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a b s t r a c t

This article reports the results of a parametric study on the fracture behavior of a crack in functionally
graded materials. The study involves stochastic descriptions of particle and void numbers; location, size,
and orientation characteristics; and constituent elastic properties; a concurrent multiscale model for
calculating crack-driving forces; and Monte Carlo simulation for fracture reliability analysis. A level-
cut, inhomogeneous, filtered Poisson field describes the statistically inhomogeneous microstructures of
graded composites. Numerical results for an edge-cracked, graded specimen show that the particle shape
and orientation for the same phase volume fractions have negligible effects on fracture reliability, even for
graded materials with a high modular ratio. However, voids and the particle gradation parameter, if they
exist or increase, can significantly raise the probability of fracture initiation. Limited crack-propagation
simulations in graded composites containing brittle particles reveal that the fracture toughness of the
matrix material can significantly influence the likelihood or the extent of crack growth.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Assessing mechanical reliability of functionally graded materi-
als (FGMs), which possess spatially varying material compositions
and microstructures, mandates a fundamental understanding of
their deformation and fracture behavior [1,2]. Most existing stud-
ies on FGM fracture [3–6] entail calculating crack-driving forces
employing smoothly varying material properties that are derived
from empirical rules of mixtures, classical bounds, or microme-
chanical homogenization [7,8]. However, an FGM is a multiphase,
heterogeneous material with possibly distinct properties of indi-
vidual phases. Depending on the crack-tip location and FGM mi-
crostructure, the resulting crack-driving forces can be markedly
different when a significant mismatch exists in the properties of
constituent material phases. Therefore, using homogenized prop-
erties in a macroscale analysis may lead to inaccurate or inad-
equate measures of crack-driving forces and fracture behavior
of FGMs. The calculation of crack-driving forces becomes further
complicated when accounting for a random microstructure, in-
cluding spatial and random distributions of sizes, shapes, and ori-
entations of constituent phases [9–12]. Therefore, in general, a
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stochastic fracture analysis incorporating random microstructural
details, particularly in the crack-tip region, is required for high-
fidelity reliability analysis [13].
A valuable insight can be gained by investigating howmicrome-

chanical parameters, such as the phase volume fraction, location,
size, shape, and orientation of particles; porosity; and the frac-
ture toughness properties of constituents, influence the fracture
behavior of a particle-matrix FGM. An elaborate computational
model, e.g., a microscale model that employs a discrete particle-
matrix system in the entire domain of an FGM, can be invoked
for such a parametric study. However, a microscale model, al-
though capable of furnishing highly accurate solutions, constitutes
a brute-force approach, and is therefore computationally expen-
sive, if not prohibitive. An attractive alternative is multiscale anal-
ysis, where effective material properties are employed whenever
possible, thereby solving a fracture problem of interest not only
accurately, but also economically. For example, a concurrent mul-
tiscale model [13], recently developed by the authors, involves
stochastic description of an FGM microstructure and constituent
material properties, a two-scale algorithm including microscale
and macroscale analyses for determining crack-driving forces, and
theMonte Carlo simulation for fracture reliability analysis. Numer-
ical results indicate that the concurrent multiscale model is suffi-
ciently accurate, gives fracture probability solutions very close to
those generated from the microscale model, and can reduce the
computational effort of the latter model by more than a factor of
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two. Therefore, a detailed parametric study can be efficiently con-
ducted using the concurrent multiscale model – the principal fo-
cus of this work. In general, the crack-driving forces experienced
by an FGM can be very complex in practical scenarios involving
a variety of combinations of microstructural parameters and con-
stituent material properties. A clear understanding of the relation-
ship between the microstructure and fracture behavior is vital to
the successful application of FGM to the design of mechanical and
structural components.
This paper presents the results of a parametric study on fracture

behavior of two-dimensional, functionally graded composites.
The study involves: (1) stochastic descriptions of particle and
void numbers; location, size, and orientation characteristics; and
constituent elastic properties; (2) a concurrent multiscale model
for determining crack-driving forces under mixed-mode loading;
and (3) Monte Carlo simulation for uncertainty propagation and
fracture reliability analysis. Section 2 describes a generic fracture
problem and a concurrent multiscale model for calculating various
fracture response characteristics of interest, defines the random
input parameters, and discusses crack-driving forces and fracture
reliability. Section 3 describes the Monte Carlo simulation method
for calculating statistical moments and probability densities
of crack-driving forces, leading to the probability of fracture
initiation. A numerical example comprising eight cases of FGM
microstructure and three cases of fracture toughness ofmatrix, and
the resultant fracture response, is presented in Section 4. Section 5
provides conclusions from this work and discusses future work.

2. Stochastic fracture mechanics

Consider a three-phase, functionally graded, heterogeneous
solid with a rectilinear crack, domain D ⊂ R2, and a
schematic illustration of its microstructure, as shown in Fig. 1. The
microstructure in general includes three distinct material phases:
one phase as particles, another phase as the matrix material,
and the remaining phase as voids. The particle, matrix, and void
subdomains are represented by Dp, Dm, and Dv , respectively,
where Dp ∪ Dm ∪ Dv = D and Dp ∩ Dm = Dm ∩ Dv = Dp ∩
Dv = ∅. A three-phase FGM, henceforth described as a two-phase,
porous FGM or simply a porous FGM, can be reduced to a two-
phase, non-porous FGM by discarding the void constituent. The
particle andmatrix represent isotropic and linear-elasticmaterials,
and the elasticity tensors of individual phases, denoted by C (i), are
expressed as [14]

C (i) :=
νiEi

(1+ νi)(1− 2νi)
1⊗ 1+

Ei
(1+ νi)

I; i = p,m, (1)

where the symbol⊗ denotes the tensor product; Ei and νi are the
elastic modulus and Poisson’s ratio, respectively, of phase i; and 1
and I are second- and fourth-rank identity tensors, respectively.
The superscripts or subscripts i = p and i = m refer to
particle and matrix, respectively. At a spatial point x ∈ D in the
macroscopic length scale, let φp(x), φm(x), and φv(x) denote the
volume fractions of particle, matrix, and void, respectively. Each
volume fraction is bounded between 0 and 1 and satisfies the
constraint:φp(x)+φm(x)+φv(x) = 1. The crack faces are traction-
free, and there is perfect bonding between the material phases.
Consider a linear-elastic solid with small displacements and

strains. The equilibrium equation and boundary conditions for the
quasi-static problem are

∇ · σ + b = 0 in Dp ∪Dm or D \Dv and (2)

σ · n = t̄ on Γt (natural boundary conditions)
u = ū on Γu (essential boundary conditions),

(3)

respectively, where u : D → R2 is the displacement vector;
σ = C(x) : ε is the Cauchy stress tensor with C(x) and ε :=
Fig. 1. A crack in a three-phase functionally graded composite. (Note:D = domain
of the entire solid,Dp = particle subdomain,Dm =matrix subdomain,Dv = void
subdomain.)

(1/2)
(
∇ +∇

T) u denoting the spatially variant elasticity tensor
and strain tensor, respectively; n is a unit outward normal to the
boundary Γ of the solid; Γt and Γu are two disjoint portions of
the boundary Γ , where the traction vector t̄ and displacement ū
are prescribed; ∇

T
:= {∂/∂x1, ∂/∂x2} is the vector of gradient

operators; and symbols ‘‘.’’ and ‘‘:’’ denote dot product and tensor
contraction, respectively.
The variational or weak form of Eqs. (2) and (3) is∫

D

(C(x) : ε) : δεdD −
∫

D

b · δudD −
∫
Γt

t̄ · δudΓ

−

∑
xK∈Γu

f (xK ) · δu(xK )−
∑
xK∈Γu

δf (xK ) · [u(xK )− ū(xK )] = 0,

(4)

where f T(xK ) is the vector of reaction forces at a constrained node
K on Γu, and δ denotes the variation operator. The discretization
of the weak form, Eq. (4), depends on how the elasticity tensor
C(x) is defined, i.e., how the elastic properties of constituent
material phases and their gradation characteristics are described.
In the following section, a concurrentmultiscalemodel is described
to approximate C(x). Nonetheless, a numerical method, e.g.,
the finite-element method (FEM), is generally required to solve
the discretized weak form, providing various response fields of
interest.

2.1. Concurrent multiscale model

The FGM microstructure in Fig. 1 contains discontinuities in
material properties at the interfaces between the matrix and
particles. There exist two approaches with respect to defining
the material property for fracture analysis of an FGM cracked
structure. One approach involves stress analysis using effective
material properties, often smooth and continuous, in the entire
domain of the solid. This approach is referred to as macroscale
analysis. The other approach, referred to as microscale analysis,
entails stress analysis that is solely based on the exact but discrete
material property information derived from the knowledge of
explicit particle locations and their geometry. The concurrent
multiscale model employed in this work includes both continuous
and discrete material representations and requires a combined
micromechanical and macromechanical stress analysis.
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Fig. 2. Schematics of concurrent multiscale model. (Note: D = domain of the
entire solid, D̄ = subdomain with explicit particle and void information, Dε =

small subdomain surrounding crack tip.)

As depicted in Fig. 2, consider an arbitrary bounded subdomain
D ⊆ D , which surrounds the crack tip and contains finite numbers
of particles and voids. Employing effective elastic properties
at the crack-tip region may yield inadequate estimates of the
resultant stress intensity factors (SIFs), particularly if there exists a
significant mismatch between the matrix and particle properties.
However, far from the crack tip, where the effect of crack-tip
singularity vanishes rapidly, individual constituent propertiesmay
not be needed, and an appropriately derived effective material
property should suffice. In other words, the subdomain D is
filled with individual particles and voids, whereas the remaining
subdomain D \ D is assigned a continuously varying effective
elasticity tensor C̄(x), derived from a suitable micromechanical
homogenization. Using classical micromechanics, e.g., the self-
consistent model, the Mori–Tanaka model, and the mean-field
theory [7,8], C̄(x) can be easily calculated from the known phase
volume fractions at x ∈ D \ D . Therefore, according to the
concurrent model, Eq. (4) is discretized and solved using [13]

C(x) ∼=

C (p), if x ∈ D and x ∈ Dp
C (m), if x ∈ D and x ∈ Dm
C̄(x), if x ∈ D \D,

(5)

where discontinuity in material properties exists at the interfaces
betweenD andD \D and betweenDp andDm.
Since the material representation in D is discrete, the

calculation of the resulting SIFs in the concurrent model is
not straightforward. The interaction integral method, commonly
employed for fracture analysis of homogeneous or smoothly
inhomogeneous media [3], requires a constant or continuously
varyingmaterial property inside the domain of a crack-tip contour.
However, if a small, bounded, non-porous subdomainDε ⊂ D ⊆
D surrounding the crack tip is introduced in slightlymodifying the
elasticity tensor, for instance [13],

C(x) ∼=


C (p), if

(
x ∈ Dεand xtip ∈ Dp

)
or if

(
x ∈ D \Dε and x ∈ Dp

)
C (m), if

(
x ∈ Dε and xtip ∈ Dm

)
or if

(
x ∈ D \Dε and x ∈ Dm

)
C̄(x), if x ∈ D \D,

(6)

the result is amaterial representation that is locally homogeneous,
i.e., C(x) is either C (p) or C (m), but constant for x ∈ Dε . Therefore,
mixed-mode SIFs can be readily calculated from the interaction
integrals applicable to homogeneous materials, provided the
crack-tip contour lies inside Dε . Applying Eq. (6) in solving the
discretized weak form yields the interaction integrals, M(1,2)

p and
M(1,2)
m , when C(x) = C (p); x ∈ Dε and C(x) = C (m); x ∈ Dε ,
respectively. The SIFs are subsequently calculated from

Ki ∼=


1
2
M(1,i)
p E∗p , if xtip ∈ Dp

1
2
M(1,i)
m E∗m, if xtip ∈ Dm;

i = I, II, (7)

where E∗j = Ej for the plane stress, E
∗

j = Ej/
(
1− ν2j

)
for the plane

strain conditions, and j = p,m.
In calculating SIFs by the concurrent multiscale model, the size

ofDε should be comparable to themicrostructural length scale, but
large enough for the SIFs to be calculated accurately. The effects of
discrete particles or voids inD , if they exist, should be propagated
to the SIFs. The magnitude of the effect, however, depends on the
size of D relative to D . Further details of the concurrent model,
including verification with a full microscale model, are available in
the authors’ previous work [13].

2.2. Stochastic input

Uncertainties in FGM fracture analysis leading to stochastic
properties of SIFs can come from a variety of sources. Two
important sources are: (1) microstructural uncertainty that
includes randomness in phase volume fractions, numbers of
particles and voids, spatial arrangements of particles and voids, and
the size, shape, and orientation properties of particles and voids,
and (2) constituent elastic material properties.

2.2.1. Random microstructure
Let (Ω,F , P) be a probability space, where Ω is the sample

space, F is the σ -algebra of subsets ofΩ , and P is the probability
measure. Defined on the probability space and indexed by a spatial
coordinate x ∈ D ⊂ R2, consider an inhomogeneous Poisson
random fieldN (D ′)with an intensitymeasureµD ′ :=

∫
D ′
λ(x)dx,

where λ(x) ≥ 0 is a spatially variant intensity function associated
with the particle or void phase andD ′ ∈ B(R2) is a bounded Borel
set such that points of N falling in R2 \ D ′ do not contribute to
particles or voids in D . The Poisson point field has the following
properties: (1) the numberN (D ′) of points in a bounded subsetD ′
has the Poisson distribution with intensity measure µD ′ ; and (2)
random variables N (D ′1), . . . ,N (D

′

K ) for any integer K ≥ 2 and
disjoint setsD ′1, . . . ,D

′

K are statistically independent. The Poisson
fieldN (D ′) gives the number of points inD ′ and is characterized
by the probability

P
[
N (D ′) = n

]
=

(∫
D ′
λ(x)dx

)n
n!

exp
(
−

∫
D ′
λ(x)dx

)
;

n = 0, 1, 2, . . . (8)

that n Poisson points exist inD ′. ThemeanE[N (D ′)] and variance
Var[N (D ′)] ofN (D ′) are both equal to µD ′ :=

∫
D ′
λ(x)dx.

Filtered Poisson field: An inhomogeneous, filtered Poisson random
field can be described as [9,10]

Z(x) :=


0, N (D ′) = 0
N (D ′)∑
i=1

Zih̄ (Ψ i(x− Γ i)) , N (D ′) > 0;

x ∈ D ⊂ D ′ ⊂ R2, (9)

where {Γ i} is a collection of Poisson points, h̄ : R2 → R is a
non-negative kernel function, {Zi} is a collection of independent
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and identically distributed real-valued random variables, and {Ψ i}
is a collection of independent and identically distributed rotation
matrices in R2, for instance,

Ψ i =

[
cosΘi sinΘi
− sinΘi cosΘi

]
; i = 1, . . . ,N ; x ∈ R2, (10)

with Θi representing deterministic or random orientation of the
ith particle or void. In Eq. (9), bothD andD ′ are bounded subsets
of R2 such that points of N falling in the set difference R2 \ D ′

do not contribute to the value of Z in D . Also, the subset D ′ is
bounded if, for example, h̄ has a compact support. The filtered
Poisson field Z(x) can be viewed as the response of a filter with
a transfer function at point x that is subjected to a collection of
random pulses arriving at Poisson points {Γ i}.
Level-cut, Filtered Poisson Field: For an increasing function g : R→
R, consider a real-valued translation random field

Y (x) := g(Z(x)), (11)

which describes a memoryless, measurable, nonlinear function
of a real-valued random field Z(x). The translation field Y (x) is
completely determined by mapping g and statistical properties of
Z(x). Consider a special form of

g(z) = I(z; a) :=
{
1, z > a
0, z ≤ a; z ∈ R, (12)

where a is a deterministic constant, known as level, and I(z; a)
denotes an indicator function. The translation field Y in Eq. (11)
with g in Eq. (12) is referred to as a level-cut random field. By
clipping the inhomogeneous, filtered Poisson field Z(x) defined in
Eq. (9), the resulting translation field

Y (x) := I(Z(x); a) (13)

then becomes a level-cut, inhomogeneous, filtered Poisson field,
which provides a convenient model for a two-phase FGM
microstructure inD . For example, the subsets {x ∈ D : Y (x) = 1}
and {x ∈ D : Y (x) = 0} define particles (phase 1) and matrix
(phase 2), respectively, which can be derived from the contour
of Z(x) at level a. Fig. 3 depicts a schematic illustration of the
two subsets, obtained from a cut (Fig. 3(b)) of a generic random
field Z(x) (Fig. 3(a)). The dark (charcoal) phase indicates particles
embedded in the light (light blue) phase representing the matrix.
The level-cut random field can also be employed for modeling
porosity (void) in the matrix.
Approximate level-cut, filtered Poisson field: Let the kernel h̄(χ) be a
compactly supported, non-negative function, for example,

h̄(χ) =


exp(−χTγχ) = exp

(
−
χ21

σ 21
−
χ22

σ 22

)
, for particles

χTγχ =
χ21

σ 21
+
χ22

σ 22
, for voids,

(14)

where χ ∈ R2, σk > 0 are some constants, and γ =

diag[1/σ1, 1/σ2] ∈ R2×2 is a diagonal matrix. Suppose that λ(x),
Zi, and h̄ are such that the values of Z in a small vicinity D(Γ i) of
Γ i can be approximated by

Z̃(x) = Zih̄(Ψ i(x− Γ i)), x ∈ D(Γ i), (15)

leading to an approximate version

Ỹ (x) = I(Z̃(x); a) = I(Zih̄(Ψ i(x− Γ i)); a), x ∈ D(Γ i) (16)

of the level-cut field Y (x) in Eq. (13). Therefore, the particles
or voids in the microstructure of a two-phase FGM can be
conveniently approximated by the subsets

(x− Γ i)
TΨ Ti γ(x− Γ i) ≤ − ln(a/Zi), for particles

(x− Γ i)
TΨ Ti γ(x− Γ i) = 1, for voids,

(17)
Fig. 3. Schematic illustration of a generic level-cut random field inR2; (a) a sample
of Z(x1, x2) with a cut at level a; (b) two subsets of Y (x1, x2) obtained from the
contour of the sample of Z(x1, x2) at level a.

of D for Zi > a and x ∈ R2. The approximate level-cut field is
capable of generating particles and voids with regular geometric
shapes, e.g., circular, elliptical. Note that Ỹ (x) is strictly applicable
when λ(x) and σk are both small. While such smallness restriction
limits the usefulness of Ỹ (x) somewhat, Eqs. (16) and (17) can be
conveniently employed for finite-element discretization of fully
penetrable particles even when λ(x) and σk are not small. See
Rahman [10] for further details.

Algorithm: The level-cut field Ỹ (x), described by Eq. (16), can
be obtained from Z̃(x) using the level-cut parameter a. Once all
the parameters of the level-cut field Ỹ (x) have been determined,
samples of synthetic microstructures of two-phase FGMs can be
generated based on the following algorithm:

• Step 1: Define bounded subsets D and D ′ of R2. The bounded
subsetD ′must be such that points ofN falling inR2\D ′ do not
contribute to the value of Z̃(x) inD . Specify the kernel function
h̄ and define its parameters.
• Step 2: Generate a sample k∗ of the homogeneous Poisson
random variable N∗(D ′), which has a constant intensity λ∗ =
maxx∈R2 λ(x), where λ(x) is a bounded intensity function inD ′.
• Step 3: Generate k∗ independent uniformly distributed points
inD ′. Denote these points by xi, i = 1, . . . , k∗.
• Step 4: Perform thinning of the point set obtained in Step 3.
In so doing, each point xi, independently of the other, is kept
with probability λ(xi)/λ∗, which is equivalent to discarding the
point with probability 1−λ(xi)/λ∗. The resulting point pattern
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with the size k∗∗ ≤ k∗ follows the inhomogeneous Poisson
field N (D ′) with intensity function λ(x). Denote these points
by Γ i, i = 1, . . . , k∗∗.
• Step 5: Generate k∗∗ independent samples of random rotation
matrices {Ψ i} and random variables {Zi} from their relevant
distributions.
• Step 6: Calculate the corresponding samples of the random
fields Z̃(x) from Eq. (15) and Ỹ (x) from Eq. (16) for a specified
level a. The sample of Ỹ (x) yields a two-phase, statistically
inhomogeneous microstructure inD .

Independent samples of Z̃(x) and Ỹ (x) are delivered by
repeated application of the above-stated algorithm.
Different functions and parameters involved in generating the

level-cut field Ỹ (x) are: (1) a Poisson field N (D ′) that gives the
number of points in D ′, (2) a spatially variant intensity function
λ(x) that is related to particle or void volume fraction, (3) random
variables {Zi} that are related to random particle or void sizes, (4) a
non-negative kernel function h̄, which determines particle or void
shape (e.g., elliptical particles using σ1 6= σ2), (5) random rotation
matrices {Ψ i} that determine particle or void orientations, and (6)
a variable a denoting the level at which the cut is made, affecting
also the size of particle or void. In the present study, λ(x) as well as
the non-negative kernel function h̄ and the level-cut variable a are
deterministic. The use of deterministic intensity function makes
the phase volume fraction deterministic.
The level-cut, inhomogeneous, filtered Poisson random field

and the associated algorithm for microstructures described in the
preceding pertain to any two-phase FGM. Therefore microstruc-
tures of a non-porous, particle-matrix FGM can be readily gener-
ated. For a porous, particle-matrix FGM, themicrostructures can be
delivered by a three-step serial process: (1) generate a two-phase,
non-porous, particle-matrix FGM microstructure; (2) generate a
two-phase, void-matrix FGMmicrostructure; and (3) superimpose
the microstructure from Step 2 over that from Step 1, forming
a resultant microstructure of a porous, particle-matrix FGM. The
resultant microstructure includes particles, voids, and matrix as
constituents.

2.2.2. Random constituent elastic properties
In addition to a random microstructure, the constituent elastic

(isotropic) properties of material phases can be stochastic, as
assumed in the present study. Let Ep and νp denote the elastic
modulus and Poisson’s ratio, respectively, of the particle, and Em
and νm denote the elasticmodulus and Poisson’s ratio, respectively,
of the matrix. Therefore, the random vector {Ep, Em, νp, νm}T ∈ R4
describes the stochastic elastic properties of both constituents. The
constituent properties are spatially invariant in the macroscopic
length scale.

2.2.3. Input random vector
Let λp(x) or λv(x) denote intensity functions associated with

the particle or void, respectively, in D . Using these intensity
functions, let the Poisson random variables N p and N v represent
the number of particles and voids, respectively, inD

′, whereD
′
⊂

R2 is a bounded subset such that points of N p and N v falling in
R2 \ D

′ do not contribute to particles and voids, respectively, in
D . Denote the coordinates of the centroids of particles and voids
by Upi,1,Upi,2; i = 1, . . . ,N p and Uvi,1,Uvi,2; i = 1, . . . ,N v

respectively. Correspondingly, the random scaling variables and
orientations are: Zpi and Θpi ; i = 1, . . . ,N p for particles; and Zvi
and Θvi ; i = 1, . . . ,N v for voids. Table 1 lists all stochastic input
variables for both non-porous andporous FGMs. LetR ∈ RN denote
anN-dimensional input random vector that contains uncertainties
fromall sources described in Sections 2.2.1 and2.2.2. Therefore, the
total number (N) of random variables is 4N p + 5 for non-porous
FGMand 4N p+ 4N v+ 6 for porous FGM. The input randomvector
R characterizes uncertainties from all sources in an FGM and is
completely described by its joint probability density function fR(r),
where r is a realization of R.

2.3. Crack-driving forces and reliability

A major objective of stochastic fracture-mechanics analysis is
to find probabilistic characteristics of crack-driving forces, such
as SIFs KI(R) and KII(R) for modes I and II, respectively, and the
J-integral and other fracture integrals, due to uncertain input R.
For a given input, the standard FEM can be employed to solve the
discretized weak form (Eq. (4)), leading to the calculation of SIFs
and other crack-driving forces.
Suppose that failure is defined when the crack propagation is

initiated at a crack tip, i.e., when Keff(R) = h (KI(R), KII(R)) > KIc ,
where Keff is an effective SIFwith h depending on a selectedmixed-
mode theory, and KIc is a relevant mode-I fracture toughness of
the material measured in terms of SIF. This requirement cannot be
satisfied with certainty, since KI and KII are both dependent on R,
which is random, and KIc itself may be a random variable or field.
Hence, the performance of a cracked FGM should be evaluated
by the conditional reliability or its complement, the conditional
probability of failure PF , defined as the multifold integral

PF (KIc) := P[y(R) < 0] :=
∫

RN
Iy(r)fR(r) dr, (18)

where

y(R) = KIc − h (KI(R), KII(R)) (19)

is amultivariate performance function that depends on the random
input R and

Iy(r) =
{
1, if y(r) < 0
0, if y(r) > 0 (20)

is another indicator function. In this work, the maximum
circumferential stress theorywas invoked to describemixed-mode
fracture initiation [15].
The evaluation of the multidimensional integral in Eq. (18),

either analytically or numerically, is not possible because the
total number of random variables N is large, fR(r) is generally
non-Gaussian, and y(r) is a highly nonlinear function of r .
Therefore, Monte Carlo simulation was employed for calculating
the probabilistic characteristics of crack-driving forces and the
probability of fracture initiation.

3. Monte Carlo simulation

Recall that Ki(r) = Ki(r1, . . . , rN); i = I, II and y(r) =
y(r1, . . . , rN) represent crack-driving forces or a performance
function that depends on crack-driving forces. The number of input
random variables N , the dimension of the stochastic problem, and
the input–output mapping Ki : RN → R or y : RN → R depends
on the concurrent multiscale model. The objective is to evaluate
the probabilistic characteristics of generic output responses Ki(R)
or y(R), when the probability distribution of the random input
R ∈ RN is prescribed.
Consider a generic N-dimensional random vector R =

{R1, . . . , RN}T, which characterizes uncertainty in all input param-
eters under consideration with its known joint PDF fR(r). Suppose
that r(1), . . . , r(L) are L realizations of the input vector R, which
can be generated independently. Let Ki(r(1)), . . . , Ki(r(L)); i = I, II
and y(r(1)), . . . , y(r(L)) be the output samples of mixed-mode SIFs



A. Chakraborty, S. Rahman / Probabilistic Engineering Mechanics 24 (2009) 438–451 443
Table 1
List of stochastic inputs.

Two-phase FGM (non-porous) Three-phase FGM (porous)

Microstructural parameters N p
a N p,N v

b

(Upi,1 ,Upi,2 ); i = 1, . . . ,N p (Upi,1 ,Upi,2 ); i = 1, . . . ,N p

Zpi ; i = 1, . . . ,N p (Uvi,1 ,Uvi,2 ); i = 1, . . . ,N v

Θpi ; i = 1, . . . ,N p Zpi ; i = 1, . . . ,N p
Zvi ; i = 1, . . . ,N v

Θpi ; i = 1, . . . ,N p
Θvi ; i = 1, . . . ,N v

Constituent properties Ep, Em, νp, νm Ep, Em, νp, νm
Input random vector (R) {N p, (Up1,1,Up1,2), . . . , (UpN p ,1,UpN p ,2), {N p, (Up1,1,Up1,2), . . . , (UpN p ,1,UpN p ,2),

Zp1 , . . . , ZpN p ,Θp1 , . . . ,ΘpN p , Zp1 , . . . , ZpN p ,Θp1 , . . . ,ΘpN p ,
Ep, Em, νp, νm}T ∈ RN N v, (Uv1,1,Uv1,2), . . . , (UvN v ,1,UvN v ,2),

Zv1 , . . . , ZvN v ,Θv1 , . . . ,ΘvN v ,
Ep, Em, νp, νm}T ∈ RN

Total number of random variables (N) 4N p + 5 4N p + 4N v + 6
a N p = N p(D

′
), whereN p is a Poisson random variable with intensity function λp(x).

b N v = N v(D
′
), whereN v is a Poisson random variable with intensity function λv(x).
Ki(R) and performance function y(R) that correspond to the in-
put r(1), . . . , r(L), which can be obtained from repeated determin-
istic fracture-mechanics evaluations of Ki and y. The lthmoment of
Ki(R), estimated by Monte Carlo simulation [16] is

E[K li (R)] = limL→∞
1
L

L∑
j=1

[K li (r
(j))], i = I, II. (21)

By setting l = 1 and 2, the mean and standard deviation of KI(R)
and KII(R) can be obtained.
For reliability analysis, the directMonte Carlo estimate PF ,MCS of

the conditional failure probability is

PF ,MCS(KIc) = lim
L→∞

1
L

L∑
j=1

[Iy(r(j))], (22)

where Iy(r(j)) denotes the jth realization of the indicator function
defined in Eq. (20).

4. An edge-cracked FGM specimen

Consider a two-dimensional, square, FGM specimen with
domain D = 10 cm × 10 cm, which contains randomly
dispersed, fully penetrable, elliptical, silicon carbide (SiC) particles
and circular voids in an aluminum (Al) matrix. Fig. 4 illustrates
a microstructural sample of the specimen, which was created by
the level-cut, filtered, random field Ỹ (x) over D ′ = 10.5 cm ×
10.5 cm and random orientations of the particles. The center of
D ′ coincides with that ofD . The specimen contains a horizontally
placed, ac = 5 cm long edge crack with the crack-tip location
xtip = {xtip,1, xtip,2}T = {5, 5}T cm and is subjected to a far-field
tensile stress σ∞ and a far-field shear stress τ∞. For stationary
crack: σ∞ = τ∞ = 1 kN/cm2, and for crack propagation: σ∞ =
τ∞ = 1.8 kN/cm2. The subdomainsD andD

′ are 5 cm×5 cm and
5.5 cm× 5.5 cm squares with the center coinciding with the crack
tip. The subdomain Dε is a circle with radius equal to half of the
radius of a circle with an area equal to that of the average particle
area in D . The center of Dε is located at the crack tip. The sizes
of the subdomains D and Dε are deemed adequate based on the
results of the authors’ previous study [13]. A plane strain condition
was assumed.

4.1. Inputs

Particles and voids were generated using the level-cut, inho-
mogeneous, filtered Poisson random field Ỹ (x) described in Sec-
tion 2.2.1. The aspect ratio, defining the length-to-width ratio of
Fig. 4. A porous FGM specimen with an edge crack under a mixed-mode
deformation.

each particle or void, and hence the shape, whether elliptical or
circular, is deterministic and identical for all particles in a particu-
lar sample. The particles and voids both followhorizontally varying
Poisson intensity functions

λp(x) = cp ln
1+ ε

1+ ε −
( x1
10.5

)np (23)

and

λv(x) =


cv ln

5.25(1+ ε)
5.25(1+ ε)− x1

, x1 ≤ 5.25

cv ln
5.25(1+ ε)

5.25(1+ ε)− (10.5− x1)
, x1 > 5.25,

(24)

respectively, where x = {x1, x2}T ∈ R2, 0 ≤ xi ≤ 10.5 cm; i =
1, 2; ε = 10−6; np is an exponent representing particle gradation;
cp = 6 cm−2 is the intensity parameter for particles; and cv is
the intensity parameter for voids. The intensity parameters and
the corresponding volume fractions (φi(x), say) are related via
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Table 2
Statistical properties of constituents in SiC–Al FGM.

Elastic
propertya

Mean Coefficient of
variation (%)

Probability
distribution

ESiC (GPa) 419.2 15 Lognormal
EAl (GPa) 69.7 10 Lognormal
νSiC 0.19 15 Lognormal
νAl 0.34 10 Lognormal
a Ep = ESiC; Em = EAl; νp = νSiC; νm = νAl .

φi(x) ∼= E[Ỹi(x)] = P[Z̃i(x) > a] [9,10]; i = p, v, denoting particle
and void phases, where the expectation of Ỹi(x) and the probability
of Z̃i(x) both depend on the intensity functions expressed by
Eqs. (23) and (24) and hence, on the intensity parameters. Three
values of np = 0.5, 1, and 2were examined. For voids, three values
of cv were selected: (1) cv = 0, representing non-porous FGM;
(2) cv = 2.52 cm−2, yielding a void volume fraction of
nearly 0.1 at the crack tip; and (3) cv = 5.46 cm−2,
leading to a void volume fraction of nearly 0.2 at the crack
tip. The exponential kernel function for particles is given by
Eq. (14), where σ1 = 0.3 cm; σ2 = 0.1 cm for
elliptical particles and σ1 = σ2 =

√
0.3× 0.1 cm for

circular particles. A cylindrical kernel function, also represented by
Eq. (14), was used for voids, all of which are equal-size circles with
σ1 = σ2 =

√
0.1× average particle area/π cm. The random

variables Zpi = 10 |Ui|; i = 1, . . . ,N p and Zvi = 10 |Ui|; i =
1, . . . ,N v , where {Ui} is a collection of independent, standard
Gaussian random variables. The orientation of the ith elliptical
particle is either random (e.g., Θpi = U(0, 2π), i.e., uniformly
distributed between 0 and 2π ) or deterministic (e.g., Θpi = 0
or π/2).
Finally, the material phases SiC and Al are both linear-elastic

and isotropic. However, the elastic moduli ESiC and EAl and
the Poisson’s ratios νSiC and νAl, of SiC and Al, respectively,
are random variables; their means, standard deviations, and
probability distributions are listed in Table 2. The lognormal
distribution of the elastic properties, although chosen arbitrarily
in this work, was restricted to small coefficients of variation.
Therefore, a lognormal or similar other distributions of the elastic
properties should reveal the influence of microstructure, if any, on
a fracture response of interest. The mode-I fracture toughnesses
of SiC and Al, which are deterministic, are as follows: KIc,SiC =
5 MPa

√
m and KIc,Al = 20, 30, and 40 MPa

√
m. Therefore, the

matrix is relatively more ductile than the particles.

4.2. Parameters studied

Four microstructural features and the fracture toughness of Al
were considered for a parametric study on fracture behavior of
FGMs. They include: (1) particle shape parameters described by
σ1 and σ2 in Eq. (14); (2) particle orientation represented by Θpi
(i.e., Θi for particles in Eq. (10)); (3) porosity quantified by cv in
Eq. (24); (4) particle gradation characterized by np in Eq. (23) and
(5) cporousfgm mode-I fracture toughness KIc,Al of Al (matrix).
Table 3 summarizes these five parameters, leading to eleven
distinct cases for the parametric study. The cases 1–8 account for
the effect of FGMmicrostructural features on themixed-mode SIFs,
leading to fracture initiation. Therefore, they do not include KIc,Al
as it relates to crack propagation, examined in cases 9–11.
Fig. 5(a)–(c) present spatial distributions of particle and void

volume fractions for both non-porous and porous FGMs. The
volume fractions, φi(x) ∼= E[Ỹi(x)], were calculated from ten
independent microstructural samples of Ỹi(x), generated using the
algorithm in Section 2.2.1. Fig. 5(a) comprises plots of particle
volume fractions for four non-porous FGMs with np = 1: one with
Fig. 5. Phase volume fractions of FGMs: (a) particle volume fractions of non-porous
FGMs with different particle shapes and orientations; (b) particle and void volume
fractions of porous FGMs; (c) particle volume fractions of non-porous FGMs with
different gradations of intensity function.

circular (σ1 = σ2 =
√
0.3× 0.1 cm) particles (case 1) and three

with elliptical (σ1 = 0.3 cm, σ2 = 0.1 cm) particles entailing
Θpi = U(0, 2π) (case 2), 0 (case 3), and π/2 (case 4). All
four distributions of particle volume fractions from Fig. 5(a) are
practically coincident. Therefore, the individual effects of particle
shape and orientation on FGM fracture response can be evaluated.
Similarly, Fig. 5(b) shows distributions of particle and void volume
fractions for two porous FGMs with np = 1, obtained by selecting
cv = 2.52 cm−2 (case 5) and cv = 5.46 cm−2 (case 6) (cases
5 and 6). From Fig. 5(b), the maximum void volume fractions
that occur at x1 = 5 cm are nearly 0.1 and 0.2, respectively.
Finally, Fig. 5(c) depicts three markedly different distributions of
particle volume fractions for non-porous FGMs, when the particle
gradation parameters are np = 0.5 (case 7), 1 (case 1), and
2 (case 8). Therefore, np controls the spatial distribution of particle
volume fractions significantly.
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Table 3
Parameters studied and associated cases.

Case Shape Orientation Porosity Particle gradation Fracture toughness of Al
(σ1, σ2 , cm) (Θpi ) (cv , cm−2) (np) (KIc,Al , MPa

√
m)

1 σ1 = σ2 =
√
0.3× 0.1 NAa 0 1 NAa

2 σ1 = 0.3; σ2 = 0.1 U(0, 2π)b 0 1 NAa
3 σ1 = 0.3; σ2 = 0.1 0 0 1 NAa
4 σ1 = 0.3; σ2 = 0.1 π/2 0 1 NAa

5 σ1 = σ2 =
√
0.3× 0.1 NAa 2.52 1 NAa

6 σ1 = σ2 =
√
0.3× 0.1 NAa 5.46 1 NAa

7 σ1 = σ2 =
√
0.3× 0.1 NAa 0 0.5 NAa

8 σ1 = σ2 =
√
0.3× 0.1 NAa 0 2 NAa

9 σ1 = σ2 =
√
0.3× 0.1 NAa 0 1 20

10 σ1 = σ2 =
√
0.3× 0.1 NAa 0 1 40

11 σ1 = σ2 =
√
0.3× 0.1 NAa 0 1 30

a Not applicable.
b Uniformly distributed between 0 and 2π .
4.3. Finite element modeling

Fig. 6(a)–(h) present eight finite-element discretizations of
samples of non-porous and porous FGM specimens for the first
eight cases listed in Table 3, all employed in conjunction with the
concurrent multiscale model.0 The numbers and types of elements
for these eight finite-element meshes are listed in Table 4. All
finite-element meshes are conforming and were developed using
the commercial code ABAQUS [17]. Full 3 × 3 and 3-point
Gauss quadrature rules were employed for the quadrilateral and
triangular elements, respectively, for numerical integration.
For finite-element models of porosity, a void falling anywhere

on the crack was redistributed in the x2 direction by splitting the
void into two equivalent parts and placing them just above and just
below the crack line in such a way that the equivalent voids do not
intersect with the crack. Also, sinceDε is non-porous and voids are
small compared with particle sizes, any portion of a void falling
inside Dε was ignored and was replaced by the particle or the
matrix phase depending on the crack-tipmaterial of the underlying
particle-matrix microstructure of the non-porous FGM.
The stochastic analysis was conducted by the Monte Carlo

simulation with a sample size of 10,000. Therefore, the smallest
value of the failure probability calculated was limited to 10−3. A
failure probability of 10−3, although not a very small number, was
deemed adequate to conduct the parametric study.

4.4. Results and discussions

Fig. 7(a)–(h) plot vonMises stress contours generated using the
concurrent multiscale model for the six non-porous (cases 1, 2,
3, 4, 7, and 8) and two porous (cases 5 and 6) FGM samples in
Fig. 6(a)–(h). The effective elastic properties required by the con-
current multiscale model were calculated using the Mori–Tanaka
approximation [18], which incorporates orthotropic effective elas-
tic properties due to the alignment of elliptical particles in a par-
ticular direction and the aspect ratio. Voids are represented using
degenerative material properties in the Mori–Tanaka approxima-
tion. The overall stress responses for different FGM samples, indi-
cated by the contour patterns, are similar. However, there are also
differences in the local stress fields thatmay have significant impli-
cations in determining crack-driving forces and eventually in sta-
tistical and reliability predictions for differentmicrostructures. The
second-moment characteristics and fracture reliability results per-
taining to parametric study are presented next.

0 Finite element discretizations of FGMspecimens for cases 9, 10, and 11 are same
as that for case 1.
4.4.1. Second-moment statistics of SIFs
Table 5 lists the means and coefficients of variations of KI and

KII for six non-porous FGMs (cases 1, 2, 3, 4, 7, and 8) and two
porous FGMs (cases 5 and 6) described in Fig. 6(a)–(h). The results
for the mean values of KI for cases 2–4 are comparable with that
for case 1, with a maximum of 3.5% difference observed in case 3.
The variability in the KI values for cases 1–4, expressed in terms
of coefficient of variation, shows a similar trend. These results
indicate that the statistical properties of mode I SIF do not alter
appreciably due to particle shape or orientation. However, the
amount of porosity (cases 5 and 6) enhances mode I SIF, as Table 5
shows an increase of 17.6% in the mean value of KI from case 1
to case 6. However, an introduction of voids does not increase the
coefficient of variation of KI values appreciably. This is because by
increasing the void content (which replaces particles andmatrix in
the FGMmicrostructure), no substantial change ismade in the total
variability due to the location characteristics of the constituents
(in terms of particle and void locations). Furthermore, the particle
gradation parameter (cases 7 and 8) also has a noticeable effect on
the KI statistics. For case 7, the mean value of KI increases from
that for case 1. This can be explained by the following facts. As the
overall particle content for case 7 (np = 0.5) is much higher than
that for case 1 (np = 1), it lowers the individual KI values for case
7. At the same time, due to the higher value of φp at the crack-tip
location for case 7, more samples contain particle at the crack tip.
The KI value for an FGM sample containing particle at the crack
tip is much higher than that for a sample containing matrix at the
crack tip. Therefore, themean of KI for case 7 is higher than that for
case 1. A similar argument explains why the mean of KI for case 8
(np = 2), which has a significantly lower value of φp at the crack-
tip location compared with case 1, is lower than that for case 1.
Since case 7 contains a greater number of particles and particles
are fully penetrable, individual particles coalesce to form larger
particle clusters and in the process lose their individual location
characteristics, thereby reducing the variability of KI .
Results for the means and coefficients of variation of KII for

cases 1–4 shows a similar trend as that observed for KI . Therefore,
from the results of both KI and KII , it can be concluded that
statistical properties of SIFs do not alter appreciably due particle
shape and orientation. By introducing porosity (cases 5 and 6),
the mean values of KII change appreciably, as can be observed by
a 29.7% increase in the value for case 5 compared with case 1.
Variability in the KII values also increases substantially due to the
presence of voids. Although the total variability due to location
characteristics of the constituents remains comparable even with
an increase in the void content, KII is more dependent on the
variability in void locations, which increases with the increase in
porosity. Hence, results for both KI and KII indicate that the amount
of porosity substantially enhances crack-driving forces. Results for
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Fig. 6. Finite-element discretizations for sample FGM specimens employing concurrent multiscale model: (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5; (f) case 6;
(g) case 7; (h) case 8.
the means and coefficients of variation of KII for cases 7 and 8
show a similar trend as that observed for KI , which indicates that
particle gradation parameter also has a noticeable impact on the
SIF statistics.

4.4.2. Fracture reliability
While the second moment statistics are useful, a more

meaningful stochastic response is the conditional probability of
fracture initiation, PF (KIc) := P[y(R) < 0], described in Sec-
tion 2.3. The failure probability PF (KIc) derived from themaximum
circumferential stress theory was calculated by the concurrent
multiscale model for different FGMmicrostructures. Fig. 8(a) plots
how PF (KIc) varies as a function of the fracture toughness KIc for
non-porous FGMs with different microstructures containing cir-
cular and elliptical particles with different orientations, all gener-
ated using np = 1 (cases 1, 2, 3, and 4). The results indicate that
the effects of particle shape and orientation on fracture reliabil-
ity are small. This can be attributed to the following reason. Due
to the fully penetrable particle model, particles of different shapes
and orientations coalesce to achieve a target volume fraction and
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Fig. 7. von Mises stress contours for sample specimens of SiC–Al FGM employing concurrent multiscale model: (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5;
(f) case 6; (g) case 7; (h) case 8.
therefore lose their geometric identities, except at very low vol-
ume fractions. In the present study, φp is close to 0.5 near the crack
tip. Therefore, close to the crack tip, overall particle domains are
similar for different particle shapes and orientations. Since SIFs are
strongly influenced by the particles near the crack tip, effects of
particle shape and orientation on fracture reliability are negligible.
Also, due to the bi-axial nature of stresses surrounding the crack
tip, particle orientation has little or no contribution in shielding
the crack tip from applied loads and therefore has negligible effect
on SIFs, and hence on fracture reliability.
To further investigate the effect of particle orientation, an
additional analysis was performed using a very high stiffness ratio
between particle and matrix. For the SiC–Al FGM, the ratio of the
mean value of elastic modulus of SiC to that of Al, defined as the
modular ratio, is 419.2/69.7 ' 6.0. A new FGM, made of SiC as
particles and Polyimide as the matrix, was considered, which has
a modular ratio of 40. Statistical properties of the elastic moduli
ESiC and EPolyimide and the Poisson’s ratios νSiC and νPolyimide, of SiC
and Polyimide, respectively, are listed in Table 6. The motivation
for choosing samples of FGM with a very high modular ratio
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Table 4
Numbers and types of finite elements for various FGMmicrostructures.

Case No. and type of elementsa inD \D No. and type of elementsa inD \Dε No. and type of elementsa inDε

1 818 Type-1 10,302 Type-2 168 Type-1
160 Type-2 12 Type-3

2 835 Type-1 10,249 Type-2 168 Type-1
149 Type-2 12 Type-3

3 832 Type-1 10,485 Type-2 168 Type-1
139 Type-2 12 Type-3

4 840 Type-1 10,222 Type-2 168 Type-1
152 Type-2 12 Type-3

5 1093 Type-1 21,302 Type-2 168 Type-1
213 Type-2 12 Type-3

6 1052 Type-1 20,497 Type-2 168 Type-1
222 Type-2 12 Type-3

7 816 Type-1 11,120 Type-2 168 Type-1
168 Type-2 12 Type-3

8 822 Type-1 9802 Type-2 168 Type-1
132 Type-2 12 Type-3

a Type-1: eight-noded, non-singular, quadrilateral elements. Type-2: six-noded, non-singular, triangular elements. Type-3: eight-noded, quarter-point (singular),
collapsed quadrilateral elements.
Table 5
Second-moment statistics of SIFs.

Case KI (MPa
√
m) KII (MPa

√
m)

Mean Coefficient of variation (%) Mean Coefficient of variation (%)

1 25.170 44.736 2.070 98.599
2 25.237 45.192 2.085 95.779
3 26.052 43.095 2.096 90.410
4 24.780 46.029 2.038 84.593
5 26.069 43.654 2.684 141.095
6 29.588 45.451 2.678 183.308
7 26.462 37.291 2.379 82.682
8 23.955 44.254 1.970 86.345
Table 6
Statistical properties of constituents in SiC–Polyimide FGM.

Elastic propertya Mean Coefficient of
variation (%)

Probability
distribution

ESiC (GPa) 419.2 15 Lognormal
EPolyimide (GPa) 10.48b 10 Lognormal
νSiC 0.19 15 Lognormal
νPolyimide 0.34 10 Lognormal
a Ep = ESiC; Em = EPolyimide; νp = νSiC; νm = νPolyimide .
b 419.2/40.

is that the orientation of particles will strongly influence the
effective orthotropic material properties of an FGM with high
elastic mismatch. Therefore, the effect of particle orientation on
FGM fracture, if any, can be enhanced. However, fracture reliability
results of SiC–Polyimide FGM depicted in Fig. 8(b) show no
statistically significant differences among the failure probability
curves with circular and elliptical particles entailing different
orientations. Hence, it can be concluded that due to the fully
penetrable particles and biaxial nature of stresses around the
crack tip, particle shape and orientation have negligible effects on
fracture reliability, even for FGMs with a very high modular ratio.
Fig. 9 plots the variation of PF (KIc) as a function of the fracture

toughness KIc for porous FGMs with different void contents (cases
5 and 6). All porous microstructures contain circular particles
generated using np = 1. From Fig. 9, porosity has a significant
effect on fracture reliability. Compared with the non-porous FGM
microstructure, the presence of voids increases the probability
of fracture initiation. The greater the void content, the greater
the probability of fracture initiation, as can be observed from the
results of two types of porous FGMs. Since porosity decreases the
load-carrying capacity of a structure, more load is transferred to
the crack tip, which then becomes more likely to propagate.
Fig. 10 plots how PF (KIc) varies as a function of the fracture
toughness KIc for non-porous FGMs with microstructures con-
taining circular particles generated using three different values of
the particle gradation parameter np : 0.5 (case 7), 1 (case 1), and
2(case 8). From the comparison between Figs(c) and 10, the greater
the volume fraction of particles close to the crack tip (obtained by
decreasing np), the less the probability of failure. Since an increase
in particle content close to the crack tip shields the crack from ap-
plied external loads more effectively, the crack in an FGM with a
higher particle volume fraction at the crack-tip region has a lower
propensity to propagate.

4.4.3. Crack propagation
A limited crack-propagation simulation was conducted to

evaluate the effect of material fracture toughness of a non-porous
FGM. The microstructure contains circular particles (σ1 = σ2 =√
0.3× 0.1 cm) and the particle gradation parameter np = 1
(cases 9, 10, and 11). Crack trajectories were determined based on
the maximum circumferential stress theory with an incremental
crack length of 1ac = 0.5 cm. Since particles and matrix are
perfectly bonded, a crack can propagate from matrix to particle
without changing direction. The initial crack tip is located at xtip =
{xtip,1, xtip,2}T = {5, 5}Tcm. The applied external loads were kept
constant during the crack propagation, and crack propagation was
stopped when Keff(R) < KIc(xtip), where KIc(xtip) is the mode-I
material fracture toughness at the crack tip, i.e., KIc(xtip) = KIc,Al
if xtip ∈ Dm and KIc(xtip) = KIc,SiC if xtip ∈ Dp. Due to random
microstructures, crack-propagation analyses were performed for
three independent samples.
Fig. 11(a) shows crack propagation paths in three sampleswhen

KIc,Al = 20 MPa
√
m (case 9). Due to low toughness, cracks in

all three samples of Fig. 11(a) propagated all the way through
the plate. When the toughness of Al was doubled, as in case 10
(KIc,Al = 40 MPa

√
m) – the results of which are displayed in



A. Chakraborty, S. Rahman / Probabilistic Engineering Mechanics 24 (2009) 438–451 449
Fig. 8. Probability of fracture initiations of non-porous FGMswith different particle
shapes and orientations: (a) SiC–Al FGM; (b) SiC–Polyimide FGM.

Fig. 9. Probability of fracture initiations of SiC–Al FGMs with different porosities.

Fig. 11(b) – cracks in two of the three samples did not propagate
at all. For the remaining sample, the crack was arrested after
a single increment. Finally, Fig. 11(c) exhibits crack propagation
paths when KIc,Al = 30 MPa

√
m (case 11). From Fig. 11(c), a

crack in only one sample propagated all the way through the plate,
but for the remaining two samples, they were arrested after only
a few increments. From the above simulation results, it appears
that the fracture toughness of the crack-tip material can have a
significant effect on the likelihood of crack-propagation or the
extent to which a crack can propagate before being arrested by the
crack-tip material.
Fig. 10. Probability of fracture initiations of SiC–Al non-porous FGMswith different
gradations of intensity functions.

4.5. Computational cost

For a complete stochastic fracture analysis of a given random
FGM microstructure, Monte Carlo simulation entailing 10,000
samples were conducted. Therefore, 10,000 deterministic finite-
element analyses were involved, leading to a conditional failure
probability curve in Figs. 8–10. The underlying deterministic
analyses were performed using the concurrent multiscale model
and an HP XW8400 workstation. The absolute CPU time required
by a single, deterministic multiscale analysis, including all pre-
processing efforts, was 50 s. This leads to a full stochastic analysis
time of approximately 5.8 days. Therefore, a more efficient but
sufficiently accurate stochastic method, if it can be developed, will
reduce the computational burden. The need for a computationally
efficient stochasticmethod becomes criticalwhen analyzing three-
dimensional FGMs, which are not included in the present study.

5. Conclusions and future work

A parametric study on fracture behavior of a crack in two-
dimensional, functionally graded composites was conducted.
The study involves stochastic descriptions of particle and void
numbers; location, size, and orientation characteristics; and
constituent elastic properties; a concurrent multiscale model
for determining crack-driving forces under mixed-mode loading;
and Monte Carlo simulation for uncertainty propagation and
fracture reliability analysis. A level-cut, inhomogeneous, filtered
Poisson field describes the statistically inhomogeneous random
microstructure of a non-porous or porous, graded composite. The
concurrent multiscale model involves simultaneously performed
microscale and macroscale analyses.
A numerical problem involving an edge-cracked, functionally

graded specimen under a mixed-mode deformation was analyzed
to calculate the statistical moments of crack-driving forces,
the conditional probability of fracture initiation, and sample
properties of crack-propagation. Eight distinct varieties of graded
microstructure encompassing circular and elliptical particles;
deterministic and random particle orientations; low and high
porosity contents; and low, medium, and high particle gradation
parameters, were analyzed. In addition, three distinct values
(low, medium, and high) of fracture toughness properties of
the matrix material were examined. The results pertaining to
a stationary crack demonstrates that (1) particle shape and
orientation for the same phase volume fractions have negligible
effects on fracture reliability, even for graded media with a high
modular ratio; (2) voids strongly influence crack-driving forces by
rendering the gradedmicrostructure weaker, thereby significantly
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Fig. 11. Crack paths for SiC–Al FGM samples with different KIc,Al: (a) KIc,Al = 20 MPa
√
m; (b) KIc,Al = 40 MPa

√
m; (c) KIc,Al = 30 MPa

√
m.
raising the probability of fracture initiation; and (3) increasing
the particle gradation parameter, which is inversely related to
particle volume fraction, significantly increases the probability
of fracture initiation. The crack propagation results for perfectly
bonded composites with brittle particles reveal that under a fixed
external loading, the fracture toughness of the matrix material can
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have a significant effect on the likelihood or the extent of crack
growth.
The stochastic analysis conducted usingMonte Carlo simulation

requires a large number of deterministic finite-element analyses.
Further research is necessary to develop alternative stochastic
methods that are sufficiently accurate but generate probabilistic
solutions in a computationally efficient way.
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