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 A B S T R A C T

This paper introduces a novel computational methodology, supported by robust numerical algorithms, for per-
forming time-dependent uncertainty quantification (UQ) analysis on complex dynamical systems. The proposed 
approach consists of three key components: (1) a new stochastic adaptation of the nonlinear autoregressive 
with exogenous input (NARX) model, utilizing dimension-wise tensor product expansion to effectively capture 
the behavior of dynamical systems, (2) a polynomial dimensional decomposition (PDD) technique to propagate 
uncertainty in input random variables to the NARX coefficients, and (3) a unique integration between NARX 
and PDD, resulting in the PDD-NARX approximation for time-dependent UQ analysis. The PDD-NARX method 
distinguishes itself from conventional deterministic system identification tools by considering uncertainties 
originating from both the system’s dynamic properties (e.g., mass, stiffness, and damping) and external 
forces (e.g., amplitude and frequency content of excitation time series). Unlike traditional methods, which 
rely on an intuitive selection of NARX basis functions, this approach employs dimensional decomposition 
and importance factors to systematically construct the NARX model function. Furthermore, PDD, due to its 
hierarchical, dimension-wise expansion, is better equipped to handle high-dimensional UQ problems than many 
existing methods, including the widely recognized polynomial chaos expansion. Numerical results demonstrate 
that low-order PDD-NARX approximations provide accurate and computationally efficient estimates of the 
probabilistic characteristics of simple dynamical systems. Moreover, the probabilistic vehicle dynamic analysis 
of a pick-up truck traversing road bumps underscores the effectiveness of the PDD-NARX method in addressing 
industrial-scale complex problems.
1. Introduction

Mathematical modeling and simulation of complex dynamical sys-
tems, whether natural or man-made, frequently require uncertainty 
quantification (UQ) analysis due to the inherent randomness in system 
properties, external excitations, and initial/boundary conditions [1–3]. 
The propagation of uncertainties from the input to the output of a 
dynamic system is typically assessed using sampling-based methods, 
such as crude Monte Carlo simulation (MCS). While MCS encompasses 
a broad class of computational algorithms that rely on repeated ran-
dom sampling and is generally robust, it is often impractical, if not 
prohibitively expensive, when each instance of a full-scale dynamic 
analysis is computationally demanding.

Alternatively, several UQ methods or approximations exist, includ-
ing polynomial chaos expansion (PCE) [4–6], polynomial dimensional 
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decomposition (PDD) [7,8], stochastic collocation [9,10], and sparse-
grid quadrature [11,12]. These methods are often used as surrogates 
for the computationally expensive MCS. While successful in conducting 
time-independent or quasi-static UQ analyses, these surrogate meth-
ods face significant challenges when applied to time-dependent or 
stochastic-dynamics problems [13–15]. In the absence of appropriate 
adaptations, the accuracy and efficiency of these methods degrade 
rapidly over time, often necessitating impractically high-order expan-
sions or approximations to maintain desired accuracy and effectively 
capture the system dynamics. As a result, the fidelity and convergence 
properties of these surrogate methods may deteriorate substantially.

In 2010, Gerritsma et al. [13] introduced a time-dependent version 
of PCE to enhance the accuracy of long-time integration required for 
solving time-dependent UQ problems. The core idea of this adaptation 
involves using optimal orthogonal polynomials to construct the PCE at 
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discrete time instants, thereby recovering faster convergence properties 
for stochastic solutions over a defined time period. While this adapta-
tion modestly improves the performance of standard PCE in solving 
elementary time-dependent problems, the fundamental challenge of 
long-time integration remains unresolved, particularly when dealing 
with large-scale, complex stochastic-dynamics problems.

For time-dependent problems of a more practical nature, system 
identification methods, such as the nonlinear autoregressive with ex-
ogenous input (NARX) model, provide an alternative approach to ap-
proximating dynamic system behavior. The NARX models achieve this 
by fitting selected input–output data pairs, whether simulated or mea-
sured, at and before the time instant of interest [16]. Although orig-
inally conceived as deterministic tools within the system identifica-
tion community, stochastic extensions of NARX models are emerging, 
wherein a polynomial basis is typically employed to describe the model, 
with its parameters treated as random variables. For example, a PCE-
NARX approximation, which combines PCE and NARX, has been used 
for UQ analysis of time-dependent problems [17,18]. While PCE-NARX 
represents a significant improvement over time-frozen PCE, two major 
challenges persist.

First, the selection of an appropriate basis for the NARX model 
remains largely intuitive and can be ambiguous, as multiple options 
exist. An improper choice of basis may lead to inaccurate predictions 
of the dynamic response, particularly if the nonlinearity with respect 
to the data pairs is not captured accurately. More critically, when the 
number of input–output data pairs is large, the tensor-product structure 
of the multivariate approximation results in an excessive number of 
basis functions, making the construction of the NARX model impracti-
cal. Therefore, identifying basis functions with superior approximation 
qualities in a systematic and efficient manner is essential for developing 
a stochastic NARX model with the fewest possible basis functions.

Second, since the coefficients of the stochastic NARX model are 
random, they must be statistically characterized by propagating the 
uncertainty in the input random variables that describe dynamic system 
properties (e.g., mass, stiffness, damping), external forces (e.g., am-
plitude, frequency), and initial/boundary conditions. In this context, 
Mai et al. [18] utilized PCE for uncertainty propagation in conjunction 
with NARX. However, alternative surrogate methods that may be better 
suited than PCE can also be integrated with NARX. The need for 
exploring alternatives arises from the fact that, in high-dimensional 
UQ problems commonly encountered in industrial-scale applications, 
the number of basis functions or expansion coefficients in PCE grows 
exponentially, thus succumbing to the curse of dimensionality. Conse-
quently, there is a need for a strategic coupling between NARX and 
a more suitable surrogate method capable of deflating the curse of 
dimensionality. Such an approach would allow for solving a broader 
class of time-dependent UQ problems, including complex stochastic-
dynamics problems, in a more efficient and computationally feasible 
manner.

The primary objective of this study is to introduce a novel computa-
tional method, referred to as the PDD-NARX approximation, along with 
its associated numerical algorithms, for time-dependent UQ analysis 
of complex dynamical systems. Section 2 presents the definition and 
setup of the time-dependent UQ problem, along with the necessary 
assumptions. In Section 3, the stochastic adaptation of the NARX model 
is described, utilizing dimensional decomposition followed by basis 
reduction via a four-step algorithm. This section also covers the esti-
mation of NARX coefficients through regression. Section 4 introduces 
the analysis-of-variance (ANOVA) decomposition of the random NARX 
coefficients, leading to their PDD approximation. The process of cal-
culating PDD coefficients from regression analysis is also detailed. 
In Section 5, the integration between PDD and NARX is explained, 
establishing the PDD-NARX approximation and its implementation. 
Section 6 presents two numerical examples: the first focuses on the 
convergence analysis of a stochastic ordinary differential equation 
(ODE), while the second involves a stochastic dynamic analysis of a 
2 
two-degree-of-freedom (2DOF) car model. Section 7 addresses a large-
scale engineering problem, where the probabilistic vehicle dynamic 
analysis of a pick-up truck is conducted, demonstrating the practical 
applicability of the PDD-NARX method developed in this study. Sec-
tion 8 describes the future work. Section 9 provides conclusions drawn 
from the study.

2. UQ problem setup

Let N ∶= {1, 2,…}, N0 ∶= N ∪ {0}, R ∶= (−∞,+∞), R+
0 ∶= [0,+∞), 

and R+ ∶= (0,+∞) be the sets of positive integers (natural), non-
negative integers, all real numbers, non-negative real numbers, and 
positive real numbers, respectively. Denote by A ∶= (𝑎𝑘, 𝑏𝑘) an open 
or closed interval, where 𝑎𝑘, 𝑏𝑘 ∈ R and 𝑏𝑘 > 𝑎𝑘. Then, given 𝑁 ∈ N, 
A𝑁 = ×𝑁𝑘=1(𝑎𝑘, 𝑏𝑘) represents an open or closed bounded domain of R𝑁 .

2.1. Input random variables

Let (𝛺, ,P) be a probability space, where 𝛺 is a sample space, 
is a 𝜎-field on 𝛺, and P ∶  → [0, 1] is a probability measure. With 𝑁
representing the Borel 𝜎-field on A𝑁 , 𝑁 ∈ N ∶= {1, 2,…}, consider an 
R𝑁 -valued continuous random vector 𝐗 ∶= {𝑋1,… , 𝑋𝑁}⊺ ∶ (𝛺, ) →
(A𝑁 ,𝑁 ), which describes the statistical uncertainties in all input 
parameters of a stochastic-dynamics or time-dependent UQ problem. 
For instance, 𝐗 may represent the amplitude and frequency content 
of the excitation time series; the dynamic system properties, such as 
mass, stiffness, and damping; and initial/boundary conditions. If some 
of these parameters are modeled as random fields or random pro-
cesses, then 𝐗 includes random variables due to their finite-dimensional 
discretizations. Denote by 𝑓𝐗(𝐱) the joint probability density function 
(PDF) of 𝐗. The 𝑖th component of 𝐗 is a random variable 𝑋𝑖, which 
has the marginal PDF 𝑓𝑋𝑖 (𝑥𝑖). The positive integer 𝑁 , which represents 
the total number of input random variables, is often referred to as the 
dimension of the stochastic or UQ problem.

The requisite assumptions on input random variables are as follows.

Assumption 1.  The input random vector 𝐗 ∶= {𝑋1,… , 𝑋𝑁}⊺ satisfies 
all of the following conditions:

1. All component random variables 𝑋𝑖, 𝑖 = 1,… , 𝑁 , are statistically 
independent, but they are not necessarily identically distributed.

2. Each input random variable 𝑋𝑖, defined on a bounded or un-
bounded interval A ∶= (𝑎𝑘, 𝑏𝑘) of R, has finite moments of all 
orders.

3. Each input random variable 𝑋𝑖 has continuous marginal PDF 
𝑓𝑋𝑖 (𝑥𝑖) with a bounded or unbounded support A. Moreover, 
given an infinite sequence of moments of 𝑋𝑖, the PDF 𝑓𝑋𝑖 (𝑥𝑖)
is uniquely determined.

Assumption  1 is frequently adopted by the UQ community.

2.2. Time-dependent UQ problem

Let 𝐲(𝑡;𝐗) ∶ [0, 𝑇 ] × A𝑁 → R𝐾 , 𝑇 ∈ R+, 𝐾 ∈ N, be a general 𝐾-
dimensional vector-valued stochastic dynamic response of interest at 
time 𝑡 ∈ [0, 𝑇 ] and 𝐿2(𝛺, , 𝑃 ) a Hilbert space of square-integrable 
functions 𝐲 with respect to 𝑓𝐗(𝐱)𝑑𝐱. The arguments of the output 
function 𝐲 indicate that it depends not only on time 𝑡, but also on 
the input random vector 𝐗. For a general time-dependent UQ problem, 
𝐲(𝑡;𝐗) satisfies 𝑃 -almost surely the parameterized stochastic differential 
equations (SDEs) 


[

𝐲(𝑡;𝐗)
]

= 𝑔(𝑡;𝐗), 𝑡 ∈ [0, 𝑇 ] ⊆ R+
0 , 𝐲 ∈ 𝐿2(𝛺, , 𝑃 ),


[

𝐲(0;𝐗)
]

= 𝑞(𝐗),
(1)

where  is a linear or nonlinear differential operator describing dy-
namics of discrete systems,  is an initial condition operator, and 𝑔
and 𝑞, possibly random, are the forcing term and initial condition, 
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respectively. From the solution of Eq. (1), let 𝑦(𝑡;𝐗) define any scalar-
valued stochastic response component of 𝐲(𝑡;𝐗), where for notational 
simplicity the index of the component has been dropped. Associated 
with Eq. (1), a list, which is far from exhaustive, describes the following 
statistical and probabilistic solutions of a time-dependent UQ problem:

1. Calculate the second-moment properties of 𝑦(𝑡;𝐗), that is, the 
mean E[𝑦(𝑡;𝐗)] and variance E[𝑦(𝑡;𝐗) − E[𝑦(𝑡;𝐗)]]2; also, calcu-
late higher-order moments of 𝑦(𝑡;𝐗) if they exist.

2. Evaluate the PDF of 𝑦(𝑡;𝐗).
3. Perform local sensitivity analysis of moments or PDF of 𝑦(𝑡;𝐗)
with respect to design variables 𝐝, which may comprise distri-
butional or structural parameters.

4. Calculate global sensitivities of 𝑦(𝑡;𝐗) for a subset 𝐗𝑢, ∅ ≠
𝑢 ⊂ {1,… , 𝑁}, of input variables. Both variance-based and 
density-based global sensitivity analyses are envisioned.

5. Conduct reliability analysis, e.g., compute the failure probability 
𝑃 [𝐗 ∈ 𝛺𝐹 (𝑡)], which can be component-based analysis when 
𝛺𝐹 (𝑡) ∶= {𝐱 ∶ 𝑦(𝑡; 𝐱) < 𝑦0} is defined by a single response 
function with 𝑦0 representing a critical value or system-based 
analysis entailing multiple such functions.

6. Solve stochastic design optimization problems, that is, find 𝐝∗ =
argmin𝐝∈D 𝑐0(𝐝) for some cost function 𝑐0 subject to a set of 
constraints 𝑐𝑙(𝐝; 𝑦𝑙(𝑡; 𝐱)) ≤ 𝑐𝑙,0, 𝑙 = 1,… , 𝐾,𝐾 ∈ N. Here, 𝑐𝑙
depends on the 𝑙th dynamic response function 𝑦𝑙(𝑡; 𝐱) such that 
𝐲 satisfies Eq. (1).

A wide variety of SDEs, depending on the choice of operators and 
functions in Eq. (1) or similar equations, can be envisioned. Prominent 
among them are the stochastic initial-value problems from discrete 
dynamical systems, which are fundamental to various disciplines, in-
cluding civil, aerospace, nuclear, and mechanical engineering. In this 
study, the authors focus on calculating the second-moment statistics 
(Item 1) and PDF (Item 2) of 𝑦(𝑡;𝐗) for both simple and complex 
dynamical systems.

For dynamics of continuous media with domain  ⊂ R𝑑 , 𝑑 =
1, 2, 3, a more general version of Eq. (1), representing space–time 
SDEs as governing equations, should be considered. In such cases, the 
time-dependent UQ problem further generalizes to solving 


[

𝐲(𝐮, 𝑡;𝐗)
]

= 𝑔(𝐮, 𝑡;𝐗), 𝐮 ∈  ⊂ R𝑑 , 𝑡 ∈ [0, 𝑇 ] ⊆ R+
0 ,

𝐲 ∈ 𝐿2(𝛺, , 𝑃 ),

[

𝐲(𝐮, 𝑡;𝐗)
]

= 0,


[

𝐲(𝐮, 0;𝐗)
]

= 𝑞(𝐗),

(2)

where the excitation 𝑔(𝐮, 𝑡;𝐗) and dynamic response 𝐲(𝐮, 𝑡;𝐗) also 
depends on a spatial coordinate 𝐮 ∈  ⊂ R𝑑 and  is an appropriate 
boundary condition operator. Here, the domain  must be discretized 
spatially using the finite-element or other numerical methods. Domain 
discretizations requiring thousands or millions of degrees of freedom 
are not uncommon. Therefore, UQ for space–time-dependent complex 
problems is a vastly expensive initiative.

In this paper, the proposed PDD-NARX approximation is described 
in the context of solving a general time-dependent UQ problem repre-
sented by Eq. (1). The solution of Eq. (2) is similar and will be dealt 
with in the Application section. The exposition involves (1) a stochastic 
adaptation of NARX to accurately capture the underlying dynamical 
system behavior; (2) a PDD approximation of random coefficients 
generated by NARX; and (3) a new integration between NARX and PDD, 
establishing the PDD-NARX approximation.

3. Stochastic NARX

Consider a general system identification problem aimed at building 
a mathematical model to describe approximately the output response 
𝑦(𝑡;𝐗) of a time-dependent or dynamic system subject to the input 
excitation 𝑔(𝑡;𝐗). Using the observed or calculated data of the input 
and output signals, such approximation allows one to determine the 
output function 𝑦(𝑡;𝐗) without directly solving Eq. (1) at a time 𝑡 of 
interest.
3 
3.1. NARX approximation

Given a time interval [0, 𝑇 ], 𝑇 ∈ [0,∞), and a chosen integer 𝐽 ∈ N, 
let

0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝐽 = 𝑇 < ∞, 𝑡𝑗 ∈ [0, 𝑇 ], 𝑗 = 0, 1,… , 𝐽 ,

be (𝐽 + 1) discrete time instants with the constant time step 𝛥𝑡 =
𝑡𝑗 − 𝑡𝑗−1, 𝑗 = 1,… , 𝐽 . The uniform spacing of discrete times is merely 
for simplicity, as variable time steps can be handled rather easily. At 
these discrete times, the input excitations, if they exist, are
𝑔(𝑡0;𝐗), 𝑔(𝑡1;𝐗),… , 𝑔(𝑡𝐽 ;𝐗)

and the output responses are
𝑦(𝑡0;𝐗), 𝑦(𝑡1;𝐗),… , 𝑦(𝑡𝐽 ;𝐗),

where the latter are either measured or calculated, for instance, by 
solving Eq. (1). According to NARX [16,18], the dynamic response 
𝑦(𝑡𝑗 ;𝐗) at a current time 𝑡𝑗 is approximated by
𝑦̃(𝑡𝑗 ;𝐗) = 𝐹

(

𝑔(𝑡𝑗 ;𝐗), 𝑔(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑔(𝑡𝑗 − 𝑛𝑔𝛥𝑡;𝐗),

𝑦(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑦(𝑡𝑗 − 𝑛𝑦𝛥𝑡;𝐗)
)

, (3)

which depends on the excitation 𝑔(𝑡𝑗 ;𝐗) at the current time 𝑡𝑗 and pairs 
of lagged excitations and system responses from the past determined by 
the respective maximum numbers 𝑛𝑔 ∈ N and 𝑛𝑦 ∈ N of time lags and 
the NARX model function 𝐹  to be ascertained.3 Denote by
𝐳(𝑡𝑗 ;𝐗) ∶=

{

𝑔(𝑡𝑗 ;𝐗), 𝑔(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑔(𝑡𝑗 − 𝑛𝑔𝛥𝑡;𝐗),

𝑦(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑦(𝑡𝑗 − 𝑛𝑦𝛥𝑡;𝐗)
}⊺ (4)

an 𝑀-dimensional (say) vector of input–output pairs consisting of such 
system excitations and responses. If there are no external excitations, 
then 𝐳(𝑡𝑗 ;𝐗) comprises only response states included in Eq. (3). Then 
the NARX approximation in Eq. (3) can be succinctly written as 
𝑦̃(𝑡𝑗 ;𝐗) = 𝐹

(

𝐳(𝑡𝑗 ;𝐗)
)

. (5)

It is obvious that the approximation quality of 𝑦̃(𝑡𝑗 ;𝐗) depends on how 
the model function 𝐹 (𝐳(𝑡𝑗 ;𝐗)) is determined. In addition, the underlying 
form of 𝐹 (𝐳(𝑡𝑗 ;𝐗)) must be suitably nonlinear to capture the actual 
nonlinearity of a dynamical system.

According to Eq. (3) or Eq. (4), the NARX approximation is grounded
on a finite memory model, well-recognized by the system identification 
community, when analyzing dynamical system responses in practical 
applications [16]. As a result, the NARX approximation sidesteps the 
need for expensive calculation of 𝑦(𝑡𝑗 ;𝐗) from Eq. (1) directly, but it 
still captures the dynamical system behavior by following the principle 
of causality; that is, the current state of the system 𝑦(𝑡𝑗 ;𝐗) is influenced 
by its previous states
𝑦(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑦(𝑡𝑗 − 𝑛𝑦𝛥𝑡;𝐗)

and external excitations
𝑔(𝑡𝑗 ;𝐗), 𝑔(𝑡𝑗 − 𝛥𝑡;𝐗),… , 𝑔(𝑡𝑗 − 𝑛𝑔𝛥𝑡;𝐗)

at current and previous states, if they exist. As will be shown later, only 
a smaller subset of dynamic time histories is needed to calibrate the 
NARX approximation. Depending on how fast the cause-consequence 
effects decay as time evolves, a small or large value of 𝑀 will be 
required. If 𝑀 is small, then Eq. (3) or Eq. (5) is effective. However, 
if 𝑀 is large, then there will be too many basis functions involved, 
although not all basis functions are important or needed. These issues 
are discussed in the following subsection.

3 Strictly speaking, Eq. (3) is valid when 𝑡𝑗 > 𝑛𝑔𝛥𝑡 and/or 𝑡𝑗 > 𝑛𝑦𝛥𝑡. 
Otherwise, appropriate modifications are required to avoid negative time 
instants.
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3.2. Construction of NARX model function

An effective construction of the NARX model function 𝐹 (𝐳(𝑡𝑗 ;𝐗))
relies on how it is expanded with respect to its argument 𝐳(𝑡𝑗 ;𝐗). Denote 
by 𝑧𝑖(𝑡𝑗 ;𝐗) the 𝑖th component of 𝐳(𝑡𝑗 ;𝐗). There are 𝑀 such components, 
depending on the chosen numbers of time lags 𝑛𝑔 and 𝑛𝑦. For instance, 
when 𝑛𝑔 = 𝑛𝑦 = 4, then, according to Eq. (4), 𝑀 = 9. Here, two types 
of expansion are described as follows.

3.2.1. Full tensor-product expansion
For each component variable 𝑧𝑖(𝑡𝑗 ;𝐗), 𝑖 = 1,… ,𝑀 , and 𝑚′ ∈ N, let

{𝜙𝑖,0(𝑧𝑖(𝑡𝑗 ;𝐗)), 𝜙𝑖,1(𝑧𝑖(𝑡𝑗 ;𝐗)),… , 𝜙𝑖,𝑚′ (𝑧𝑘(𝑡𝑗 ;𝐗))}, 𝜙𝑖,0(𝑧𝑖(𝑡𝑗 ;𝐗)) = 1,

be a set of (𝑚′ + 1) univariate basis functions. Here, 𝜙𝑖,𝑗𝑖 (𝑧𝑖(𝑡𝑗 ;𝐗)) is 
referred to as the 𝑗𝑖th-order univariate basis function. More specifically, 
the authors propose to use an 𝑚′th-order monomial basis vector
{1, 𝑧𝑖(𝑡𝑗 ;𝐗), 𝑧2𝑖 (𝑡𝑗 ;𝐗)… , 𝑧𝑚

′
𝑖 (𝑡𝑗 ;𝐗)}⊺, 𝑖 = 1,… ,𝑀, 𝑚′ ∈ N,

with respect to 𝑧𝑖(𝑡𝑗 ;𝐗). For instance, if a second-order (𝑚′ = 2) 
monomial basis vector is chosen, then there are three basis functions 
as 𝑚′ + 1 = 3. These basis functions are random because 𝐹 (𝐳(𝑡𝑗 ;𝐗)) is 
random.

Define an 𝑀-dimensional multi-index 𝐣 ∶= (𝑗1,… , 𝑗𝑀 ) ∈ N𝑀0 , 
representing the monomial degrees or orders of basis functions in all 
𝑀 components of 𝐳(𝑡𝑗 ;𝐗).4 Each element 𝑗𝑖, 𝑖 = 1,… ,𝑀 , of the multi-
index runs from zero to 𝑚′, the largest degree or order retained in the 
monomial basis vector. Then, there exists (𝑚′ + 1)𝑀  multivariate basis 
functions 

𝛷𝐣(𝐳(𝑡𝑗 ;𝐗)) =
𝑀
∏

𝑖=1
𝜙𝑖,𝑗𝑖 (𝑧𝑖(𝑡𝑗 ;𝐗)), (6)

obtained using an 𝑀-dimensional or full tensor product of univari-
ate basis functions. Therefore, the model function 𝐹 (𝐳(𝑡𝑗 ;𝐗)) can be 
expanded with respect to such a multivariate basis, resulting in the 
approximation 
𝑦̃(𝑡𝑗 ;𝐗) ≃

∑

𝐣∈N𝑀0
max

𝑖=1,…,𝑀
𝑗𝑖 ≤ 𝑚′

𝑅𝐣(𝐗)𝛷𝐣(𝐳(𝑡𝑗 ;𝐗)), (7)

where

𝑅𝐣(𝐗), {𝐣 ∈ N𝑀0 ∶ max
𝑖=1,…,𝑀

𝑗𝑖 ≤ 𝑚′},

are the corresponding expansion coefficients.
While the construction of multivariate expansion using full tensor 

product is straightforward, it is not effective when 𝑀 and/or 𝑚′ is 
large. For example, when 𝑀 = 9 and 𝑚′ = 2, there are (2 + 1)9 =
19,683 basis functions already, rendering the resulting NARX approxi-
mation computationally prohibitive. More importantly, many of these 
basis functions are likely unimportant in practical applications and 
can be safely eliminated without sacrificing accuracy in the NARX 
approximation.

3.2.2. Dimension-wise tensor-product expansion
For 𝑀 ∈ N, let {1,… ,𝑀} be an index set, so that 𝑢 ⊆ {1,… ,𝑀} is 

a subset, including the emptyset ∅, with cardinality 0 ≤ |𝑢| ≤𝑀 . For a 
non-empty subset ∅ ≠ 𝑢 = {𝑖1,… , 𝑖

|𝑢|} ⊆ {1,… ,𝑀}, denote by

𝐳𝑢(𝑡𝑗 ;𝐗) =
{

𝑧𝑖1 (𝑡𝑗 ;𝐗),… , 𝑧𝑖
|𝑢|
(𝑡𝑗 ;𝐗)

}⊺

a |𝑢|-dimensional subvector of 𝐳(𝑡𝑗 ;𝐗). Then there exists a finite, hier-
archical, convergent expansion of 
𝐹 (𝐳(𝑡𝑗 ;𝐗)) = 𝐹∅(𝐗) +

∑

∅≠𝑢⊆{1,…,𝑀}
𝐹𝑢(𝐳𝑢(𝑡𝑗 ;𝐗)), (8)

4 In this paper, the terms degree and order are used interchangeably.
4 
known as a general dimensional decomposition of a multivariate func-
tion [19–21]. Here, 𝐹∅(𝐗) is a constant, while 𝐹𝑢(𝐳𝑢(𝑡𝑗 ;𝐗)) is a |𝑢|-
variate component function describing |𝑢|-variate interaction of 𝐳𝑢(𝑡𝑗 ;𝐗)
on 𝐹 . For example, when 𝑢 = {𝑖}, 𝐹{𝑖}(𝑧𝑖(𝑡𝑗 ;𝐗)) is a univariate compo-
nent function representing individual contribution to 𝐹 (𝐳(𝑡𝑗 ;𝐗)) by the 
variable 𝑧𝑖(𝑡𝑗 ;𝐗) acting alone. When 𝑢 = {𝑖1, 𝑖2}, 𝐹{𝑖1 ,𝑖2}
(𝑧𝑖1 (𝑡𝑗 ;𝐗), 𝑧𝑖2 (𝑡𝑗 ;𝐗)) is a bivariate component function representing the 
interactive effect on 𝐹 (𝐳(𝑡𝑗 ;𝐗)) by two variables 𝑧𝑖1 (𝑡𝑗 ;𝐗) and 𝑧𝑖2 (𝑡𝑗 ;𝐗), 
and so on. This decomposition is useful when the higher-variate inter-
active effects become weaker or vanish when |𝑢| → 𝑀 , as expected in 
practical applications.

Given an integer 1 ≤ 𝑆′ ≤ 𝑀 , an 𝑆′-variate approximation, say, 
𝐹𝑆′ (𝐳(𝑡𝑗 ;𝐗)) of 𝐹 (𝐳(𝑡𝑗 ;𝐗)), is obtained by truncating the right-hand side 
of Eq. (8), yielding 
𝐹𝑆′ (𝐳(𝑡𝑗 ;𝐗)) = 𝐹∅(𝐗) +

∑

∅≠𝑢⊆{1,…,𝑀}
1≤|𝑢|≤𝑆′

𝐹𝑢(𝐳𝑢(𝑡𝑗 ;𝐗)). (9)

The approximation is coined ‘‘𝑆′-variate’’, as it retains interactive 
effects on 𝐹 (𝐳(𝑡𝑗 ;𝐗)) by at most 𝑆′ variables. In most applications, a 
univariate (𝑆′ = 1) or bivariate (𝑆′ = 2) truncations suffices for such 
an approximation.

For ∅ ≠ 𝑢 ⊆ {1,… ,𝑀}, let 𝐣𝑢 ∶= (𝑗𝑖1 ,… , 𝑗𝑖
|𝑢|
) ∈ N|𝑢| be a |𝑢|-

dimensional multi-index with degree 𝐣𝑢 ∶= 𝑗𝑖1 +⋯+ 𝑗𝑖
|𝑢|
, where 𝑗𝑖𝑘 ∈ N, 

𝑘 = 1,… , |𝑢|, represents the 𝑘th element of 𝐣𝑢.5 Denote by 

𝛷𝑢,𝐣𝑢 (𝐳𝑢(𝑡𝑗 ;𝐗)) =
|𝑢|
∏

𝑘=1
𝜙𝑖𝑘 ,𝑗𝑖𝑘 (𝑧𝑖𝑘 (𝑡𝑗 ;𝐗)) (10)

a |𝑢|-variate basis function, obtained using a |𝑢|-dimensional tensor 
product of univariate basis functions. Associated with the total-degree 
index set
{

𝐣𝑢 ∈ N|𝑢| ∶ |𝐣𝑢| =
|𝑢|
∑

𝑘=1
𝑗𝑖𝑘 ≤ 𝑚′

}

,

there are 

𝐿′
𝑆′ ,𝑚′ ∶= 1 +

𝑆′
∑

𝑠=1

(

𝑀
𝑠

)(

𝑚′

𝑠

)

(11)

number of such basis functions. Therefore, all |𝑢|-variate component 
functions of 𝐹𝑆′ (𝐳(𝑡𝑗 ;𝐗)) can be expanded dimension-wise with respect 
to such a basis, resulting in an 𝑆′-variate, 𝑚′th-order dimensional 
decomposition 
𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ;𝐗) = 𝐹∅(𝐗) +

∑

∅≠𝑢⊆{1,…,𝑀}
1≤|𝑢|≤𝑆′

∑

𝐣𝑢∈N|𝑢|
|𝑢|≤|𝐣𝑢 |≤𝑚′

𝑅𝑢,𝐣𝑢 (𝐗)𝛷𝑢,𝐣𝑢 (𝐳𝑢(𝑡𝑗 ;𝐗)), (12)

of 𝑦̃(𝑡𝑗 ;𝐗), where 𝑅𝑢,𝐣𝑢 (𝐗) ∈ R, ∅ ≠ 𝑢 ⊆ {1,… ,𝑀}, 𝐣𝑢 ∈ N|𝑢|
0 , are 

the corresponding expansion coefficients. The number of coefficients, 
including 𝐹∅(𝐗), is the same as the number of basis functions defined 
in Eq. (11).

For two special cases of univariate (𝑆′ = 1) and bivariate (𝑆′ = 2) 
approximations, the respective decompositions are 

𝑦̃1,𝑚′ (𝑡𝑗 ;𝐗) = 𝐹∅(𝐗) +
𝑀
∑

𝑖=1

𝑚′
∑

𝑗𝑖=1
𝑅{𝑖},𝑗𝑖 (𝐗)𝜙𝑖,𝑗𝑖 (𝑧𝑖(𝑡𝑗 ;𝐗)) (13)

and 

𝑦̃2,𝑚′ (𝑡𝑗 ;𝐗) = 𝐹∅(𝐗) +
𝑀
∑

𝑖=1

𝑚′
∑

𝑗𝑖=1
𝑅{𝑖},𝑗𝑖 (𝐗)𝜙𝑖,𝑗𝑖 (𝑧𝑖(𝑡𝑗 ;𝐗)) +

𝑀−1
∑

𝑖1=1

𝑀
∑

𝑖2=𝑖1+1

𝑚′
∑

𝑗𝑖1 ,𝑗𝑖2 =1

2≤𝑗𝑖1 +𝑗𝑖2≤𝑚
′

𝑅{𝑖1 ,𝑖2},(𝑗𝑖1 ,𝑗𝑖2 )
(𝐗) ×

𝜙𝑖1 ,𝑗𝑖1 (𝑧𝑖1 (𝑡𝑗 ;𝐗))𝜙𝑖2 ,𝑗𝑖2 (𝑧𝑖2 (𝑡𝑗 ;𝐗)),

(14)

5 The same symbol | ⋅ | is used for denoting both the cardinality of a set 
and the degree of a multi-index in this paper.



M. Ebadollahi and S. Rahman Probabilistic Engineering Mechanics 80 (2025) 103776 
involving

𝐿′
1,𝑚′ = 1 +𝑀𝑚′

and

𝐿′
2,𝑚′ = 1 +𝑀𝑚′ +

𝑀(𝑀 − 1)
2

𝑚′(𝑚′ − 1)
2

basis functions or expansion coefficients.
According to Eq. (12), the dimensional decomposition 𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ;𝐗)

has the potential to markedly reduce the number of basis functions. 
For example, when 𝑀 = 9, 𝑚′ = 2, and 𝑆′ = 1 or 𝑆′ = 2, 
there are now 𝐿′

1,2 = 19 or 𝐿′
2,2 = 55 basis functions, which are 

substantially lower than 19,683 calculated from the full tensor-product 
expansion. Therefore, the dimension-wise tensor-product expansion 
renders the resulting NARX approximations computationally feasible, 
provided that the degree of interaction 𝑆′ and order of basis functions 
𝑚′ are judiciously selected.

Note that the NARX approximation in Eq. (12) is stochastic and dis-
tinguished from the classical NARX approximation due to the fact that 
the model coefficients 𝐹∅(𝐗) and 𝑅𝑢,𝐣𝑢 (𝐗), instead of being deterministic 
constants, are now functions of random parameters 𝐗. As described in a 
following section, the stochastic NARX proposed facilitates propagation 
of input uncertainties using any preferred method of UQ analysis.

3.2.3. Reduction of no. of NARX basis functions
While a dimension-wise construction of NARX model function pro-

duces a huge decrease in the number of basis functions already, a 
further reduction is possible if the coefficients corresponding to some 
of the basis functions are negligibly small. However, as the NARX 
expansion coefficients 𝑅𝑢,𝐣𝑢 (𝐗) are functions of input random variables, 
the magnitude of smallness must be determined in a statistical sense. 
A four-step algorithm is proposed for basis reduction, as follows.

1. Given the known probability distribution of 𝐗, generate
{𝐱(𝑙)}𝑙=1,…,𝐿′ , a set of associated samples of input random vari-
ables of size 𝐿′ ∈ N.

2. For each input sample 𝐱(𝑙), conduct an appropriate regression 
analysis by fitting an 𝑆′-variate, 𝑚′th-order approximation
𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ; 𝐱(𝑙)) to the original function 𝑦(𝑡𝑗 ; 𝐱(𝑙)), thereby obtain-
ing the corresponding sample of NARX expansion coefficients 
𝑅𝑢,𝐣𝑢 (𝐱

(𝑙)). More specific details of such regression analysis will 
be provided in a forthcoming section.

3. Determine the importance of the NARX basis function
𝛷𝑢,𝐣𝑢 (𝐳𝑢(𝑡𝑗 ;𝐗)) by estimating the mean of the NARX coefficient 
𝑅𝑢,𝐣𝑢 (𝐗), referred to as the importance factor, from 

𝛼̄𝑢,𝐣𝑢 ∶=
1
𝐿′

𝐿′
∑

𝑙=1

𝑅2
𝑢,𝐣𝑢

(𝐱(𝑙))
∑

∅≠𝑢⊆{1,…,𝑀}
1≤|𝑢|≤𝑆′

∑

𝐣𝑢∈N|𝑢|
|𝑢|≤|𝐣𝑢 |≤𝑚′

𝑅2
𝑢,𝐣𝑢

(𝐱(𝑙))
. (15)

According to Eq. (15), the lower the value of 𝛼̄𝑢,𝐣𝑢 , the less 
important the corresponding basis function 𝛷𝑢,𝐣𝑢 (𝐳𝑢(𝑡𝑗 ;𝐗)).

4. Define a threshold parameter 0 ≤ 𝛼0 ≤ 1 for grading the values 
of 𝛼̄𝑢,𝐣𝑢  from (15). Thereby, remove all basis functions when their 
importance factors are less than the threshold, that is, from the 
condition: 𝛼̄𝑢,𝐣𝑢 ≤ 𝛼0.

Fig.  1 shows the computational flow of the four-step algorithm. 
Compared with past works where the basis functions are chosen ad-
hoc or intuitively [18], the proposed algorithm illustrates how the 
dimensional decomposition in tandem with the importance factor can 
be exploited for a more systematic way of constructing the NARX model 
function 𝐹 (𝐳(𝑡𝑗 ;𝐗)).

It is important to recognize that the magnitude of reduction in the 
number of NARX basis functions from the proposed algorithm depends 
on the values of 𝑆′, 𝑚′, and 𝛼0 chosen by a user. Furthermore, the re-
duction also depends on the behavior of original NARX model function 
𝐹 (𝐳(𝑡𝑗 ;𝐗)). Nonetheless, in practice, a huge reduction is possible, to be 
demonstrated in the Examples and Application sections.
5 
3.3. Estimation of NARX coefficients

As alluded to earlier, the NARX coefficients are random. Therefore, 
a UQ method is needed for their statistical characterization. Here, the 
coefficients are determined in terms of their samples using standard 
least-square (SLS) regression. Such sample values are required for 
basis reduction, as explained in Section 3.2. In addition, these sample 
values will also be needed when PDD is introduced for UQ analysis in 
Section 4.

When applying SLS or other regression methods, expressing the 
NARX approximation in terms of a single index is beneficial. In this 
case, arrange the elements of the sets of NARX basis and coefficients 
by

{𝜙1(𝐳(𝑡𝑗 ; 𝐱(𝑙))),… , 𝜙𝐿′
𝑆′ ,𝑚′

(𝐳(𝑡𝑗 ; 𝐱(𝑙)))} and {𝑅1(𝐱(𝑙)),… , 𝑅𝐿′
𝑆′ ,𝑚′

(𝐱(𝑙))},

respectively, where 𝐿′
𝑆′ ,𝑚′  is the total number of basis functions de-

termined from the dimensional decomposition parameters 𝑆′ and 𝑚′

of the NARX model function and 𝐱(𝑙) is an 𝑙th sample, also known as 
realization or experiment, of 𝐗, generated from the known probability 
distribution of random input. Here, 𝐿′

𝑆′ ,𝑚′  may represent either an unre-
duced number of basis functions from a dimensional decomposition or 
a reduced number of such basis functions via removal of unimportant 
basis functions from the proposed four-step algorithm. The subsequent 
regression analysis is the same. However, in the Example and Applica-
tion sections, 𝐿′

𝑆′ ,𝑚′  will represent the final, reduced number of basis 
functions to demonstrate the effectiveness of the algorithm.

Given an 𝐿′
𝑆′ ,𝑚′  number of basis functions, the NARX approximation 

can also be expressed by 

𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ;𝐗) =
𝐿′
𝑆′ ,𝑚′
∑

𝑖=1
𝑅𝑖(𝐗)𝛷𝑖(𝐳(𝑡𝑗 ;𝐗)). (16)

Denote by 𝑦(𝑡𝑗 ; 𝐱(𝑙)), 𝐳(𝑡𝑗 ; 𝐱(𝑙)), and 𝑦̃(𝑡𝑗 ; 𝐱(𝑙)) the 𝑙th samples of 𝑦(𝑡𝑗 ;𝐗), 
𝐳(𝑡𝑗 ;𝐗), and 𝑦̃(𝑡𝑗 ;𝐗), respectively. Then, employing SLS regression, the 
coefficients of the NARX approximation for this particular sample are 
obtained by minimizing the sum of squared errors,

𝑒NARX ∶=
𝐽
∑

𝑗=0

[

𝑦(𝑡𝑗 ; 𝐱(𝑙)) − 𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ; 𝐱(𝑙))
]2

=
𝐽
∑

𝑗=0

[

𝑦(𝑡𝑗 ; 𝐱(𝑙)) −
𝐿′
𝑆′ ,𝑚′
∑

𝑖=1
𝑅𝑖(𝐗)𝛷𝑖(𝐳(𝑡𝑗 ; 𝐱(𝑙)))

]2
, (17)

committed by NARX at all (𝐽 + 1) time instants 𝑡𝑗 , 𝑗 = 0,… , 𝐽 . The 
minimization leads to a sample of approximate NARX coefficients 

𝐑̃(𝐱(𝑙)) ∶=
{

𝑅̃1(𝐱(𝑙)),… , 𝑅̃𝐿′
𝑆′ ,𝑚′

(𝐱(𝑙))
}⊺

= (𝐀⊺
𝑙𝐀𝑙)

−1𝐀⊺
𝑙 𝐛𝑙 , (18)

where 

𝐀𝑙 ∶=
⎡

⎢

⎢

⎢

⎣

𝜙1(𝐳(𝑡0; 𝐱(𝑙))) ⋯ 𝜙𝐿′
𝑆′ ,𝑚′

(𝐳(𝑡0; 𝐱(𝑙)))
⋮ ⋱ ⋮

𝜙1(𝐳(𝑡𝐽 ; 𝐱(𝑙))) ⋯ 𝜙𝐿′
𝑆′ ,𝑚′

(𝐳(𝑡𝐽 ; 𝐱(𝑙)))

⎤

⎥

⎥

⎥

⎦

(19)

and 
𝐛𝑙 ∶= {𝑦(𝑡0; 𝐱(𝑙)),… , 𝑦(𝑡𝐽 ; 𝐱(𝑙))}⊺ (20)

are a (𝐽 +1) ×𝐿′
𝑆′ ,𝑚′  matrix comprising values of NARX basis functions 

at discrete time instants and an (𝐽 +1)-dimensional column vector con-
taining values of output response function at time instants, respectively. 
In Eq. (18), 𝐀⊺

𝑙𝐀𝑙 is an 𝐿′
𝑆′ ,𝑚′ × 𝐿′

𝑆′ ,𝑚′  matrix, often referred to as the 
information or data matrix.

The estimated NARX coefficients 𝐑̃(𝐱(𝑙)) obtained from Eq. (18) 
should improve if the time step 𝛥𝑡 decreases. Moreover, when 𝑆′ →𝑀
and 𝑚′ → ∞, the NARX approximation 𝑦̃𝑆′ ,𝑚′ (𝑡𝑗 ; 𝐱(𝑙)) should approach 
the exact function 𝑦(𝑡 ; 𝐱(𝑙)) in the mean-square sense.
𝑗
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Fig. 1. A four-step algorithm for reducing the number of NARX basis functions.
4. PDD

Given an input random vector 𝐗 ∶= {𝑋1,… , 𝑋𝑁}𝑇 ∶ (𝛺, ) →

(A𝑁 ,𝑁 ) with known PDF 𝑓𝐗(𝐱), let the NARX coefficients 𝑅𝑖(𝐗) ∶=
𝑅𝑖(𝑋1,… , 𝑋𝑁 ), 𝑖 = 1,… , 𝐿NARX – a real-valued, measurable transfor-
mation on (𝛺, ) – describe a stochastic response function of interest. 
It is common to assume that the function 𝑅𝑖(𝐗) belongs to a reasonably 
large function class, such as the Hilbert space 

𝐿2(𝛺, ,P) ∶=
{

𝑅𝑖 ∶ 𝛺 → A ∶ ∫𝛺
|

|

𝑅𝑖(𝐗(𝜔))||
2 𝑑P(𝜔) <∞

}

, (21)

with respect to the probability measure 𝑓𝐗(𝐱)𝑑𝐱. A principal objective 
of UQ analysis is to effectively estimate the relevant probabilistic char-
acteristics of 𝑅𝑖(𝐗) ∈ 𝐿2(𝛺, ,P). In this work, the authors advocate 
PDD for such UQ analysis, described as follows.

4.1. ANOVA dimensional decomposition

Following similar considerations in Section 3.2.2, denote by 𝑢 a 
subset of the index set {1,… , 𝑁} with the complementary set −𝑢 ∶=
{1,… , 𝑁}∖𝑢 and cardinality 0 ≤ |𝑢| ≤ 𝑁 . For ∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, let 
𝐗𝑢 = {𝑋𝑖1 ,… , 𝑋𝑖

|𝑢|
}⊺, 1 ≤ 𝑖1 < ⋯ < 𝑖

|𝑢| ≤ 𝑁 , be a subvector of 𝐗 with 
𝐗 ∶= 𝐗  defining its complementary subvector. Then, for a 
−𝑢 {1,…,𝑁}∖𝑢

6 
given ∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, the marginal density function of 𝐗𝑢, defined 
on A|𝑢| ∶= ×|𝑢|

𝑘=1(𝑎𝑖𝑘 , 𝑏𝑖𝑘 ), is 

𝑓𝐗𝑢 (𝐱𝑢) ∶= ∫A−𝑢
𝑓𝐗(𝐱)𝑑𝐱−𝑢 =

|𝑢|
∏

𝑘=1
𝑓𝑋𝑖𝑘 (𝑥𝑖𝑘 ), (22)

where the second equality forms due to statistical independence of the 
input random variables as per Assumption 1. Hence, it can be shown 
that, for any function 𝑅𝑖(𝐗) ∈ 𝐿2(𝛺, ,P), there exists a unique, finite, 
hierarchical expansion [19–22] 
𝑅𝑖(𝐗) = 𝑅𝑖,∅ +

∑

∅≠𝑢⊆{1,…,𝑁}
𝑅𝑖,𝑢(𝐗𝑢), (23a)

𝑅𝑖,∅ ∶= ∫A𝑁
𝑅𝑖(𝐱)𝑓𝐗(𝐱)𝑑𝐱, (23b)

𝑅𝑖,𝑢(𝐗𝑢) ∶= ∫A−𝑢
𝑅𝑖(𝐗𝑢, 𝐱−𝑢)𝑓𝐗−𝑢

(𝐱−𝑢)𝑑𝐱−𝑢 −
∑

𝑣⊂𝑢
𝑅𝑖,𝑣(𝐗𝑣), (23c)

referred to as the ANOVA dimensional decomposition (ADD), where 
𝑅𝑖,𝑢 is a |𝑢|-variate component function describing a constant or an |𝑢|-
variate interaction of 𝐗𝑢 = (𝑋𝑖1 ,… , 𝑋𝑖

|𝑢|
) on 𝑅𝑖 when |𝑢| = 0 or |𝑢| > 0. 

Here, (𝐗𝑢, 𝐱−𝑢) denotes an 𝑁-dimensional vector whose 𝑘th component 
is 𝑋𝑖𝑘  if 𝑖𝑘 ∈ 𝑢 and 𝑥𝑖𝑘  if 𝑖𝑘 ∉ 𝑢. The summation in Eq. (23a) comprises 
2𝑁 −1 terms with each term depending on a group of variables indexed 
by a particular subset of {1,… , 𝑁}.
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The ADD described by Eqs. (23a)–(23c) is a special type of di-
mensional decomposition presented earlier. Such ADD has two notable 
properties [20]:

1. Any non-constant component function 𝑅𝑖,𝑢(𝐗𝑢) has a zero mean, 
that is, 
E[𝑅𝑖,𝑢(𝐗𝑢)] = 0, ∅ ≠ 𝑢 ∈ {1,… , 𝑁}. (24)

2. Any two distinct component functions 𝑅𝑖,𝑢(𝐗𝑢) and 𝑅𝑣(𝐗𝑖,𝑣) are 
mutually orthogonal, that is, 
E[𝑅𝑖,𝑢(𝐗𝑢)𝑅𝑖,𝑣(𝐗𝑣)] = 0, 𝑢, 𝑣 ∈ {1,… , 𝑁}, 𝑢 ≠ 𝑣. (25)

Readers interested in further details of ADD are directed to the authors’ 
prior work [20].

It is elementary to show that all ADD component functions of 𝑅𝑖(𝐗)
are members of respective subspaces of 𝐿2(𝛺, ,P). Unfortunately, the 
subspaces are infinite-dimensional. Therefore, a further discretization 
or refinement is necessary. In this work, the authors propose to employ 
polynomial refinements, leading to PDD approximation of 𝑅𝑖(𝐗).

4.2. Measure-consistent orthonormal polynomials

Let {𝜓𝑖𝑗 (𝑋𝑖) ∶ 𝑗 = 0, 1,…} be a set of univariate, orthonormal 
polynomial basis functions in the Hilbert space 𝐿2(𝛺𝑖,𝑖, 𝑃𝑖) that is 
consistent with the probability measure 𝑃𝑖 or 𝑓𝑋𝑖 (𝑥𝑖)𝑑𝑥𝑖 of 𝑋𝑖. For 
∅ ≠ 𝑢 = {𝑖1,… , 𝑖

|𝑢|} ⊆ {1,… , 𝑁}, where 1 ≤ |𝑢| ≤ 𝑁 and 1 ≤ 𝑖1 <
⋯ < 𝑖

|𝑢| ≤ 𝑁 , let
(

×𝑘=|𝑢|𝑘=1 𝛺𝑖𝑘 ,×
𝑘=|𝑢|
𝑘=1 𝑖𝑘 ,×

𝑘=|𝑢|
𝑘=1 𝑃𝑖𝑘

)

be the product probability triple of 𝐗𝑢 = {𝑋𝑖1 ,… , 𝑋𝑖
|𝑢|
}⊺. Denote the 

associated space of the |𝑢|-variate component functions of 𝑅𝑖 by

𝐿2
(

×𝑘=|𝑢|𝑘=1 𝛺𝑖𝑘 ,×
𝑘=|𝑢|
𝑘=1 𝑖𝑘 ,×

𝑘=|𝑢|
𝑘=1 𝑃𝑖𝑘

)

∶=
{

𝑅𝑖,𝑢 ∶ ∫A|𝑢|
𝑅2
𝑖,𝑢(𝐱𝑢)𝑓𝐗𝑢 (𝐱𝑢)𝑑𝐱𝑢 <∞

}

,

which is also a Hilbert space. Since the input random variables are 
statistically independent (Assumption  1), the joint density of 𝐗𝑢 is 
separable, that is,

𝑓𝐗𝑢 (𝐱𝑢) =
|𝑢|
∏

𝑘=1
𝑓𝑋𝑖𝑘 (𝑥𝑖𝑘 ),

the product

𝜓𝑢,𝐣𝑢 (𝐗𝑢) ∶=
|𝑢|
∏

𝑘=1
𝜓𝑖𝑘𝑗𝑘 (𝑋𝑖𝑘 ),

where 𝐣𝑢 = (𝑗1,… , 𝑗
|𝑢|) ∈ N|𝑢|

0 , a |𝑢|-dimensional multi-index, constitutes 
a measure-consistent multivariate orthonormal polynomial basis of
𝐿2

(

×𝑘=|𝑢|𝑘=1 𝛺𝑖𝑘 ,×
𝑘=|𝑢|
𝑘=1 𝑖𝑘 ,×

𝑘=|𝑢|
𝑘=1 𝑃𝑖𝑘

)

.

Two important properties of these multivariate orthonormal poly-
nomials are as follows [7,8]:

1. The polynomials 𝜓𝑢,𝐣𝑢 (𝐗𝑢), ∅ ≠ 𝑢 ⊆ {1,… , 𝑁}, 𝑗1,… , 𝑗
|𝑢| ≠ 0, 

have zero means, i.e., 
E
[

𝜓𝑢,𝐣𝑢 (𝐗𝑢)
]

= 0. (26)

2. Any two distinct polynomials 𝜓𝑢,𝐣𝑢 (𝐗𝑢) and 𝜓𝑣,𝐤𝑣 (𝐗𝑣), where ∅ ≠
𝑢 ⊆ {1,… , 𝑁}, ∅ ≠ 𝑣 ⊆ {1,… , 𝑁}, 𝐣𝑢 = (𝑗1,… , 𝑗

|𝑢|) ≠ 0, 𝐤𝑣 =
(𝑘1,… , 𝑘

|𝑣|) ≠ 0, are uncorrelated and each has unit variance, 
i.e., 

E
[

𝜓𝑢,𝐣𝑢 (𝐗𝑢)𝜓𝑣,𝐤𝑣 (𝐗𝑣)
]

=
{

1 if 𝑢 = 𝑣; 𝐣
|𝑢| = 𝐤

|𝑣|,
0 otherwise.

(27)

Given a probability measure 𝑃𝑖𝑘  or 𝑓𝑋𝑖𝑘 (𝑥𝑖𝑘 )𝑑𝑥𝑖𝑘  of 𝑋𝑖𝑘  of a ran-
dom variable 𝑋 , the well-known three-term recurrence relation  is
𝑖𝑘
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commonly used to construct the associated orthogonal polynomials
[23]. The recursion coefficients lead to general orthogonal polyno-
mials, including classical orthogonal polynomials, such as Hermite, 
Legendre, and Jacobi polynomials, when 𝑋𝑖𝑘  follows the Gaussian, 
uniform, and Beta probability distributions, respectively. For an arbi-
trary probability measure, the Stieltjes procedure can be employed to 
obtain the recursion coefficients and associated orthogonal polynomials 
approximately [23,24].

4.3. PDD approximation

The PDD of a square-integrable random variable 𝑅𝑖(𝐗) ∈ 𝐿2(𝛺, ,P)
is simply the expansion of 𝑅𝑖(𝐗) with respect to a complete, hierarchi-
cally ordered, orthonormal polynomial basis of 𝐿2(𝛺, ,P). It involves 
the following two steps: (1) expand the ADD component function 
𝑅𝑖,𝑢(𝐗𝑢) =

∑

𝐣𝑢∈N|𝑢|

𝐶𝑖,𝑢,𝐣𝑢𝛹𝑢,𝐣𝑢 (𝐗𝑢) (28)

in terms of the measure-consistent orthonormal basis with 𝐶𝑖,𝑢,𝐣𝑢 , ∅ ≠
𝑢 ⊆ {1,… , 𝑁}, 𝐣𝑢 ∈ N|𝑢|, representing the associated expansion 
coefficients; and (2) apply Eq. (28) to Eq. (23a) and exploit orthogonal 
properties of the basis. The end result is the PDD [7,8] of 
𝑅𝑖(𝐗) = 𝑅𝑖,∅ +

∑

∅≠𝑢⊆{1,…,𝑁}

∑

𝐣𝑢∈N|𝑢|

𝐶𝑖,𝑢,𝐣𝑢𝛹𝑢,𝐣𝑢 (𝐗𝑢), (29)

where, eventually, 

𝐶𝑖,𝑢,𝐣𝑢 = ∫A𝑁
𝑅𝑖(𝐱)𝛹𝑢,𝐣𝑢 (𝐱𝑢)𝑓𝐗(𝐱)𝑑𝐱. (30)

Comparing Eqs. (29) and (23a), the connection between PDD and ADD 
is clearly palpable, where the former can be viewed as a polynomial 
variant of the latter. For instance, 𝐶𝑖,𝑢,𝐣𝑢𝛹𝑢,𝐣𝑢 (𝐗𝑢) in Eq. (29) represents 
a |𝑢|-variate, |𝐣𝑢|th-order PDD component function of 𝑅𝑖(𝐗), describing 
the |𝐣𝑢|th-order polynomial approximation of 𝑅𝑖,𝑢(𝐗𝑢). In addition, PDD 
inherits all desirable properties of ADD [8].

The full PDD contains an infinite number of orthonormal polyno-
mials or coefficients. In practice, the number must be finite, meaning 
that PDD must be truncated. In a practical setting, the function 𝑅𝑖(𝐗)
is likely to have an effective dimension much lower than 𝑁 , meaning 
that the right side of Eq. (29) can be effectively truncated by a sum of 
lower-dimensional component functions of PDD, but still preserve all 
random variables 𝐗 of a high-dimensional UQ problem. A straightfor-
ward approach adopted in this work entails (1) keeping all polynomials 
in at most 0 ≤ 𝑆 ≤ 𝑁 variables, thereby retaining the degrees of 
interaction among input variables less than or equal to 𝑆 and (2) 
preserving polynomial expansion orders (total) less than or equal to 
𝑆 ≤ 𝑚 < ∞. The result is an 𝑆-variate, 𝑚th-order PDD approximation 
𝑅̃𝑖,𝑆,𝑚(𝐗) = 𝑅𝑖,∅ +

∑

∅≠𝑢⊆{1,…,𝑁}
1≤|𝑢|≤𝑆

∑

𝐣𝑢∈N|𝑢|
|𝑢|≤|𝐣𝑢 |≤𝑚

𝐶𝑖,𝑢,𝐣𝑢𝛹𝑢,𝐣𝑢 (𝐗𝑢) (31)

of 𝑅𝑖(𝐗), containing 

𝐿𝑆,𝑚 = 1 +
𝑆
∑

𝑠=1

(

𝑁
𝑠

)(

𝑚
𝑠

)

(32)

number of expansion coefficients, including 𝑅𝑖,∅. It is important to 
clarify a few things about the truncated PDD. First, the right side of 
Eq. (31) contains sums of at most 𝑆-dimensional orthonormal polyno-
mials, representing at most 𝑆-variate PDD component functions of 𝑅𝑖. 
Therefore, the term ‘‘𝑆-variate’’ used for the PDD approximation should 
be interpreted in the context of including at most 𝑆-degree interaction 
of input variables, even though 𝑅̃𝑖,𝑆,𝑚 is strictly an 𝑁-variate function. 
Second, when 𝑆 = 0, 𝑅̃𝑖,0,𝑚 = 𝑅𝑖,∅ for any 𝑚 as the outer sum of Eq. (31) 
vanish. Finally, when 𝑆 → 𝑁 and 𝑚 → ∞, 𝑅̃𝑖,𝑆,𝑚 converges to 𝑅𝑖 in the 
mean-square sense, generating a hierarchical and convergent sequence 
of PDD approximations. Third, if 𝑆 ≪ 𝑁 , as it is anticipated to hold 
in real-life applications, the number of PDD’s basis functions drops 
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precipitously, ushering in substantial savings of computational effort. 
Readers interested in an adaptive version of PDD, where the truncation 
parameters are automatically chosen, are directed to the work of Yadav 
and Rahman [25], including an application to design optimization [26].

4.4. Estimation of PDD coefficients

The determination of the PDD coefficients 𝑅𝑖,∅ and 𝐶𝑖,𝑢,𝐣𝑢  involves 
various 𝑁-dimensional integrations. For an arbitrary function 𝑅𝑖(𝐗)
and an arbitrary probability distribution of random input 𝐗, an exact 
evaluation of these coefficients from definition alone is impossible. 
For a high-dimensional problem, say, with 𝑁 exceeding 10, evaluating 
the 𝑁-dimensional integral numerically is computationally formidable 
and likely prohibitive. Therefore, a practical alternative to numerical 
integration, such as regression analysis, is often necessary to estimate 
these coefficients.

While the compact notations used in Eq. (31) enable a concise 
description of PDD, a version using a single index notation is better 
suited for calculating the PDD coefficients as well. Following similar 
arrangements of NARX basis and coefficients, organize the elements of 
the sets of PDD basis and coefficients
{

𝛹𝑢,𝐣𝑢 (𝐗𝑢)
}

1≤|𝑢|≤𝑆, |𝑢|≤|𝐣𝑢|≤𝑚
and

{

𝐶𝑖,𝑢,𝐣𝑢 (𝐗𝑢)
}

1≤|𝑢|≤𝑆, |𝑢|≤|𝐣𝑢|≤𝑚

by

{𝛹1(𝐗),… , 𝛹𝐿𝑆,𝑚 (𝐗)} and {𝐶𝑖,1,… , 𝐶𝑖,𝐿𝑆,𝑚},

respectively. As a result, the 𝑆-variate, 𝑚th order PDD approximation 
can also be written as 

𝑅̃𝑖,𝑆,𝑚(𝐗) =
𝐿𝑆,𝑚
∑

𝑘=1
𝐶𝑖,𝑘𝛹𝑘(𝐗), (33)

with the expansion coefficients 

𝐶𝑖,𝑘 = ∫A𝑁
𝑅𝑖,𝑆,𝑚(𝐱)𝛹𝑘(𝐱)𝑓𝐗(𝐱)𝑑𝐱, 𝑘 = 1,… , 𝐿𝑆,𝑚. (34)

The SLS regression is founded on the optimal approximation quality 
of the PDD approximation. Given the function 𝑅𝑖(𝐗), select a sample 
size 𝐿 ∈ N and draw input samples 𝐱(𝑙), 𝑙 = 1,… , 𝐿, from the known 
distribution of random input 𝐗. Various sampling methods, namely, 
standard MCS, quasi MCS, and Latin hypercube sampling, can be used. 
Corresponding to each input sample, perform full-scale dynamic analy-
sis by solving Eq. (1), thus producing 𝐿 sets of the dynamic responses. 
Therefore, 𝐿 should be as small as possible, enabling such repeated 
dynamic analyses computationally feasible. From these samples of 
dynamic responses, often referred to as training data, along with the 
corresponding samples of excitation time series, generate the data set
{

𝐱(𝑙), 𝑅𝑖(𝐱(𝑙))
}𝐿
𝑙=1 ,

where 𝑅𝑖(𝐱(𝑙)) is the 𝑙th sample of the NARX coefficient 𝑅𝑖(𝐗), the 
evaluation of which is already described in a previous section. Accord-
ing to SLS, the expansion coefficients of an 𝑆-variate, 𝑚th-order PDD 
approximation are estimated by minimizing the empirical analog of the 
mean-square error 

𝑒PDD ∶= 1
𝐿

𝐿
∑

𝑙=1

⎡

⎢

⎢

⎣

𝑅𝑖(𝐱(𝑙)) −
𝐿𝑆,𝑚
∑

𝑘=1
𝐶𝑖,𝑘𝛹𝑘(𝐱(𝑙))

⎤

⎥

⎥

⎦

2

, (35)

committed by PDD. Denote by 

𝐀̄ ∶=

⎡

⎢

⎢

⎢

⎣

𝛹1(𝐱(1)) ⋯ 𝛹𝐿𝑆,𝑚 (𝐱
(1))

⋮ ⋱ ⋮
𝛹1(𝐱(𝐿)) ⋯ 𝛹𝐿𝑆,𝑚 (𝐱

(𝐿))

⎤

⎥

⎥

⎥

⎦

(36)

and 
𝐛 ∶=

{

𝑅 (𝐱(1)),… , 𝑅 (𝐱(𝐿))
}⊺ (37)
𝑖 𝑖
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an 𝐿 × 𝐿𝑆,𝑚 matrix and an 𝐿-dimensional column vector compris-
ing evaluations of the orthonormal polynomial basis functions and 
output function at the data points, respectively. Then, the estimated 
coefficients 𝐶̃𝑖,𝑗 , 𝑗 = 1,… , 𝐿𝑆,𝑚, are obtained as 

𝐂̃𝑖 ∶=
{

𝐶̃𝑖,1,… , 𝐶̃𝑖,𝐿𝑆,𝑚
}⊺

=
(

𝐀̄⊺𝐀̄
)−1 𝐀̄⊺𝐛̄. (38)

Here, 𝐀̄⊺𝐀̄ is an 𝐿𝑆,𝑚×𝐿𝑆,𝑚 matrix, often referred to as the information 
or data matrix. A necessary condition for the SLS solution is 𝐿 > 𝐿𝑆,𝑚, 
that is, the data size must be larger than the number of coefficients. 
Even when this condition is satisfied, the experimental design must 
be judiciously selected in such a way that the information matrix is 
well-conditioned.

5. Integrated PDD-NARX

The combination of Eqs. (16) and (33), with 𝑅𝑖(𝐗) replaced by 
𝑅𝑖,𝑆,𝑚(𝐗), results in the desired PDD-NARX approximation: 

𝑦̃𝑆′ ,𝑚′;𝑆,𝑚(𝑡𝑗 ;𝐗) =
𝐿′
𝑆′ ,𝑚′
∑

𝑖=1

[{𝐿𝑆,𝑚
∑

𝑘=1
𝐶𝑖,𝑘𝛹𝑘(𝐗)

}

𝛷𝑖(𝐳(𝑡𝑗 ;𝐗))
]

. (39)

There are 𝐿′
𝑆′ ,𝑚′ × 𝐿𝑆,𝑚 terms in the approximation, depending on the 

expansion parameters of the NARX model function (𝑆′, 𝑚′) and PDD 
(𝑆,𝑚) of NARX coefficients. These expansion parameters, including 
other parameters not symbolized explicitly, should be selected in such a 
way that the probabilistic characteristics of a time-dependent response 
of interest are calculated both accurately and efficiently. As the NARX 
and PDD approximations are individually mean-square convergent, the 
PDD-NARX approximation proposed should also provide mean-square 
convergent solutions.

Similar to existing PCE-NARX [18], the proposed PDD-NARX ap-
proximation in Eq. (39) can also be viewed as a surrogate of the exact 
map 𝑦 ∶ [𝑡0, 𝑡𝐽 ] × A𝑁 → R. But there is one big advantage of PDD-
NARX over PCE-NARX: the number of basis functions of PDD (𝐿𝑆,𝑚) 
grows with 𝑁 much more slowly than that of PCE (𝐿𝑚, say) if 𝑆 ≪
𝑁 , raising the potential for solving high-dimensional time-dependent 
UQ problems. More specifically, 𝐿𝑆,𝑚 = (𝑁𝑆 ) for large 𝑁 , that is, 
the computational effort by an 𝑆-variate PDD approximation scales 𝑆-
degree-polynomially with respect to 𝑁 . For instance, if 𝑆 = 1 or 2, 
as it is anticipated to hold in applications, only linear or quadratic 
complexity is expected. In contrast, the number of basis functions of 
PCE for large 𝑁 becomes 𝐿𝑚 = (𝑁𝑚∕𝑚!), demanding exponential 
growth in order 𝑚 and hence succumbing to the curse of dimensionality. 
If 𝑆 ≪ 𝑚, then PDD-NARX deflates the curse of dimensionality to a 
substantial extent.

5.1. Practical PDD-NARX

As the PDD coefficients 𝐶𝑖,𝑘 mandate conducting 𝑁-dimensional 
integrations for their evaluations, they cannot be determined exactly 
when 𝑁 is large or the PDF of 𝐗 is a general function. In this work, an 
SLS regression is put forward for estimating the coefficients, albeit more 
advanced statistical techniques can be used as well [27,28]. Moreover, 
due to temporal discretization, the NARX coefficients 𝑅𝑖(𝐗) are also 
obtained approximately. In other words, given the values of expansion 
parameters 𝑆′, 𝑚′, 𝑆, 𝑚 and other input parameters, one has to work 
with approximate PDD coefficients 𝐶̃𝑖,𝑘 (say). Therefore, instead of 
Eq. (39), an actual, implementable PDD-NARX approximation of 𝑦(𝑡 ;𝐗)
𝑗
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Fig. 2. A flow chart for constructing the PDD-NARX approximation for time-dependent UQ analysis.
𝜎

is6

𝑦̃PDD-NARX(𝑡𝑗 ;𝐗) =
𝐿′
𝑆′ ,𝑚′
∑

𝑖=1

[{𝐿𝑆,𝑚
∑

𝑘=1
𝐶̃𝑖,𝑘𝛹𝑘(𝐗)

}

𝛷𝑖(𝐳(𝑡𝑗 ;𝐗))
]

, (40)

where the parametric symbols 𝑆′, 𝑚′, 𝑆, 𝑚 determining 𝑦̃PDD-NARX(𝑡𝑗 ;𝐗)
have been dropped for conciseness. Fig.  2 presents a computational 
flow for generating the actual PDD-NARX approximation for solving 
a general time-dependent UQ problem in two phases. Combining these 
two phases, each developed in conjunction with NARX and PDD ap-
proximations, leads to the desired PDD-NARX method. All numerical 
results, to be presented in forthcoming sections, are based on Eq. (40) 
for the PDD-NARX method.

5.2. Output statistics and probability distribution

Once the deterministic coefficients 𝐶̃𝑖,𝑘, 𝑖 = 1,… , 𝐿′
𝑆′ ,𝑚′ , 𝑘 =

1,… , 𝐿𝑆,𝑚, have been calculated, the PDD-NARX approximation in 
Eq. (40) furnishes an explicit function form in terms of elementary 
basis functions of NARX and PDD. Therefore, the statistical moments, 

6 If the PDF of 𝐗 is arbitrarily prescribed, then an additional layer of 
approximation is also introduced in calculating numerically the measure-
consistent non-classical orthogonal polynomials. However, it is not explicitly 
stated in Eq. (40).
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such as the mean, variance, and higher-order moments, if they exist, 
can be easily estimated from MCS of the PDD-NARX approximation. 
For instance, the mean and variance estimates from the PDD-NARX 
approximation at time 𝑡𝑗 are 

𝜇̃PDD-NARX(𝑡𝑗 ) =
1

𝐿MCS

𝐿MCS
∑

𝑙=1
𝑦̃PDD-NARX(𝑡𝑗 ; 𝐱(𝑙)) (41)

and 

̃ 2PDD-NARX(𝑡𝑗 ) =
1

𝐿MCS − 1

𝐿MCS
∑

𝑙=1

[

𝑦̃PDD-NARX(𝑡𝑗 ; 𝐱(𝑙)) − 𝜇̃PDD-NARX(𝑡𝑗 )
]2 ,

(42)

respectively, obtained using MCS with a sample size of 𝐿MCS ∈ N. Such 
simulation should not be confused with crude MCS, commonly used 
for producing benchmark results when possible. For complex problems, 
the crude MCS, which requires repeated calculations of 𝑦(𝑡𝑗 ; 𝐱(𝑙)) for 
input samples 𝐱(𝑙), 𝑙 = 1,… , 𝐿𝑀𝐶𝑆 , can be highly expensive or even 
prohibitive when 𝐿MCS needs to be very large for estimating small 
probabilities. In contrast, the MCS embedded in the PDD-NARX ap-
proximation requires evaluations of simple polynomial functions that 
describe 𝑦̃PDD-NARX(𝑡𝑗 ;𝐗). Therefore, a relatively large sample size can 
be accommodated in the PDD-NARX approximation even when 𝑦(𝑡𝑗 ; 𝐱(𝑙))
is expensive to calculate.
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Fig. 3. Second-moment statistics of 𝑦(𝑡;𝑋) and its approximations by five distinct methods; (a) mean; (b) variance.
Since PDD produces mean-square convergent solutions [8], the 
probability distribution function and density function of 𝑦(𝑡𝑗 ;𝐗), if it 
exists, can also be estimated by MCS of the PDD-NARX approximation. 
Again, with the expansion coefficients of 𝑦̃PDD-NARX(𝑡𝑗 ;𝐗) calculated, the 
simulation can be performed inexpensively.

6. Numerical examples

Two numerical examples are presented to demonstrate the accuracy 
and efficiency of the proposed PDD-NARX method in calculating the 
statistical properties of various time-dependent system responses. The 
first example involves a simple, nonlinear stochastic ODE with a single 
random variable, serving as a fundamental test case for a rigorous 
comparison with existing UQ methods, including the time-frozen PCE 
and time-dependent PCE methods. In this context, the time-frozen 
PCE/PDD refers to the standard PCE/PDD approach that utilizes the 
same orthogonal polynomials to calculate the statistical properties of 
the response at any time 0 ≤ 𝑡 ≤ 𝑇 . The second example illustrates PDD-
NARX in handling a slightly more complex nonlinear problem from 
structural dynamics, involving a 2DOF quarter-car model with seven 
random variables.

In both examples, a crude MCS with a sample size of 𝐿𝑀𝐶𝑆 =
104 was employed as the benchmark solution, ensuring an accurate 
reference for evaluating the precision and computational advantages 
of the PDD-NARX method. Table  1 lists the additional parameters of 
the NARX and PDD models or approximations used to generate the 
PDD-NARX solutions in this study. The samples of 𝑦(𝑡;𝐗) required for 
estimating the NARX basis functions and PDD expansion coefficients via 
regression analysis were obtained from the exact solution in Example 
1, and from a fourth-order Runge–Kutta numerical solution in Example 
2.

6.1. Example 1: Stochastic ODE (𝑁 = 1)

In the first example, consider a stochastic initial-value problem 
described by the ODE 
𝑑𝑦(𝑡;𝑋)
𝑑𝑡

+𝑋𝑦(𝑡;𝑋) = 0, 𝑦(0;𝑋) = 1, (43)

where 𝑋 is a single random variable (𝑁 = 1) uniformly distributed 
in the interval [0, 1] and 𝑦(𝑡;𝑋) is the solution that depends on both 
time 𝑡 and random variable 𝑋. A straightforward integration yields the 
exact solution: 𝑦(𝑡;𝑋) = exp (−𝑋𝑡). Henceforth, the mean and variance 
of 𝑦(𝑡;𝑋) can be exactly determined as 

E[𝑦(𝑡;𝑋)] =
1 − exp (−𝑡) (44)
𝑡
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Table 1
Input parameters for the NARX and PDD approximations used in examples and 
application.
 Parameter Example 1 Example 2 Application 
 𝑡0, s 0 0 2.7  
 𝑇 , s 30 30 4.9  
 𝛥𝑡, s 0.01 0.01 −a  
 𝑛𝑔 4 4 4  
 𝑛𝑦 4 4 4  
 𝑆′ 2 2 2  
 𝑚′ 2 2 2  
 𝛼0 0.1, 10−5 0.1 10−8  
 𝑆 1 1 1  
 𝑚 3 3 3  
 𝐿′ 500 100 100  
 𝐿 20 110 86, 128  
 𝐿𝑀𝐶𝑆 10,000 10,000 300  
a Varies from 0.01 and 0.02, as determined by ABAQUS.
Note: 𝑡0 = initial time; 𝑇  = final time; 𝛥𝑡 = time step;
𝑛𝑔 , 𝑛𝑦 = factors of time lags for excitation and response;
𝑆′, 𝑚′ = interaction degree and order for NARX approx.;
𝛼0 = threshold of importance factor;
𝑆, 𝑚 = interaction degree and order for PDD approx.;
𝐿′, 𝐿, 𝐿𝑀𝐶𝑆 = sample sizes for NARX, PDD, and MCS.

and 

E
[

(𝑦(𝑡;𝑋) − E[𝑦(𝑡;𝑋)])2
]

=
1 − exp (−2𝑡)

2𝑡
−
(

1 − exp (−𝑡)
𝑡

)2
, (45)

respectively.
The PDD-NARX approximation and a few other existing UQ methods 

were applied to estimate the mean and variance of 𝑦(𝑡;𝑋). The NARX 
and PDD parameters employed in this example are listed in Table 
1. For constructing the NARX model function, two distinct values of 
the threshold parameter 𝛼0 = 0.1 or 10−5 were selected, resulting in 
the final reduced number of NARX basis functions 𝐿′

𝑆′ ,𝑚′ = 2 and 
𝐿′
𝑆′ ,𝑚′ = 6, respectively. Table  2 enumerates these basis functions for 

both values of the threshold parameter. For the PDD approximation 
of NARX coefficients, Legendre orthonormal polynomials, which are 
consistent with the uniform probability measure of 𝑋, were employed. 
For 𝑆 = 𝑁 = 1, 𝑚 = 3, there are 𝐿1,3 = 4 basis functions of PDD.

Fig.  3(a) and Fig.  3(b) present the time histories of the mean and 
variance, respectively, of 𝑦(𝑡;𝑋) and its approximation by five distinct 
methods or solutions: (1) exact solution, (2) crude MCS (𝐿𝑀𝐶𝑆 = 104), 
(3) univariate, third-order (𝑆 = 1, 𝑚 = 3) PDD-NARX, (4) third-order 
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Fig. 4. Errors committed by third-order PDD-NARX, time-frozen PCE, and time-dependent PCE with respect to time; (a) mean; (b) variance.
Table 2
Basis functions of NARX in the stochastic ODE.
 𝛼0 𝑖 Basis function [𝛷𝑖(𝐳(𝑡𝑗 ;𝐗))] 
 0.1 1 1  
 2 𝑦(𝑡𝑗 − 𝛥𝑡;𝑋)  
 

10−5

1 1  
 2 𝑦(𝑡𝑗 − 𝛥𝑡;𝑋)  
 3 𝑦2(𝑡𝑗 − 𝛥𝑡;𝑋)  
 4 𝑦(𝑡𝑗 − 2𝛥𝑡;𝑋)  
 5 𝑦(𝑡𝑗 − 3𝛥𝑡;𝑋)  
 6 𝑦(𝑡𝑗 − 4𝛥𝑡;𝑋)  

(𝑚 = 3) time-frozen PCE [13], and (5) third-order (𝑚 = 3) time-
dependent PCE [13]. The third-order approximations were selected, 
as the results of existing PCE whether time-dependent or time-frozen 
were readily available [13]. In these figures, the exact solutions of 
both moments and those obtained by MCS are virtually indistinguish-
able. Moreover, the mean of 𝑦(𝑡;𝑋) for any time 0 ≤ 𝑡 ≤ 30 s in 
Fig.  3(a) by PDD-NARX and both variants of PCE are nearly identi-
cal to those calculated exactly or by MCS. However, the variance of 
𝑦(𝑡;𝑋) in Fig.  3(b) tells a different tale. Here, the time-frozen PCE is 
quite good until around 𝑡 = 7 s, but the solution deteriorates soon 
thereafter and becomes exceedingly erroneous as time progresses. The 
time-dependent PCE, owing to incremental updates of orthogonal poly-
nomials, markedly improves the approximation quality of time-frozen 
PCE, as expected. In contrast, the PDD-NARX method also provides 
excellent estimates of the variances at all time instants. Any difference 
between the PDD-NARX approximation and the exact or MCS solution 
is impalpable to the naked eye.

For a more quantitative assessment of the approximation quality of 
the PDD-NARX and existing PCE methods, Fig.  4(a) and Fig.  4(b) depict 
the errors in calculating the mean and variance of 𝑦(𝑡;𝑋), respectively, 
committed by all three third-order (𝑚 = 3) UQ methods as a function of 
time. Here, the error is defined as the absolute value of the ratio of (1) 
the difference between the MCS solution and the approximate solution 
of interest and (2) the MCS solution. The results from both figures 
indicate that PDD-NARX commits errors substantially lower than those 
perpetrated by either version of PCE. For the PDD-NARX method, there 
are no notable changes in its approximation quality when the threshold 
parameter (𝛼0) is dropped from 0.1 to 10−5. This suggests that only 
two basis functions obtained using 𝛼0 = 0.1, as listed in Table  2, are 
adequate for describing the NARX model function.

In addition, Fig.  5(a) and Fig.  5(b) display the errors in the mean 
and variance of 𝑦(𝑡;𝑋), respectively, at a long time 𝑡 = 30 s, achieved 
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by all three aforementioned methods when the order of approximation 
(𝑚) is steadily elevated. While the errors from all three methods decay 
expectedly with increasing orders, the PDD-NARX outperforms both 
variants of PCE by committing substantially lower error for any 𝑚.

6.2. Example 2: Stochastic dynamics of a 2DOF car model (𝑁 = 7)

The second example, studied by Mai et al. [18], involves conducting 
a nonlinear dynamic analysis of a quarter-car model subject to un-
certainty. Comparing the results and performance of PDD-NARX with 
those generated by PCE-NARX is the principal motivation for solving 
this problem.

Fig.  6 provides a schematic representation of a 2DOF, quarter-car 
model, where 𝑚𝑠 and 𝑚𝑢 are the random sprung and unsprung masses, 
respectively, 𝑘𝑠 and 𝑘𝑢 are the random spring stiffnesses, respectively, 
and 𝑐 is the random damping coefficient, characterizing the energy 
dissipation within the system. The car is subjected to a random road 
profile excitation 𝑔(𝑡;𝑋) = 𝐴 sin(𝜔𝑡), where 𝐴 and 𝜔 are the random 
amplitude and random frequency parameters. The nonlinear equations 
of motion for this 2DOF car model are given by [18] 
𝑚𝑠𝑦̈1(𝑡;𝐗) = −𝑘𝑠(𝑦1(𝑡;𝐗) − 𝑦2(𝑡;𝐗))3 − 𝑐(𝑦̇1(𝑡;𝐗) − 𝑦̇2(𝑡;𝐗)),
𝑚𝑢𝑦̈2(𝑡;𝐗) = 𝑘𝑠(𝑦1(𝑡;𝐗) − 𝑦2(𝑡;𝐗))3 + 𝑐(𝑦̇1(𝑡;𝐗) − 𝑦̇2(𝑡;𝐗)) +

𝑘𝑢(𝑔(𝑡;𝐗) − 𝑦2(𝑡;𝐗)),
(46)

where 𝑦1(𝑡;𝐗) and 𝑦2(𝑡;𝐗) are the displacements of sprung and un-
sprung masses, respectively.

In this example, both the system properties and excitation are 
uncertain. More specifically, the input random vector 𝐗 = {𝑚𝑠, 𝑚𝑢, 𝑘𝑠,
𝑘𝑢, 𝑐, 𝐴, 𝜔}⊺ comprises seven input random variables (𝑁 = 7). Their 
means, standard deviations, and probability distributions are described 
in Table  3. All input random variables are mutually statistically inde-
pendent.

The NARX and PDD parameters used in this example are also listed 
in Table  1. Here, the threshold parameter 𝛼0 = 0.1, resulting in the 
final, reduced number of NARX basis functions to be 𝐿′

𝑆′ ,𝑚′ = 4. The 
basis functions are as follows: 1, 𝑦1(𝑡𝑗 −𝛥𝑡;𝐗), 𝑦1(𝑡𝑗 −2𝛥𝑡;𝐗), and 𝑦1(𝑡𝑗 −
3𝛥𝑡;𝐗). For the PDD approximation of NARX coefficients, Hermite 
and Legendre orthonormal polynomials, which are consistent with the 
Gaussian and uniform probability measures of input random variables, 
were employed. For 𝑆 = 1, 𝑚 = 3, there are 𝐿1,3 = 22 basis functions 
of PDD. As there is no exact solution in this example, the reference 
solution used to judge the approximation quality of PDD-NARX is crude 
MCS with the sample size 𝐿 = 104.
𝑀𝐶𝑆
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Fig. 5. Errors committed by PDD-NARX, time-frozen PCE, and time-dependent PCE at 𝑡 = 30 s with respect to orders of approximation; (a) mean; (b) variance.
Fig. 6. A 2DOF model of a quarter-car.

Table 3
Statistical properties of the input random variables in the 2DOF car model.
 Random variable Probability distribution Mean Standard deviation 
 𝑚𝑠 , kg Gaussian 20 2  
 𝑚𝑢 , kg Gaussian 40 4  
 𝑘𝑠, N/m Gaussian 2000 200  
 𝑘𝑢, N/m Gaussian 2000 200  
 𝑐, N-s/m Gaussian 600 60  
 𝐴, m Uniform 0.1 (0.11 − 0.9)

√

12
 

 𝜔, rad/s Uniform 2𝜋
(2.2𝜋 − 1.8𝜋)

√

12
 

Note: 𝑚𝑠, 𝑚𝑢 = sprung and unsprung masses, resp.; 𝑘𝑠, 𝑘𝑢 = spring stiffnesses 𝑐, 𝐴, 𝜔
= damping coefficient, excitation amplitude, excitation frequency, respectively.

Due to the input uncertainty, any dynamic response of the car model 
is stochastic. For brevity, only the probabilistic characteristics of the 
sprung mass displacement, that is, 𝑦1(𝑡;𝐗), was studied. Fig.  7(a) and 
Fig.  7(b) delineate the mean and standard deviation of 𝑦1(𝑡;𝐗) for 
0 ≤ 𝑡 ≤ 30 s, estimated by the univariate, third-order PDD-NARX and 
third-order PCE-NARX approximations. For both approximations, the 
corresponding results of their time-frozen versions are also included. 
According to Fig.  7(a), the means of 𝑦1(𝑡;𝐗) by all methods including 
12 
crude MCS show similar trends or values, albeit the time-frozen PCE 
or time-frozen PDD exhibits greater oscillations when 𝑡 is large. In 
Fig.  7(b), the time-frozen versions struggle to accurately predict the 
standard deviation from MCS, especially when 𝑡 ≥ 4 s. In contrast, 
the PDD-NARX and PCE-NARX methods both demonstrate strong agree-
ment with the benchmark solution of MCS, verifying the accuracy of the 
former methods in estimating these two moments at all time instants.

While the results of PDD-NARX and PCE-NARX appear practically 
identical in accuracy, their relative computational efforts differ signifi-
cantly. In this particular example, PCE-NARX requires 600 sample data 
to achieve the reported accuracy, whereas PDD-NARX attains the same 
level of precision with only 110 sample data (𝐿). This is possible as the 
third-order PDD utilizes only 𝐿1,3 = 22 univariate basis functions, which 
are more than adequate for constructing the PDD-NARX approximation 
without sacrificing the solution accuracy. In contrast, the third-order 
PCE employs 120 basis functions, entailing not only univariate, but also 
unneeded or unimportant higher-variate basis functions, thus incurring 
additional cost for estimating the associated expansion coefficients.

Beyond the second-moment analysis, a comparison between the 
probability distributions of the dynamic responses generated using 
PDD-NARX and PCE-NARX should be intriguing. In this regard,
Fig.  8(a), Fig.  8(b), and Fig.  8(c) illustrate the PDFs of (1) the sprung 
displacement 𝑦1(5;𝐗) at time 𝑡 = 5 s; (2) the sprung displacement 
𝑦1(30;𝐗) at time 𝑡 = 30 s; and (3) maximum absolute sprung displace-
ment max0≤𝑡≤30 |𝑦1(𝑡;𝐗)|, respectively. As observed from the analysis of 
statistical moments, both methods also produce PDFs matching the MCS 
results extremely well, but PDD-NARX is still more computationally 
efficient than PCE-NARX by a factor of nearly six. The substantial 
reduction in computational cost underscores the efficiency of PDD-
NARX, making it a highly effective approach for UQ analysis of complex 
dynamical systems, to be demonstrated next.

7. Application

This section highlights the practical application of the PDD-NARX 
method in tackling a complex vehicle-dynamics problem involving 21 
random variables. The focus of the application is dynamic analysis 
of a Chevrolet C1500 pick-up truck riding over anti-symmetric road 
bumps, as depicted in Fig.  9(a). The analysis illustrates the capability of 
the PDD-NARX method to efficiently handle high-dimensional UQ in a 
real-world engineering scenario, showcasing its potential for addressing 
complex, large-scale problems.
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Fig. 7. Second-moment statistics of 𝑦1(𝑡;𝐗) calculated by various methods for the car model; (a) mean; (b) standard deviation.

Fig. 8. Probability density functions of the sprung mass displacement of the car model calculated by various methods; (a) 𝑦1(5;𝐗); (b) 𝑦1(30;𝐗); (c) max0≤𝑡≤30 |𝑦1(𝑡;𝐗)|.

Probabilistic Engineering Mechanics 80 (2025) 103776 

13 



M. Ebadollahi and S. Rahman

Fig. 9. A Chevrolet pick-up truck; (a) truck riding over anti-symmetric bumps; (b) FEA discretization with nearly 55,000 elements; (c) anti-symmetric road bumps.
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7.1. Finite element analysis

A well-known commercial code for finite element analysis (FEA), 
named ABAQUS (Version 2024) [29], was utilized to discretize the 
truck geometry using approximately 55,000 elements. The FEA model, 
displayed in Fig.  9(b), consists of various parts, such as the cabin, truck 
bed, doors, and other components, which are meshed with shell ele-
ments, three-dimensional beam elements, and three-dimensional solid 
elements. The parts are connected using connector elements, coupling 
elements, and multi-point constraints. Additional details of FEA model-
ing and simulation are available in ‘‘Section 3.2.2 Substructure Analysis 
of a Pick-up Truck Model’’ of the ABAQUS Example manual [29].

The dynamic analysis involves the pick-up truck driving over anti-
symmetric road bumps. The bumps consist of two random geometric 
parameters: bump height ℎ𝑏 and bump length 𝑙𝑏, as sketched schemati-
cally in Fig.  9(c). The height of the bump varies spatially according to a 
nearly Gaussian distribution along its length. The system includes two 
such bumps in an anti-symmetric arrangement, where one of the bumps 
is inverted, as displayed in Fig.  9(c). For dynamic analysis, only anti-
symmetric road bumps were considered in this work. This configuration 
is commonly used to evaluate the vehicle’s response to the applied 
forces from the road bumps in the automotive industry.

The substructure capability of ABAQUS was employed to efficiently 
simulate the vehicle-dynamics of the truck model as it traverses over 
road bumps. The truck was loaded statically by gravity first, and then 
accelerated (5 m/s2) to the desired velocity of 8 m/s on a flat road. 
Once the cruise velocity was achieved, the truck model was run over 
anti-symmetric bumps.

7.2. Material properties

The materials used in the FEA truck model include steel, plastic, 
glass, rubber, rubber–metal composite, and foam for representing a 
wide variety of parts. Their mechanical behavior is either elastic or 
elastic–plastic. A detailed description of these materials and their prop-
erties is too extensive to be included here, but they can be found in 
Tables 3.2.1–1 and 3.2.1–2 of the ABAQUS Example manual available 
in the open literature [29].

Fig.  10 provides a color-coded breakdown of the six major different 
material types utilized in the truck model. Types 1, 2, 4, and 6 are 
made of steel, while Types 3 and 5 are made of plastic and rubber, 
respectively. For the 𝑘th material type (𝑘 = 1,… , 6), the Young’s 
modulus, Poisson’s ratio, and mass density are denoted by 𝐸𝑘, 𝜈𝑘, 
and 𝜌𝑘, respectively. Additionally, the radial stiffness of the tire is 
represented by 𝐾𝑅. In total, 19 material parameters were identified 
as random input in this application. These input material properties 
are critical for accurately simulating the truck’s dynamic behavior and 
analyzing the response to the road bump interactions.

7.3. Input random variables

The input comprises 21 random variables describing two random 
geometric parameters of the road bumps and 19 random material 
properties of the truck and tire, described in the preceding sections. 
The random variables follow independent truncated Gaussian distribu-
tions. Their respective means, coefficients of variations, and bounds are 
provided in Table  4. For all material properties, including the tire’s 
radial stiffness, the probability distribution is defined with a lower limit 
𝑎𝑖 = 0.8𝜇𝑖, an upper limit 𝑏𝑖 = 1.2𝜇𝑖, where 𝜇𝑖 is the mean value of 
the variable from Table  4, and a 10 percent coefficient of variation. 
For the bump height and bump length, the probability distribution is 
characterized by a lower limit of 𝑎𝑖 = 0.7𝜇𝑖, an upper limit of 𝑏𝑖 =
1.3𝜇𝑖, and a 20 percent coefficient of variation. These constraints ensure 
that the random variables remain within physically meaningful bounds 
while capturing the inherent uncertainties in the system parameters.
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Table 4
Mean, coefficient of variation, and bounds of 21 input random variables in the pick-up 
truck model.
 𝑖 Random variable Mean (𝜇𝑖) Coefficient of 

variation (%)
Bounds  

 1 𝐸1, MPa 210,000 10 [0.8𝜇1,1.2𝜇1]  
 2 𝐸2, MPa 210,000 10 [0.8𝜇2,1.2𝜇2]  
 3 𝐸3, MPa 3400 10 [0.8𝜇3,1.2𝜇3]  
 4 𝐸4, MPa 210,000 10 [0.8𝜇4,1.2𝜇4]  
 5 𝐸5, MPa 246,000 10 [0.8𝜇5,1.2𝜇5]  
 6 𝐸6, MPa 210,000 10 [0.8𝜇6,1.2𝜇6]  
 7 𝜈1 0.3 10 [0.8𝜇7,1.2𝜇7]  
 8 𝜈2 0.3 10 [0.8𝜇8,1.2𝜇8]  
 9 𝜈3 0.3 10 [0.8𝜇9,1.2𝜇9]  
 10 𝜈4 0.3 10 [0.8𝜇10,1.2𝜇10] 
 11 𝜈5 0.323 10 [0.8𝜇11,1.2𝜇11] 
 12 𝜈6 0.3 10 [0.8𝜇12,1.2𝜇12] 
 13 𝜌1, kg∕m3 7890 10 [0.8𝜇13,1.2𝜇13] 
 14 𝜌2, kg∕m3 7890 10 [0.8𝜇14,1.2𝜇14] 
 15 𝜌3, kg∕m3 1100 10 [0.8𝜇15,1.2𝜇15] 
 16 𝜌4, kg∕m3 7890 10 [0.8𝜇16,1.2𝜇16] 
 17 𝜌5, kg∕m3 8060 10 [0.8𝜇17,1.2𝜇17] 
 18 𝜌6, kg∕m3 7890 10 [0.8𝜇18,1.2𝜇18] 
 19 𝐾𝑅, N/mm 600 10 [0.8𝜇19,1.2𝜇19] 
 20 ℎ𝑏, mm 200 20 [0.7𝜇20,1.3𝜇20] 
 21 𝑙𝑏, mm 5000 20 [0.7𝜇21,1.3𝜇21] 
Note: 𝐸𝑘 = Young’s modulus of 𝑘th material; 𝜈𝑘 = Poisson’s ratio of 𝑘th material; 𝜌𝑘
= mass density of 𝑘th material; 𝐾𝑅 = radial stiffness of tire; ℎ𝑏 = bump height; 𝑙𝑏 = 
bump length.

7.4. Results and discussion

The primary objective of this application is to compute the vehicle 
body motion angles or rotations, which serve as key indicators of the 
truck’s dynamic behavior. There are three such angles or rotations: roll, 
pitch, and yaw, as schematically depicted in Fig.  9(a). Therefore, 𝑦(𝑡;𝐗)
in this work represents any one of these three motion angles at the 
vehicle’s center of gravity (CG).

The NARX and PDD parameters used in this application are also 
defined in Table  1. All sample time histories of 𝑦(𝑡;𝐗) were generated by 
direct numerical simulation from ABAQUS. Using a high-performance 
desktop personal computer, each run of the ABAQUS substructure 
analysis took approximately an hour of CPU time. Consequently, gener-
ating 300 time histories from ABAQUS simulations required more than 
12 days of computational time. In this work, 86 or 128 samples of 
these time histories were used to build the PDD-NARX approximations. 
Due to the high computational expense of the large-scale simulation, 
only 𝐿𝑀𝐶𝑆 = 300 samples were used to estimate the second-moment 
statistics by MCS.

7.4.1. Deterministic analysis
In order to evaluate the accuracy of constructing the NARX model 

function, the roll, pitch, and yaw at the truck’s CG were investigated 
under a deterministic condition where all 21 input variables were 
assigned their mean values, as listed in Table  4. In this case, there is 
no variability in the system parameters, and the PDD-NARX method 
simplifies to a deterministic NARX model. For this deterministic input, 
two sets of the time histories of roll, pitch, and yaw were calculated 
using (1) the combined dimension-wise tensor product expansion and 
basis reduction procedure developed in this work; and (2) direct numer-
ical simulation from the ABAQUS substructure analysis. A comparison 
between these two time histories in Fig.  11(a), Fig.  11(b), and Fig. 
11(c), obtained separately for roll, pitch, and yaw, indicate excellent 
agreement between the two respective solutions. The high accuracy 
of the proposed dimension-wise tensor product expansion with basis 
reduction provides confidence on the fidelity of subsequent statistical 
analysis, to be presented next.
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Fig. 10. Material distribution in the pick-up truck; (a) isometric view; (b) bottom view; (c) side and interior view; (d) color legends for six material types.
Table 5
Basis functions of NARX in the pick-up truck model.
 𝛼0 𝑖 Basis function [𝛷𝑖(𝐳(𝑡𝑗 ;𝐗))] Importance 

rank for 
rolla

Importance 
rank for 
pitcha

 

 

10−8

1 1 15 15  
 2 𝑦(𝑡𝑗 − 𝛥𝑡;𝐗) 11 12  
 3 𝑦(𝑡𝑗 − 2𝛥𝑡;𝐗) 12 11  
 4 𝑦(𝑡𝑗 − 3𝛥𝑡;𝐗) 14 13  
 5 𝑦(𝑡𝑗 − 4𝛥𝑡;𝐗) 13 14  
 6 𝑦2(𝑡𝑗 − 𝛥𝑡;𝐗) 9 9  
 7 𝑦2(𝑡𝑗 − 2𝛥𝑡;𝐗) 5 3  
 8 𝑦2(𝑡𝑗 − 3𝛥𝑡;𝐗) 2 2  
 9 𝑦2(𝑡𝑗 − 4𝛥𝑡;𝐗) 10 10  
 10 𝑦(𝑡𝑗 − 𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 2𝛥𝑡;𝐗) 7 4  
 11 𝑦(𝑡𝑗 − 𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 3𝛥𝑡;𝐗) 6 7  
 12 𝑦(𝑡𝑗 − 𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 4𝛥𝑡;𝐗) 8 8  
 13 𝑦(𝑡𝑗 − 2𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 3𝛥𝑡;𝐗) 1 1  
 14 𝑦(𝑡𝑗 − 2𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 4𝛥𝑡;𝐗) 3 6  
 15 𝑦(𝑡𝑗 − 3𝛥𝑡;𝐗)𝑦(𝑡𝑗 − 4𝛥𝑡;𝐗) 4 5  
a Ranking index varies from 1 (highest) to 15 (lowest).

7.4.2. Statistical analysis
Due to uncertain bump geometry and material properties of the 

truck, a more realistic evaluation of roll and pitch requires calculating 
their statistical characteristics. To do so, the NARX model function has 
to be built first. Using 100 samples of 𝑦(𝑡;𝐗), the NARX model function 
was constructed using the dimension-wise tensor product expansion 
and basis reduction with the chosen threshold parameter 𝛼0 = 10−8. The 
second column of Table  5 lists 15 basis functions of NARX retained and 
used for subsequent probabilistic analysis by PDD-NARX. The third and 
fourth columns of Table  5 provide the rankings of these basis functions 
by comparing the importance factors for roll and pitch, respectively. It 
is interesting to note that the most important basis function of NARX 
stems from an interactive term (13th basis), which is not necessarily 
intuitive and hence cannot be ascertained a priori.
16 
Given that the yaw angle is small and less oscillatory in this applica-
tion, the statistical analysis was focused on roll and pitch angles only. 
Figs.  12 and 13 present the second-moment statistics, such as means 
and standard deviations, of roll and pitch at truck’s CG as a function of 
time, obtained using two variants of the PDD-NARX: (1) a univariate, 
second-order (𝑆 = 1, 𝑚 = 2) PDD-NARX approximation built from 86 
samples of time histories; and (2) a univariate, third-order PDD-NARX 
(𝑆 = 1, 𝑚 = 3) approximation constructed from 128 samples of time 
histories. The results of both variants of the PDD-NARX are practically 
coincident, meaning that the second-order approximation is sufficient, 
at least for this application. Comparing these PDD-NARX solutions 
and MCS-generated statistics in these two aforementioned figures, the 
agreement among them is excellent. Therefore, the PDD-NARX method 
– especially, the univariate, second-order approximation – developed in 
this work is capable of solving high-dimensional, complex engineering 
problems at the cost of less than a hundred numerical simulations.

8. Future work

While the paper provides a practical approach for conducting time-
dependent UQ analysis, there are still a few open questions. First, 
the input random variables, assumed to be independently distributed 
in this work, should allow for correlated or dependent probability 
distributions in solving a broader class of problems. In which case, a 
generalized version of PDD, preferably employing measure-consistent 
multivariate orthogonal polynomials, will have to be developed.

Second, there is a need to establish an adaptive version of PDD-
NARX, where a truncated set of basis is selected optimally based on 
a specified error tolerated by the resulting approximation. By doing 
so, the requirement for arbitrarily deciding on the degree of inter-
action and order of NARX or PDD approximation is avoided. These 
improvements are subjects of active research by the authors.
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Fig. 11. Angular rotations at the truck’s center of gravity for deterministic input parameters; (a) roll; (b) pitch; (c) yaw.

Fig. 12. Second-moment statistics of roll at truck’s center of gravity; (a) mean; (b) standard deviation.
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Fig. 13. Second-moment statistics of pitch at truck’s center of gravity; (a) mean; (b) standard deviation.
9. Conclusion

A novel computational methodology, referred to as PDD-NARX, was 
developed for general time-dependent UQ analysis of complex dynam-
ical systems. This method is applicable to both linear and nonlinear 
dynamical systems, and is distinguished by two key features that are 
attributed to the NARX and PDD components independently.

First, a dimension-wise tensor product expansion, coupled with a 
four-step algorithm for basis reduction, was established for the stochas-
tic adaptation of the NARX model, enabling it to effectively capture 
the behavior of the dynamical system. Rather than relying on ad 
hoc or intuitive selection methods, the proposed approach offers an 
efficient, systematic strategy for identifying the necessary NARX basis 
functions. Second, the PDD approximation was exploited to retain 
low-dimensional interactions among input random variables, which is 
crucial for efficiently transmitting input uncertainty to the random 
NARX coefficients. This process effectively decelerates the growth in 
the number of PDD basis functions, which typically scale exponentially, 
by making their expansion scale polynomially instead. Specifically, if a 
univariate or bivariate PDD approximation is sufficient, the resulting 
computational complexity becomes linear or quadratic, mitigating the 
curse of dimensionality to a great extent. As a result, the PDD-NARX 
method is well-suited for solving high-dimensional, time-dependent UQ 
problems often encountered in industrial-scale applications.

Numerical results derived from the statistical moment analysis of a 
stochastic ODE demonstrate that the PDD-NARX approximation outper-
forms both time-frozen PCE and time-dependent PCE solutions in terms 
of approximation quality. Moreover, the time histories of the means 
and standard deviations of dynamic responses from a two-degree-of-
freedom car model, including their probability distributions at discrete 
time instances, reveal that PDD-NARX achieves accuracy comparable 
to PCE-NARX while being significantly more computationally efficient 
— up to nearly six times faster. Lastly, the successful execution of a 
21-dimensional UQ analysis for a 55,000-element pick-up truck further 
demonstrates the practicality and scalability of the PDD-NARX method 
for solving complex, large-scale engineering problems.
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