑘, create an auxiliary set by
replacing any element, arbitrarily chosen to be the first, with
one. Arrange the elements of the set into an 𝑛𝑘-dimensional
vector

𝐏𝑘(𝑧𝑘) ∶= (1, 𝐵𝑘2,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘),… , 𝐵𝑘𝑛𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘))
⊺

comprising the auxiliary B-splines. The linear independence of
the auxiliary B-splines is preserved [25].

2. Construct an 𝑛𝑘 × 𝑛𝑘 spline moment matrix of 𝐏𝑘(𝑍𝑘) as follows:

𝐆𝑘 ∶= E𝐠[𝐏𝑘(𝑍𝑘)𝐏
⊺
𝑘(𝑍𝑘)].

The matrix 𝐆𝑘 exists because 𝑍𝑘 has finite moments up to order
2𝑝𝑘. Also, 𝐆𝑘 is positive-definite, thus, invertible. As a result,
there is a non-singular whitening matrix 𝐖𝑘 ∈ R𝑛𝑘×𝑛𝑘 such that
the factorization of the form

𝐖⊺
𝑘𝐖𝑘 = 𝐆−1

𝑘 or 𝐖−1
𝑘 𝐖−⊺

𝑘 = 𝐆𝑘

holds.
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3. Using a whitening transformation, create an 𝑛𝑘-dimensional vec-
tor of orthonormalized B-splines

𝝍𝑘(𝑧𝑘; 𝐠) = 𝐖𝑘𝐏𝑘(𝑧𝑘),

consisting of uncorrelated components

𝜓𝑘𝑖𝑘 ,𝑝𝑘 ,𝝃𝑘 (𝑧𝑘), 𝑖𝑘 = 1,… , 𝑛𝑘, 𝑘 = 1,… , 𝑁.

Note that the invertibility of 𝐆𝑘 does not uniquely determine
𝐖𝑘. Indeed, there are several ways to choose 𝐖𝑘 such that
the condition described in Step 2 is satisfied. One prominent
choice of 𝐖𝑘, employed in this paper, is to invoke the Cholesky
factorization, such that 𝐆𝑘 = 𝐐𝑘𝐐

⊺
𝑘, yielding

𝐖𝑘 = 𝐐−1
𝑘 .

The effectiveness of the three-step process is determined by reliable
construction of a well-conditioned spline moment matrix 𝐆𝑘 in Step
2. The spline moment matrix can be created analytically, or by a
numerical method, such as a Gauss-type quadrature rule. Since the nu-
merical integration does not include any potentially expensive output
function evaluations, it can be implemented with an arbitrary level
of precision. While it is achievable to do this using a single step of
measure-consistent quadrature points and weights of adequately high
order corresponding to the entire domain [𝑎𝑘, 𝑏𝑘], it is often more
accurate to generate measure-consistent quadrature points and weights
for each subinterval defined between successive, unique knots. In this
case, the integral is split into several integrals, each operating on a
polynomial of order 2𝑝𝑘 multiplied by a part of the PDF.

Appendix C. Optimal latin hypercube sampling

Let 𝐗 = (𝑋1,… , 𝑋𝑁 )⊺ be 𝑁 random variables, each with a uniform
distribution over [0, 1]. Also, let 𝐱(𝑡) = (𝑥(𝑡)1 ,… , 𝑥(𝑡)𝑁 )⊺ be the 𝑡th realiza-
tion of 𝐗. In Latin hypercube sampling (LHS), for 𝑘 = 1,… , 𝑁 , a sample
𝑥(𝑡)𝑘 is generated where each random variable 𝑋𝑘 is stratified into 𝐿
equal strata. Thus, a formula for LHS is as follows [35]:

𝑥(𝑡)𝑘 =
𝛼𝑘(𝑡 − 1) + 𝑢(𝑡)𝑘

𝐿
, 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝐿,

where 𝛼1(⋅),… , 𝛼𝑁 (⋅) are uniform random permutation functions of
{0, 1,… , 𝐿 − 1}, 𝑢(𝑡)𝑘 is a realization of uniform distribution on [0, 1),
and all the 𝑢(𝑡)𝑘 and 𝛼𝑘 are independent. For all 𝑘 = 1,… , 𝑁 and
= 0,… , 𝐿 − 1, LHS satisfies
{

1 ≤ 𝑡 ≤ 𝐿 ∶
𝑗
𝐿

≤ 𝑥(𝑡)𝑘 <
𝑗 + 1
𝐿

}

= 1,

here 𝑗 = 𝛼𝑖(𝑡 − 1), and for each 𝑘 = 1,… , 𝑁 , there is precisely one
uch that 𝑡 − 1 = 𝛼−1𝑘 (𝑗).
However, a better choice is desired to more uniformly distribute

oints in the domain. As one of the preferred options, the maximin LHS
s to maximize the minimal distance among all pairs of points, resulting
n an optimal Latin hypercube design. For 𝑡1, 𝑡2 = 1,… , 𝐿, the maximin
HS is to maximize

min
1≠𝑡2

𝑑(𝐱(𝑡1), 𝐱(𝑡2)) = min
𝑡1≠𝑡2

[ 𝑁
∑

𝑘=1
|𝑥(𝑡1)𝑘 − 𝑥(𝑡2)𝑘 |

𝑟
]1∕𝑟

, 𝑟 = 1 or 2,

here 𝑑(𝐱(𝑡1), 𝐱(𝑡2)) is the general inter-point distance between any
oints 𝐱(𝑡1) and 𝐱(𝑡2).
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