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Abstract

This paper presents a new continuum shape sensitivity method for calculating the mixed-mode stress-intensity fac-

tors of a stationary crack in two-dimensional, linear-elastic, orthotropic functionally graded materials with arbitrary

geometry. The method involves the material derivative concept taken from continuum mechanics, the mutual potential

energy release rate, and direct differentiation. Since the governing variational equation is differentiated prior to discret-

ization, resulting sensitivity equations are independent of approximate numerical techniques, such as the finite element

method, boundary element method, mesh-free method, or others. The discrete form of the mutual potential energy

release rate is simple and easy to calculate, as it only requires multiplication of displacement vectors and stiffness sen-

sitivity matrices. By judiciously selecting the velocity field, the method only requires displacement response in a subdo-

main close to the crack tip, thus making the method computationally efficient. Three finite-element based numerical

examples, which comprise mode-I and mixed-mode deformations, are presented to evaluate the accuracy of the fracture

parameters calculated by the proposed method. Comparisons have been made between stress-intensity factors predicted

by the proposed method and available reference solutions in the literature, generated either analytically or numerically

using various other fracture integrals or analyses. Excellent agreement is obtained between the results of the proposed

method and previously obtained solutions. Therefore, shape sensitivity analysis provides an attractive alternative to

fracture analysis of cracks in homogeneous and non-homogeneous orthotropic materials.
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1. Introduction

Functionally graded materials (FGMs) that

possess a nonuniform microstructure with contin-

uously graded mechanical/thermal macro proper-
ties are essentially multi-phase particulate

composites engineered to meet a predetermined

functional performance such that the volume frac-

tion of constituent materials vary smoothly (Sur-

esh and Mortensen, 1998; Erdogan, 1995). Given

the nature of processing techniques, graded mate-

rials can become anisotropic. For example, graded

materials processed by a plasma spray technique
generally have a lamellar structure (Sampath

et al., 1995), whereas processing by electron beam

physical vapor deposition would lead to a highly

columnar structure (Kaysser and Ilschner, 1995).

Such materials would not be isotropic, but ortho-

tropic, with material directions that can be consid-

ered perpendicular to one another in an initial

approximation. In recent years, various theoreti-
cal, computational, and experimental studies have

been conducted to understand the fracture behav-

ior of FGMs. A collection of technical papers,

published in Volume 69, Issues 14–16 of (Paulino,

2002) Engineering Fracture Mechanics reflects such

state-of-the-art research into FGM fracture. A

major component of such studies involves calculat-

ing crack-driving forces in FGMs accurately and
efficiently. Consequently, various numerical meth-

ods have been developed or examined to calculate

stress-intensity factors (SIFs), such as the displace-

ment correlation method and the modified crack-

closure integral method (Kim and Paulino, 2002).

Recently, Rao and Rahman (2003a,b) developed

two new interaction integrals for the mixed-mode

fracture analysis of cracks in both isotropic and
orthotropic FGMs. In contrast to existing meth-

ods, it is not necessary to perform integration

along the crack face of the discontinuity. Hence,

the interaction integral method is simpler and

more efficient than previously developed methods.

Nevertheless, the majority of current numerical

methods for orthotropic FGM fracture analysis

stem from extensions to methods originally devel-
oped for cracks in homogeneous orthotropic

materials.
An alternative approach to previously devel-

oped methods involves shape sensitivity analysis,

which is frequently employed in structural design

optimization. Shape sensitivity analysis permits

direct, analytical evaluation of first-order (and
higher-order, if required) derivatives of potential

energy with respect to crack size. Broadly speak-

ing, there are two fundamentally different

approaches to shape sensitivity analysis. The first,

known as the discrete approach, employs a discret-

ized numerical model (e.g., finite element method

[FEM], boundary element method [BEM], mesh-

free method, etc.) to approximate the potential
energy and then transforms shape derivatives into

differentiations of algebraic equations by control-

ling node motions. The second, known as the con-

tinuum approach and adopted in the present work,

relies on the variational formulation used in con-

tinuum mechanics (Gurtin, 1981). In the latter

approach, shape sensitivity analysis is conducted

by introducing a smooth velocity field to simu-
late shape change of the initial domain due to

the crack advance. While discrete and continuum

approaches are related (the former is an approxi-

mation of the latter), the continuum approach

has two principal advantages: (1) a rigorous math-

ematical theory is obtained, without the uncer-

tainty/errors associated with finite-dimensional

approximation errors; and (2) explicit relations
for sensitivity are obtained in terms of physical

quantities rather than in terms of sums of deriva-

tives of element matrices. These characteristic fea-

tures of the continuum approach are of major

importance in developing structural optimization

theory (Céa, 1981; Haug et al., 1986).

For homogeneous materials, several shape sen-

sitivity methods involving discrete (Fuenmayor
et al., 1997; Hwang et al., 1998; Giner et al., 2002)

and continuum (Feijóo et al., 2000; Taroco, 2000;

Lee and Grosse, 1993; Bonnet, 2001) formulations

have appeared in calculating SIFs. Both FEM and

BEM have been employed for the shape sensitivity

analysis of cracks. Most of these investigations are

applicable only to linear-elastic fracture-mechanics

problems. More recently, continuum shape sensi-
tivity methods have also been developed for pre-

dicting first-order sensitivities of mixed-mode
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SIFs for isotropic materials (Chen et al., 2002,

2001a,b). These analytical sensitivities of SIFs

provide a convenient means by which subsequent

fracture reliability analysis can be performed accu-

rately and efficiently. However, all of the aforemen-
tioned shape sensitivity methods are strictly

applicable to homogeneous materials. As a result,

there is considerable interest in developing shape

sensitivity methods for the numerical evaluation

of crack-driving forces in FGM. With this need in

mind, the authors recently developed a continuum

shape sensitivity method for calculating mixed-

mode SIFs for a stationary crack in two-dimen-
sional, linear-elastic, isotropic FGMs of arbitrary

geometry (Rao and Rahman, submitted for publi-

cation). The main objective of present work is to

extend that continuum shape sensitivity method

for the numerical evaluation of crack-driving

forces in orthotropic FGMs.

This paper presents a continuum shape sensitiv-

ity method for calculating mixed-mode SIFs for a
stationary crack in two-dimensional, linear-elastic,

orthotropic FGMs of arbitrary geometry. The

method involves using the material derivative con-

cept from continuum mechanics, the mutual

potential energy release rate, and direct differenti-

ation. Since the governing variational equation is

differentiated prior to discretization, resulting sen-

sitivity equations are independent of approximate
numerical techniques, such as FEM, BEM, the

mesh-free method, or others. Three numerical

examples in conjunction with FEM are presented

to evaluate the accuracy of fracture parameters

calculated by the proposed method. Comparisons

have been made between the SIFs predicted by

the proposed method and available reference solu-

tions in the literature, generated either analytically
or numerically using various other fracture inte-

grals or analyses.
Fig. 1. A crack in an orthotropic functionally graded material.
2. Crack tip fields in FGM

Consider a plane problem in rectilinear aniso-

tropic elasticity. The generalized Hooke�s law for
stress–strain relationship is given by
ei ¼
X6
j¼1

aijrj; i; j ¼ 1; 2; . . . ; 6; ð1Þ

where the compliance coefficients aij, with aij = aji,

are contracted notations of the compliance tensor

Sijkl and

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33;

e4 ¼ 2e23; e5 ¼ 2e13; e6 ¼ 2e12;

r1 ¼ r11; r2 ¼ r22; r3 ¼ r33;

r4 ¼ r23; r5 ¼ r13; r6 ¼ r12:

ð2Þ

The compliance coefficients in Eq. (2) are aij,

i, j = 1, 2, 6, for plane stress conditions, and the

aij coefficients are exchanged with bij where

bij ¼ aij � ai2aj3
a33

, i, j = 1, 2, 6, for plane strain

conditions.
Fig. 1 shows a crack tip that is referred to the

Cartesian coordinate system in orthotropic FGMs.

Two-dimensional anisotropic elasticity problems

can be formulated in terms of the analytic func-

tions /j(zj) of the complex variable zj = xj + iyj
( j = 1, 2), where

xj ¼ xþ ajy; yj ¼ bjy ðj ¼ 1; 2Þ: ð3Þ

The parameters aj and bj are the real and imagi-

nary parts of lj = aj + ibj, which can be determined

from (Lekhnitskii et al., 1986)
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a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26l þ a22 ¼ 0:

ð4Þ
The roots lj are always either complex or purely

imaginary in conjugate pairs as l1, �l1, l2, and
�l2. Hence, the linear-elastic singular stress field

near the crack tip can be obtained as (Shih et al.,

1965)

r11 ¼
KIffiffiffiffiffiffiffi
2pr

p Re
l1l2

l1 � l2

l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p
 "

� l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p
!#

þ KIIffiffiffiffiffiffiffi
2pr

p Re
1

l1 � l2

l2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ l2 sin h
p
 "

� l2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h þ l1 sin h
p

!#
; ð5Þ

r22 ¼
KIffiffiffiffiffiffiffi
2pr

p Re
1

l1 � l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p
 "

� l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p
!#

þ KIIffiffiffiffiffiffiffi
2pr

p Re
1

l1 � l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p
 "

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p
!#

; ð6Þ

r12 ¼
KIffiffiffiffiffiffiffi
2pr

p Re
l1l2

l1 � l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p
 "

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p
!#

þ KIIffiffiffiffiffiffiffi
2pr

p Re
1

l1 � l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p
 "

� l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p
!#

: ð7Þ

The near tip displacement field z = {z1, z2}
T can be

obtained as (Shih et al., 1965)
z1 ¼ KI

ffiffiffiffiffi
2r
p

r
Re

1

l1 � l2

l1p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p	


�l2p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p ��

þ KII

ffiffiffiffiffi
2r
p

r
Re

1

l1 � l2

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p	


�p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p ��
; ð8Þ

and

z2 ¼ KI

ffiffiffiffiffi
2r
p

r
Re

1

l1 � l2

l1q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p	


�l2q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l1 sin h

p ��

þ KII

ffiffiffiffiffi
2r
p

r
Re

1

l1 � l2

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p	


�q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ l2 sin h

p ��
: ð9Þ

In Eqs. (5)–(9), l1 and l2 denote the crack-tip

parameters calculated as the roots of Eq. (4),

which are taken such that bj > 0 (j = 1, 2), and pj
and qj are given by

pj ¼ a11l2
j þ a12 � a16lj; ð10Þ

qj ¼ a12lj þ
a22
lj

� a26: ð11Þ

Even though the material gradient does not influ-

ence the square-root singularity or the singular

stress distribution, the material gradient does affect

the SIFs. Hence, the fracture parameters are func-

tions of the material gradients, external loading,

and geometry.
3. Shape sensitivity analysis

3.1. Velocity field

Consider a general three-dimensional body with

a specific configuration, referred to as the initial

(reference) configuration, with domain X, bound-
ary C, and a body material point identified by

position vector x 2 X. Consider the motion of

the body from an initial configuration with do-

main X and boundary C into a perturbed configu-
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ration with domain Xs and boundary Cs, as shown

in Fig. 2. This process can be expressed as

T : x ! xs; x 2 X; ð12Þ
where xs is the position vector of the material

point in the perturbed configuration, T is a trans-

formation mapping, and s 2 Rþ is a scalar, ficti-
tious, time-like parameter denoting the amount

of shape change, with

xs ¼ Tðx; sÞ;
Xs ¼ TðX; sÞ;
Cs ¼ TðC; sÞ:

ð13Þ

A velocity field can then be defined as

vðxs; sÞ 	
dxs

ds
¼ dTðx; sÞ

ds
¼ oTðx; sÞ

os
: ð14Þ

In the neighborhood of the initial time s = 0,

assuming a regularity hypothesis and ignoring

high-order terms,

xs ¼ Tðx; sÞ ¼ Tðx; 0Þ þ s
oTðx; 0Þ

os
þOðs2Þ

ffi xþ svðx; 0Þ; ð15Þ

where x = T(x, 0). For the rest of this paper, the
velocity field v(x, 0) will be denoted by V(x) or

V. Thus, a velocity field characterizes the direction

of domain variation, which implies that for a given

V(x), the shape change of X is uniquely controlled

by the scalar parameter s.

3.2. Sensitivity analysis

The variational governing equation for a linear-

elastic, non-homogeneous or homogeneous ortho-

tropic solid with domain X can be formulated as

(Haug et al., 1986)
aXðz;�zÞ ¼ ‘Xð�zÞ for all �z 2 Z; ð16Þ
where z and �z are the actual and virtual displace-
ment fields of the structure, respectively, Z is the

space of kinematically admissible virtual displace-

ments, and aXðz;�zÞ and ‘Xð�zÞ are energy bilinear

and load linear forms, respectively. The subscript

X in Eq. (16) is used to indicate the dependency

of the governing equation on the shape of the

structural domain. If zs(xs) represents the displace-

ment at xs = x + sV(x) of the perturbed domain,
the pointwise material derivative at x 2 X is de-

fined as (Haug et al., 1986)

_zðxÞ 	 lim
s!0

zsðxþ sVðxÞÞ � zðxÞ
s


 �
¼ z0ðxÞ þ $zTVðxÞ; ð17Þ

where

z0 ¼ lim
s!0

zsðxÞ � zðxÞ
s


 �
ð18Þ

is the partial derivative of z and $ = {o/ox1, o/ox2,

o/ox3}
T is the vector of gradient operators.

If no body forces are involved, the variational

equation (Eq. (16)) can be written as

aXðz;�zÞ 	
Z

X
rijðzÞeijð�zÞdX ¼ ‘Xð�zÞ

	
Z

X
T i�zi dC; ð19Þ

where rij(z) and eijð�zÞ are components of the stress

and strain tensors of the displacement z and virtual
displacement �z, respectively, Ti is the ith compo-

nent of the surface traction, and �zi is the ith com-

ponent of �z. Taking the material derivative of both

sides of Eq. (19), it can be shown that (Haug et al.,

1986)

aXð _z;�zÞ ¼ ‘0Vð�zÞ � a0Vðz;�zÞ 8�z 2 Z; ð20Þ
where the subscript V indicates the dependency of

the terms on the velocity field. The terms ‘0Vð�zÞ and
a0Vðz;�zÞ can be further derived as (Haug et al.,

1986)

‘0Vð�zÞ ¼
Z

C
f�T ið�zi;jV jÞ þ ½ðT i�ziÞ;jnj

þ jCðT i�ziÞ�ðV iniÞgdC ð21Þ
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and

a0Vðz;�zÞ ¼ �
Z

X
eijðzÞDijklðxÞð�zk;mV m;lÞ
�

þeijð�zÞDijklðxÞðzk;mV m;lÞ
�eijð�zÞDijkl;mðxÞeklðzÞV m

�eijðzÞDijklðxÞeklð�zÞdivV
�
dX; ð22Þ

where ni is the ith component of unit normal vec-

tor n, jC is the curvature of the boundary, zi,j =
ozi/oxj, �zi;j ¼ o�zi=oxj, Vi,j = oVi/oxj, Dijkl(x) is a

component of the constitutive tensor given by

DijklðxÞ ¼ S�1
ijklðxÞ and Dijkl,m(x) = oDijkl(x)/oxm.

Notice that the third term in the integrand on

the right-hand side of Eq. (22) arises naturally in

the formulation of continuum shape sensitivity

analysis for non-homogeneous orthotropic materi-

als, but vanishes for homogeneous orthotropic
materials. Also, Dijkl is constant for a homoge-

neous orthotropic material.
4. Shape sensitivity method for fracture analysis

In this section, continuum shape sensitivity

method for homogeneous orthotropic materials is
briefly summarized, and then it is extended for

cracks in orthotropic FGM, which is the main

objective of present work. The study of orthotro-

pic FGM should enhance the understanding of

a fracture in a generic material, since upon shrink-

ing, the gradient layer in FGM is expected to

behave like a sharp interface, and upon expansion

the fracture behavior would be analogous to that
of a homogeneous orthotropic material.

4.1. Homogeneous materials

Consider an arbitrary, two-dimensional cracked

body of crack length a, with unit thickness sub-

jected to an arbitrary loading. The total potential

energy P of the system in the absence of body
forces is

P 	 1

2

Z
X

eijðzÞDijkleklðzÞdX �
Z

C
T izi dC; ð23Þ

where, for two-dimensional linear elastic material

models, Dijkl, are the components of the constant

elasticity matrix.
By substituting �z with z in Eq. (19) and by using

Eq. (23), the following is produced:

P ¼ �1
2
aXðz; zÞ: ð24Þ

The energy release rate is equal to the derivative of

potential energy with respect to the crack area. For

a two-dimensional cracked structure with unit

thickness, the crack area is equal to crack length

a. Assuming crack length a to be the variable of

interest, a change in crack area or crack length

involves a change in the shape of the cracked con-
tinuum. In relation to shape sensitivity theory,

such a change implies that the energy release rate

is equal to the material derivative of potential en-

ergy. Hence, for elastic (linear or nonlinear) solids

under mixed-mode loading conditions, the J-inte-

gral, which is equal to the energy release rate,

can be derived as

J 	 � _P ¼ 1
2
½aXð _z; zÞ þ aXðz; _zÞ þ a0Vðz; zÞ�; ð25Þ

where the overdot indicates a material deriva-

tive. If (1) velocity field V(x) is defined such

that traction-loading boundary C is fixed, i.e.,
V(x) = 0 on the traction-loading boundary C;
and (2) �z is replaced with z in Eq. (20), noting that

aXð _z; zÞ ¼ aXðz; _zÞ ¼ �a0Vðz; zÞ, then
J ¼ �1

2
a0Vðz; zÞ: ð26Þ

Substituting the expression of a0Vðz; zÞ from Eq.
(22) and noting that Dijkl is constant for homoge-

neous materials (Dijkl,m = 0) gives

J ¼ 1

2

Z
X
½rijðzÞðzi;kV k;jÞ þ rijðzÞðzi;kV k;jÞ

� rijðzÞeijðzÞdivV �dX: ð27Þ

Defining W = rijeij/2 as the strain energy density
and V(x) = {V1(x), 0}

T as the velocity field, with

V1 (x) having a value of unity at the crack tip, zero

along the boundary of the domain, and arbitrary

elsewhere, the following is produced:

J ¼
Z

X
rij

ozi
oxi

� W d1j

� �
oV 1

oxj
dX ð28Þ

which is the same as the traditional domain form

of the J-integral, with V1 taking the place of weight

function q. Hence, weight function q can be consid-
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ered the virtual change in crack length, having a

value of unity at the crack tip, zero along the

boundary of the domain, and arbitrary elsewhere.

Now, consider two independent equilibrium

states of the cracked body. Let state 1 correspond
to the actual state for given boundary conditions,

and let state 2 correspond to an auxiliary state,

which can be either mode-I or mode-II near crack

tip displacement and stress fields for homogeneous

materials (Rao and Rahman, 2003a,b). Superposi-

tion of these two states leads to another equilib-

rium state (state S) for which the total potential

energy P(S) is

PðSÞ ¼ 1

2
�
Z

X
eijðzð1Þ þ zð2ÞÞDijkleklðzð1Þ þ zð2ÞÞdX

�
Z

C
ðT ð1Þ

i þ T ð2Þ
i Þðzð1Þi þ zð2Þi ÞdC; ð29Þ

where zð1Þi , T ð1Þ
i are the components of displace-

ment and external force vectors, respectively, of
the actual state for given boundary conditions,

and zð2Þi , T ð2Þ
i are the components of displace-

ment and external force vectors, respectively, of

the auxiliary state. By using the divergence

theorem,Z
C
ðT ð1Þ

i Þðzð1Þi ÞdC ¼
Z

X
eijðzð1ÞÞDijkleklðzð1ÞÞdX; ð30Þ

Z
C
ðT ð2Þ

i Þðzð2Þi ÞdC ¼
Z

X
eijðzð2ÞÞDijkleklðzð2ÞÞdX; ð31Þ

Z
C
ðT ð1Þ

i Þðzð2Þi ÞdC ¼
Z

X
eijðzð1ÞÞDijkleklðzð2ÞÞdX; ð32Þ

andZ
C
ðT ð2Þ

i Þðzð1Þi ÞdC ¼
Z

X
eijðzð2ÞÞDijkleklðzð1ÞÞdX; ð33Þ

which, when applied to the expanded form of Eq.

(29) yields

PðSÞ ¼ Pð1Þ þ Pð2Þ þ Pð1;2Þ; ð34Þ
where

Pð1Þ ¼ �1
2
aXðzð1Þ; zð1ÞÞ; ð35Þ

Pð2Þ ¼ �1aXðzð2Þ; zð2ÞÞ; ð36Þ

2

and

Pð1;2Þ ¼ �1
2
aXðzð1Þ; zð2ÞÞ � 1

2
aXðzð2Þ; zð1ÞÞ ð37Þ

are various potential energies with

aXðzðiÞ; zðjÞÞ ¼
Z

X
eijðzðiÞÞDijkleklðzðjÞÞdX;

i; j ¼ 1; 2: ð38Þ
Hence, the J-integral for the superposed state,

denoted by J(S), can be obtained as

J ðSÞ 	 � _P
ðSÞ ¼ � _P

ð1Þ � _P
ð2Þ � _P

ð1;2Þ
: ð39Þ

Again, if the velocity field is defined such that

V(x) = 0 on the traction-loading boundary C and

under similar considerations, aXðzðiÞ; zðjÞÞ ¼
aXðzðiÞ; zðjÞÞ ¼ �a0VðzðiÞ; zðjÞÞ; i, j = 1, 2, yielding

J ðSÞ ¼ �1
2
a0Vðzð1Þ; zð1ÞÞ � 1

2
a0Vðzð2Þ; zð2ÞÞ

� 1
2
a0Vðzð1Þ; zð2ÞÞ � 1

2
a0Vðzð2Þ; zð1ÞÞ: ð40Þ

On further expansion, J(S) can be decomposed to

J ðSÞ ¼ J ð1Þ þ J ð2Þ þM ð1;2Þ; ð41Þ
where

J ð1Þ ¼ � _P
ð1Þ ¼ �1

2
a0Vðzð1Þ; zð1ÞÞ ð42Þ

and

J ð2Þ ¼ � _P
ð2Þ ¼ �1

2
a0Vðzð2Þ; zð2ÞÞ ð43Þ

are the J-integrals for states 1 and 2, respectively,
noting that a0Vðzð1Þ; zð2ÞÞ ¼ a0Vðzð2Þ; zð1ÞÞ,

M ð1;2Þ ¼ � _P
ð1;2Þ ¼ �a0Vðzð1Þ; zð2ÞÞ ð44Þ

is the mutual potential energy release rate. By

replacing z, and �z in Eq. (22) with z(1), and z(2)

respectively, and assuming V(x) with V1(x) having

a value of unity at the crack tip, zero along the

boundary of the domain, and arbitrary elsewhere,

the following is obtained:

M ð1;2Þ ¼
Z

X
rijðzð1ÞÞ

ozð2Þi

ox1
þ rijðzð2ÞÞ

ozð1Þi

ox1

"

�W ð1;2Þd1j

#
oV 1

oxj
dX; ð45Þ

where W(1,2) = [rij(z
(1))eij(z

(2)) + rij(z
(2))eij(z

(1))]/2
is the mutual strain energy density. Again, M(1,2)

in Eq. (45) is same as the domain form of the M-

integral (interaction integral) for the mixed-mode
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fracture of homogeneous materials, with V1 taking

the place of weight function q. In fact, various frac-

ture integrals can be derived using shape sensitivity

analysis.

4.2. Functionally graded materials

As with the treatment of homogeneous materi-

als, consider two independent equilibrium states

of an FGM cracked structure. Let state 1 corre-

spond to the actual state for given boundary con-

ditions. Let state 2 correspond to an auxiliary

state, which can be either mode-I or mode-II near
tip displacement and stress fields. Superposition of

these two states leads to another equilibrium state

(state S) for which the total potential energy,

henceforth referred to as ~P
ðSÞ
, is

~P
ðSÞ ¼ 1

2

Z
X

eijðzð1Þ þ zð2ÞÞDijklðxÞeklðzð1Þ þ zð2ÞÞdX

�
Z

C
ðT ð1Þ

i þ T ð2Þ
i Þðzð1Þi þ z

ð2Þ
i ÞdC: ð46Þ

For states 1 and S, Dijkl(x) varies as the function of
spatial location. However, for state 2, which is the

auxiliary state, a different constitutive matrix that

satisfies both equilibrium and compatibility condi-

tions must be defined. For state 2, define a Daux
ijklðxÞ

that can be obtained from the elastic constants

evaluated at the crack tip. The divergence theorem

yieldsZ
C
ðT ð1Þ

i Þðzð1Þi ÞdC ¼
Z

X
eijðzð1ÞÞDijklðxÞeklðzð1ÞÞdX;

ð47ÞZ
C
ðT ð2Þ

i Þðzð2Þi ÞdC ¼
Z

X
eijðzð2ÞÞDijklðxÞeklðzð2ÞÞdX;

ð48ÞZ
C
ðT ð1Þ

i Þðzð2Þi ÞdC ¼
Z

X
eijðzð1ÞÞDijklðxÞeklðzð2ÞÞdX;

ð49Þ
andZ

C
ðT ð2Þ

i Þðzð1Þi ÞdC ¼
Z

X
eijðzð2ÞÞDijklðxÞeklðzð1ÞÞdX;

ð50Þ
which, when applied to the expanded form of Eq.

(46), gives

~P
ðSÞ ¼ ~P

ð1Þ þ ~P
ð2Þ þ ~P

ð1;2Þ
; ð51Þ

where

~P
ð1Þ ¼ �1

2
aXðzð1Þ; zð1ÞÞ; ð52Þ

~P
ð2Þ ¼ �1

2
aauxX ðzð2Þ; zð2ÞÞ; ð53Þ

~P
ð1;2Þ ¼ �aXðzð1Þ; zð2ÞÞ � 1

2
aXðzð2Þ; zð2ÞÞ

þ 1
2
aauxX ðzð2Þ; zð2ÞÞ; ð54Þ

with

aXðzð1Þ; zð2ÞÞ ¼
Z

X
eijðzð1ÞÞDijklðxÞeklðzð2ÞÞdX; ð55Þ

aXðzð2Þ; zð2ÞÞ ¼
Z

X
eijðzð2ÞÞDijklðxÞeklðzð2ÞÞdX; ð56Þ

and

aauxX ðzð2Þ; zð2ÞÞ ¼
Z

X
eijðzð2ÞÞDaux

ijkleklðzð2ÞÞdX: ð57Þ

Hence, the J-integral for the superposed state,

denoted as ~J
ðSÞ
, can be obtained from

~J
ðSÞ 	 � _~P

ðSÞ
¼ � _~P

ð1Þ
� _~P

ð2Þ
� _~P

ð1;2Þ
: ð58Þ

If the velocity field is defined such that V(x) = 0 on
the traction-loading boundary C, then

aXðzð1Þ; zð2ÞÞ ¼ �a0Vðzð1Þ; zð2ÞÞ;

aXðzð2Þ; zð2ÞÞ ¼ �a0Vðzð2Þ; zð2ÞÞ;

and

aauxX ðzð2Þ; zð2ÞÞ ¼ �a0auxV ðzð2Þ; zð2ÞÞ:
Hence, ~J

ðSÞ
can be decomposed into

~J
ðSÞ ¼ ~J

ð1Þ þ ~J
ð2Þ þ ~M

ð1;2Þ
; ð59Þ

in which

~J
ð1Þ ¼ � _~P

ð1Þ
¼ �1

2
a0V ðzð1Þ; zð1ÞÞ; ð60Þ

~J
ð2Þ ¼ � _~P

ð2Þ
¼ �1

2
a0auxV ðzð2Þ; zð2ÞÞ ð61Þ

are the ~J -integrals for states 1 and 2, respectively,

and
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~M
ð1;2Þ ¼ � _~P

ð1;2Þ

¼ �a0V ðzð1Þ; zð2ÞÞ þ 1
2
½a0auxV ðzð2Þ; zð2ÞÞ

� a0V ðzð2Þ; zð2ÞÞ� ð62Þ

is the mutual potential energy release rate, where

a0Vðzð1Þ; zð1ÞÞ ¼ �
Z

X
eijðzð1ÞÞDijklðxÞðzð1Þk;mV m;lÞ
h

þeijðzð1ÞÞDijklðxÞðzð1Þk;mV m;lÞ
�eijðzð1ÞÞDijkl;mðxÞeklðzð1ÞÞV m

�eijðzð1ÞÞDijklðxÞeklðzð1ÞÞdivV
i
dX;

ð63Þ

a0Vðzð1Þ; zð2ÞÞ ¼ �
Z

X
eijðzð1ÞÞDijklðxÞðzð2Þk;mV m;lÞ
h

þeijðzð2ÞÞDijklðxÞðzð1Þk;mV m;lÞ
�eijðzð2ÞÞDijkl;mðxÞeklðzð1ÞÞV m

�eijðzð1ÞÞDijklðxÞeklðzð2ÞÞdivV
i
dX;

ð64Þ

a0auxV ðzð2Þ; zð2ÞÞ ¼ �
Z

X
eijðzð2ÞÞDaux

ijklðxÞðz
ð2Þ
k;mV m;lÞ

h
þeijðzð2ÞÞDaux

ijklðxÞðz
ð2Þ
k;mV m;lÞ

�eijðzð2ÞÞDaux
ijklðxÞeklðzð2ÞÞdivV

i
dX;

ð65Þ

and

a0Vðzð2Þ; zð2ÞÞ ¼ �
Z

X
eijðzð2ÞÞDijklðxÞðzð2Þk;mV m;lÞ
h

þeijðzð2ÞÞDijklðxÞðzð2Þk;mV m;lÞ
�eijðzð2ÞÞDijkl;mðxÞeklðzð2ÞÞV m

�eijðzð2ÞÞDijklðxÞeklðzð2ÞÞdivV
i
dX:

ð66Þ

To evaluate all three terms of ~M
ð1;2Þ

in Eq. (62),

one needs to prescribe an appropriate velocity field

V(x) and auxiliary displacement field z(2); and cal-
culate actual displacement field z(1) for the initial

shape of the cracked body. In other words, a single
stress analysis employing a suitable numerical

method, such as FEM or the mesh-free method,

efficiently evaluates ~J - and ~M-integrals. In contrast
to Eqs. (26) and (44), which lead to existing expres-

sions of J- andM-integrals in homogeneous mate-

rials, respectively, Eq. (62) is new and applicable to

general non-homogeneous materials. When both

the elastic modulus and Poisson�s ratio have no
spatial variation, a0auxV ðzð2Þ; zð2ÞÞ ¼ a0V ðzð2Þ; zð2ÞÞ, the
~J - and ~M-integrals in Eqs. (60)–(62) degenerate

into homogeneous solutions, as expected.

4.3. Stress intensity factors

For linear-elastic solids, the ~J -integral also rep-

resents the energy release rate and, as a result,

~J ¼ a11K2
I þ a12KIKII þ a22K2

II; ð67Þ
where

a11 ¼ � a22
2

Im
l1 þ l2

l1l2

� �
; ð68Þ

a22 ¼
a11
2

Imðl1 þ l2Þ; ð69Þ

and

a12 ¼ � a22
2

Im
1

l1l2

� �
þ a11

2
Imðl1l2Þ: ð70Þ

Regardless of how the auxiliary fields are defined,

when Eq. (67) is applied to states 1, 2, and S, the

following is produced:

~J
ð1Þ ¼ a11K

ð1Þ2
I þ a12K

ð1Þ
I Kð1Þ

II þ a22K
ð1Þ2
II ; ð71Þ

~J
ð2Þ ¼ a11K

ð2Þ2
I þ a12K

ð2Þ
I Kð2Þ

II þ a22K
ð2Þ2
II ; ð72Þ

and

~J
ðSÞ ¼ a11ðKð1Þ

I þ Kð2Þ
I Þ2 þ a12ðKð1Þ

I þ Kð2Þ
I Þ

� ðKð1Þ
II þ Kð2Þ

II Þ þ a22ðKð1Þ
II þ Kð2Þ

II Þ
2

¼ a11K
ð1Þ2
I þ a12K

ð1Þ
I Kð1Þ

II þ a22K
ð1Þ2
II þ a11K

ð2Þ2
I

þ a12K
ð2Þ
I Kð2Þ

II þ a22K
ð2Þ2
II þ 2a11K

ð1Þ
I Kð2Þ

I

þ a12ðKð1Þ
I Kð2Þ

II þ Kð2Þ
I Kð1Þ

II Þ þ 2a22K
ð1Þ
II K

ð2Þ
II

¼ ~J
ð1Þ þ ~J

ð2Þ þ 2a11K
ð1Þ
I Kð2Þ

I þ a12ðKð1Þ
I Kð2Þ

II

þ Kð2Þ
I Kð1Þ

II Þ þ 2a22K
ð1Þ
II K

ð2Þ
II : ð73Þ

By comparing Eqs. (59) and (73), the following can

be obtained:
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~M
ð1;2Þ ¼ 2a11K

ð1Þ
I Kð2Þ

I þ a12ðKð1Þ
I Kð2Þ

II þ Kð2Þ
I Kð1Þ

II Þ
þ 2a22K

ð1Þ
II K

ð2Þ
II : ð74Þ

If a similar procedure is followed and the intensity

of the auxiliary state is judiciously chosen, as pre-

viously discussed, then the SIFs for non-homoge-

neous orthotropic materials can also be derived as

M ð1;IÞ ¼ 2a11K
ð1Þ
I þ a12K

ð1Þ
II ð75Þ

and

M ð1;IIÞ ¼ a12K
ð1Þ
I þ 2a22K

ð1Þ
II ; ð76Þ

where M(1,I) and M(1,II) are the mutual potential

energy release rates for modes I and II, respec-

tively and can be evaluated using Eq. (62). Eqs.
(75) and (76) provide a system of linear algebraic

equations that can be solved for SIFs Kð1Þ
I and

Kð1Þ
II under various mixed-mode loading condi-
B0
I ¼

UI ;1ðxÞV 1;1ðxÞ þ UI ;2ðxÞV 2;1ðxÞ 0

0 UI ;1ðxÞV 1;2ðxÞ þ UI ;2ðxÞV 2;2ðxÞ
UI ;1ðxÞV 1;2ðxÞ þ UI ;2ðxÞV 2;2ðxÞ UI ;1ðxÞV 1;1ðxÞ þ UI ;2ðxÞV 2;1ðxÞ

2
64

3
75; ð81Þ
tions. In general, a numerical method is required

for calculating M(1,I) and M(1,II).
5. Numerical implementation

5.1. Finite element method

Consider a finite element discretization of a

two-dimensional FGM cracked body involving N

number of nodes. Let z
ð1Þ
I 2 R2 and z

ð2Þ
I 2 R2 be

the actual and auxiliary displacement vectors,

respectively, at the Ith node. If dð1Þ ¼ fzð1ÞI g 2
R2N ; I = 1, N and dð2Þ ¼ fzð2ÞI g 2 R2N ; I = 1, N rep-

resent global displacement vectors, the mutual

potential energy release rate can be approximated
by

~M
ð1;2Þ ffi dð1ÞTK 0dð2Þ þ 1

2
dð2ÞTðK 0 � K 0auxÞdð2Þ; ð77Þ
where K 0 ¼ ½k0
IJ � 2 LðR2N � R2NÞ; I, J = 1, N and

K 0aux ¼ ½k0aux
IJ � 2 LðR2N � R2N Þ are two global stiff-

ness sensitivity matrices with k0
IJ 2 LðR2 � R2Þ

and k0aux
IJ 2 LðR2 � R2Þ representing element-level

(domain Xe) sensitivity matrices, given by

k0
IJ ¼

Z
Xe

ðBT
I DðxÞB0

J þ BT
I DðxÞB0

J

� BT
I D

0ðxÞBJ � BT
I DðxÞBJdivVÞdXe; ð78Þ

K 0aux
IJ ¼

Z
Xe

ðBT
I D

auxðxÞB0
J þ BT

I D
auxðxÞB0

J

� BT
I D

auxðxÞBJdivVÞdXe: ð79Þ

In Eqs. (78) and (79),

BIðxÞ ¼
UI;1ðxÞ 0

0 UI ;2ðxÞ
UI;2ðxÞ UI ;1ðxÞ

2
64

3
75; ð80Þ
D0ðxÞ ¼ oDðxÞ
ox1

V 1ðxÞ þ
oDðxÞ
ox2

V 2ðxÞ: ð82Þ

with UI,i(x) serving as the partial derivatives of the

shape function corresponding to the Ith node in

the i direction. Eq. (77) can be viewed as a discrete

analog of the continuum formulation in Eq. (62).

The former involves simple matrix algebra and,

as a result, provides a convenient means for calcu-

lating ~M
ð1;2Þ

.

5.2. Velocity field

Defining the velocity field is an important step

in any continuum shape sensitivity analysis (Choi

and Chang, 1994). For a fracture problem, the

velocity field V(x) is defined with a compact sup-

port Xc, i.e., V(x), is non-zero when x 2 Xc and is
zero when x 2 X � Xc, where Xc � X is an appro-
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Fig. 3. Rosette of focused quarter-point 6-noded triangular elements near the crack tip.
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priately small subdomain around the crack tip (see
Fig. 1). Hence, the domain X in various integrals

(see Eqs. (63)–(66)) can be replaced by the subdo-

main Xc. Specifically, consider a rosette of eight 6-

noded quarter-point elements around a crack tip,

as shown in Fig. 3. These quarter-point elements

are standard finite elements commonly employed

for fracture analysis of linear-elastic bodies. As-

sume that the size of these elements is small
enough that the rosette can be defined as support

Xc. Inside Xc, the velocity field satisfies the follow-

ing conditions: (1) the crack tip is assigned a

velocity of unit magnitude, i.e., Vð0Þ ¼
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

1;tip þ V 2
2;tip

q
ÞfV 1;tip; V 2;tipgT; (2) the velocity

at a point on the boundary Cc of the rosette is zero;
and (3) velocity at any point between boundary Cc
and the crack tip varies linearly. For example, the

velocity V(xi) at the ith node of the quarter-point

elements in Fig. 3 can be defined as
VðxiÞ ¼

0; if i is a node on the outer

ringðopen circlesÞ;
0:75Vð0Þ; if i is a quarter-point node

ðclosed circlesÞ;
Vð0Þ; if i is the crack-tip node

ðclosed circleÞ:

8>>>>>>>><
>>>>>>>>:

ð83Þ
Since the velocity field is zero on and outside the
outer boundary of the quarter point elements,

Eq. (77) reduces to

~M
ð1;2Þ ffi

XM
I ;J¼1

z
ð1ÞT
I K 0

IJz
ð2Þ
J þ1

2

XM
I;J¼1

z
ð2ÞT
I ðK 0

IJ �K 0aux
IJ Þzð2ÞJ ;

ð84Þ
where M is the total number of quarter-point and
crack-tip nodes in a rosette of focused quarter-

point elements near the crack tip, as shown by
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the closed circles in Fig. 3. In other words, dis-

placement response is only required at anM num-

ber of nodes. Since M� N, the effort in

computing ~M
ð1;2Þ

using Eq. (84) is trivial compared

to that required for a complete stress analysis.
Compared with existing methods, the proposed

method has several advantages: (1) the calculation

of SIFs is simple and straightforward as it only

requires multiplication of displacement vectors

and stiffness sensitivity matrices; (2) since Xc is

small and the velocity field outside Xc is zero, the

method only requires displacement response in

Xc, rendering it computationally efficient; (3) the
accuracy of SIF estimates is not affected by a lack

of smooth transition between mesh resolutions in-

side and outside Xc, as demonstrated by numerical

results; and (4) the method is applicable to multi-

ple interacting cracks even if crack tips are close

to one other. Also, in contrast to existing methods,

such as the J �
k-integral method (Paulino, 2002),

there is no need to perform integration along the
crack face of the discontinuity (e.g., in calculating

J �
2). Hence, the proposed method is also simpler

and more efficient than existing methods.
6. Numerical examples

In conjunction with the newly developed shape
sensitivity method, standard FEM was applied to

evaluate the SIFs of rectilinear cracks in two-

dimensional orthotropic FGM structures. Both

single-(mode I) and mixed-mode (modes I and II)

conditions were considered and three examples

are presented. For numerical integration purposes,

a 2 · 2 Gauss quadrature rule was used for all

examples. A plane stress condition and a crack-
tip velocity {V1,tip, V2,tip}

T = {10�5a, 0}T were also

assumed. The results obtained in the current study

were compared with the semi-analytical solutions

by Oztuk and Erdogan (1997, 1999). For compar-

ative purposes, the independent engineering con-

stants, E11, E22, G12, m12, and m21 have been

replaced by stiffness parameter E, a stiffness ratio

d4, an average Poisson�s ratio, and a shear param-
eter j (Oztuk and Erdogan, 1997, 1999), which are

defined as
E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
; d4 ¼ E11

E22

¼ m12
m21

;

m ¼ ffiffiffiffiffiffiffiffiffiffiffi
m12m21

p
; j ¼ E

2G12

� m
ð85Þ

for plane stress, and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E11E22

ð1� m13m31Þð1� m23m32Þ

s
;

d4 ¼ E11

E22

ð1� m23m32Þ
ð1� m13m31Þ

;

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m12 þ m13m32Þðm21 þ m23m31Þ
ð1� m13m31Þð1� m23m32Þ

s
;

j ¼ E
2G12

� m

ð86Þ

for plane strain.

6.1. Example 1: Plate with an interior crack

parallel to material gradation under Mode-I

Consider an orthotropic square plate of dimen-

sions 2L = 2W = 20 units (L/W = 1) with a central
crack of length 2a = 2.0 units, as shown in Fig.

4(a). Both crack-face pressure loading, and fixed

grip loading (under a constant strain) were consid-

ered. The crack runs parallel to the material grada-

tion, and the following material property data

were employed for FEM analysis: E11ðx1Þ ¼
E0
11e

bx1 , E22ðx1Þ ¼ E0
22e

bx1 , G12ðx1Þ ¼ G0
12e

bx1 , where

the average modulus of elasticity Eðx1Þ ¼
E0e

ba
x1
að Þ, with E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

q
. The non-homogene-

ity parameter ba is varied from 0.0 to 1.0. Two dif-

ferent values of the shear parameter j = �0.25 and
5.0 were employed. The average Poisson�s ratio m is
varied between 0.1 and 0.9. The stiffness ratio

d4 = 0.25 was used in FEM analysis.

For crack-face pressure loading, the applied

load corresponds to r22(�1 6 x1 6 1, ±0) = ±r0 =

±1.0 along the top and bottom crack faces; and

for fixed grip loading, the applied load results in

a uniform strain e(x1, x2) = e0 for a corresponding
uncracked plate. The displacement boundary con-

dition is prescribed, such that u1 = u2 = 0 for the

node in the middle of the left edge, and u2 = 0

for the node in the middle of the right edge.

FEM discretization involves 2808 nodes, 864
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Fig. 4. Plate with an interior crack parallel to material

gradation under mode-I: (a) geometry and loads; (b) FEM

discretization (2808 nodes, 864 8-noded quadrilateral elements,

and 32 focused quarter-point 6-noded triangular elements).

Table 1

Normalized stress intensity factors for an orthotropic plate

under uniform crack face pressure loading (j = �0.25)

ba Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p

0.0 1.0108 1.0108 1.0 1.0

0.01 1.0135 1.0081 1.0025 0.9975

0.1 1.0377 0.9837 1.0246 0.9747

0.25 1.0764 0.9426 1.0604 0.9364

0.50 1.1292 0.8709 1.1177 0.8740

0.75 1.1703 0.8023 1.1720 0.8154

1.00 1.2139 0.7443 1.2235 0.7616

1.50 1.3062 0.6506 1.3184 0.6701

2.00 1.3916 0.5773 1.4043 0.5979

Table 2

Normalized stress intensity factors for an orthotropic plate

under uniform crack face pressure loading (j = 5.0)

ba Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p

0.0 1.0338 1.0338 1.0 1.0

0.01 1.0365 1.0310 1.0025 0.9975

0.1 1.0611 1.0062 1.0231 0.9733

0.25 1.0994 0.9628 1.0531 0.9306

0.50 1.1458 0.8840 1.0946 0.8594

0.75 1.1740 0.8066 1.1281 0.7932

1.00 1.1921 0.7375 1.1556 0.7339

1.50 1.2142 0.6277 1.1979 0.6367

2.00 1.2310 0.5493 1.2290 0.5636
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8-noded quadrilateral elements, and 32 focused

quarter-point 6-noded triangular elements in the

vicinity of each crack tip, as shown in Fig. 4(b).

Oztuk and Erdogan (1997) investigated an infi-
nite plate with the same configuration. Obviously,

an FEM model cannot represent the infinite

domains addressed in their analysis, but as long

as the ratios a/W and a/L are kept relatively small

(e.g., a/W = a/L 6 1/10), the approximation is

acceptable. Tables 1 and 2 provide a comparison

between predicted normalized stress intensity fac-

tors KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
and KIð�aÞ=r0

ffiffiffiffiffiffi
pa

p
at both crack

tips for several values of the non-homogeneous
parameter ba, obtained by using the proposed

method, and those of Oztuk and Erdogan (1997).

In Table 1 the shear parameter is j = �0.25,

whereas in Table 2 the shear parameter is

j = 5.0. Numerical results from the proposed

method show that the effect of j on normalized

stress intensity factors is less significant than that

of ba. In addition, the stress intensity factor on
the stiffer side of the medium is always greater than

that on the less stiff side. Tables 3 and 4 provide a

comparison between predicted normalized stress

intensity factors KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
and KIð�aÞ=r0

ffiffiffiffiffiffi
pa

p

under uniform crack face pressure loading at both

crack tips for several values of Poisson�s ratio m,
obtained using the proposed method, and those

of Oztuk and Erdogan (1997) for shear parame-
ter j = 0.5. In Table 3 the non-homogeneous



Table 4

The effect of Poisson�s ratio on the normalized stress intensity

factors for an orthotropic plate under uniform crack face

pressure loading (ba = 1.0, j = 0.5)

m Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p

0.1 1.1509 0.7185 1.1594 0.7354

0.2 1.1661 0.7250 1.1739 0.7413

0.3 1.1806 0.7312 1.1874 0.7468

0.4 1.1943 0.7371 1.2001 0.7520

0.5 1.2073 0.7427 1.2121 0.7569

0.7 1.2318 0.7535 1.2343 0.7661

0.9 1.2556 0.7644 1.2546 0.7746

Table 5

The effect of Poisson�s ratio on the normalized stress intensity

factors for an orthotropic plate under fixed-grip loading e0
(E0 ¼ E0=d

4, ba = 0.5, j = 0.5)

m Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
e0E0

ffiffiffiffi
pa

p KIð�aÞ
e0E0

ffiffiffiffi
pa

p KIðaÞ
e0E0

ffiffiffiffi
pa

p KIð�aÞ
e0E0

ffiffiffiffi
pa

p

0.1 1.4224 0.6650 1.4183 0.6647

0.2 1.4255 0.6669 1.4233 0.6676

0.3 1.4285 0.6687 1.4280 0.6704

0.4 1.4314 0.6705 1.4325 0.6730

0.5 1.4343 0.6723 1.4368 0.6755

0.7 1.4400 0.6757 1.4449 0.6802

0.9 1.4471 0.6798 1.4524 0.6846

Table 6

The effect of Poisson�s ratio on the normalized stress intensity

factors for an orthotropic plate under fixed-grip loading e0
(E0 ¼ E0=d

4, ba = 1.0, j=0.5)

m Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
e0E0

ffiffiffiffi
pa

p KIð�aÞ
e0E0

ffiffiffiffi
pa

p KIðaÞ
e0E0

ffiffiffiffi
pa

p KIð�aÞ
e0E0

ffiffiffiffi
pa

p

0.1 2.0673 0.4371 1.9991 0.4265

0.2 2.0716 0.4395 2.0151 0.4319

0.3 2.0762 0.4419 2.0301 0.4368

0.4 2.0812 0.4444 2.0442 0.4415

0.5 2.0864 0.4469 2.0576 0.4459

0.7 2.0976 0.4520 2.0826 0.4541

0.9 2.1116 0.4576 2.1056 0.4616

Table 3

The effect of Poisson�s ratio on the normalized stress intensity

factors for an orthotropic plate under uniform crack face

pressure loading (ba = 0.5, j = 0.5)

m Proposed method Oztuk and Erdogan

(1997)

KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p KIðaÞ
r0

ffiffiffiffi
pa

p KIð�aÞ
r0

ffiffiffiffi
pa

p

0.1 1.1116 0.8599 1.0958 0.8602

0.2 1.1157 0.8627 1.1007 0.8633

0.3 1.1196 0.8655 1.1053 0.8661

0.4 1.1235 0.8682 1.1096 0.8689

0.5 1.1273 0.8709 1.1137 0.8715

0.7 1.1349 0.8763 1.1215 0.8764

0.9 1.1433 0.8824 1.1287 0.8809

2a

x1

x2

σ0=1

2L

2W

τ0=1

E11

E22

Fig. 5. Plate with an interior crack perpendicular to material

gradation: geometry and loads.
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parameter is ba = 0.5, while in Table 4 the non-

homogeneous parameter is ba = 1. Tables 5 and

6 provide a similar comparison between predicted
normalized stress intensity factors KIðaÞ=e0E0

ffiffiffiffiffiffi
pa

p

and KIð�aÞ=e0E0

ffiffiffiffiffiffi
pa

p
under fixed-grip loading.

These results shows that Poisson�s ratio has a neg-

ligible effect on the SIFs for a mode I crack prob-

lem. The agreement between present results using

the proposed method and Oztuk and Erdogan�s
(1997) analytical solution is excellent.

6.2. Example 2: Plate with an interior crack

perpendicular to material gradation (mixed mode)

Consider an orthotropic square plate of dimen-

sions 2L = 2W = 20 units (L/W = 1) with a central

crack of length 2a = 2.0 units, as shown in Fig. 5.

Except for material properties and loading condi-



Table 8

The effect of the non-homogeneity parameter on the normalized

stress intensity factors for an orthotropic plate under uniform

crack face shear loading (d4 = 0.25, m = 0.3, j=0.5)

ba Proposed method Oztuk and Erdogan

(1999)

KIðaÞ
s0
ffiffiffiffi
pa

p KIIðaÞ
s0
ffiffiffiffi
pa

p KIðaÞ
s0
ffiffiffiffi
pa

p KIIðaÞ
s0
ffiffiffiffi
pa

p

0.0 0.0108 0.9924 0.0 1.0

0.1 �0.0389 0.9914 �0.0494 0.9989

0.25 �0.1098 0.9861 �0.1191 0.9968

0.50 �0.2130 0.9799 �0.2217 0.9965

1.00 �0.3781 0.9899 �0.3862 1.0071

2.00 �0.6178 1.0358 �0.5725 1.0499
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tions, all other conditions including FEM discret-

ization were the same as in Example 1. However,

the crack is perpendicular to the material grada-

tion. In Example 2, both crack-face pressure load-

ing and crack-face shear loading were considered
separately. The following material property data

were employed for FEM analysis: E11ðx2Þ ¼
E0
11e

bx2 , E22ðx2Þ ¼ E0
22e

bx2 , G12ðx2Þ ¼ G0
12e

bx2 , where

the average modulus of elasticity is Eðx2Þ ¼
E0ebaðx2a Þ, with E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

q
. The non-homogene-

ity parameter ba is varied from 0.0 to 2.0. Two dif-

ferent values of the shear parameter j = 0.5 and

5.0 and two different stiffness ratios d4 = 0.25,

and 10 were employed in the FEM analysis. Three

different values of the average Poisson�s ratio

m = 0.15, 0.30, and 0.45 were used in computations.

For crack-face pressure loading the applied
load corresponds to r22(�1 6 x1 6 1, ±0) = ±r0 =
±1.0 and for crack-face shear loading the applied

load corresponds to r12 (�1 6 x1 6 1, ±0) =

±s0 = ±1.0 along the top and bottom crack faces.

The effect of the non-homogeneity parameter

ba and the average Poisson�s ratio m on normalized

stress intensity factors for both crack-face pressure

loading and crack-face shear loading were stud-
ied. The results obtained by using the proposed

method are compared with those reported by

Oztuk and Erdogan (1999), who investigated an

infinite plate with the same configuration. Tables

7 and 8 provide a comparison between predicted

normalized stress intensity factors KIðaÞ=r0

ffiffiffiffiffiffi
pa

p

and KIð�aÞ=r0

ffiffiffiffiffiffi
pa

p
under uniform crack-face pres-

sure loading and uniform crack-face shear loading,
Table 7

The effect of the non-homogeneity parameter on the normalized

stress intensity factors for an orthotropic plate under uniform

crack face pressure loading (d4 = 0.25, m = 0.3, j=0.5)

ba Proposed method Oztuk and Erdogan

(1999)

KIðaÞ
r0

ffiffiffiffi
pa

p KIIðaÞ
r0

ffiffiffiffi
pa

p KIðaÞ
r0

ffiffiffiffi
pa

p KIIðaÞ
r0

ffiffiffiffi
pa

p

0.0 1.0091 0.0009 1.0 0.0

0.1 1.0158 0.0262 1.0115 0.0250

0.25 1.0451 0.0643 1.0489 0.0627

0.50 1.1279 0.1288 1.1351 0.1263

1.00 1.3468 0.2632 1.3494 0.2587

2.00 1.8673 0.5607 1.8580 0.5529
respectively, obtained by using the proposed meth-

od, and those of Oztuk and Erdogan (1999) for

various values of non-homogeneity parameter ba,
and d4 = 0.25; m = 0.3; and j = 0.5. Tables 9 and

10 provide a comparison between predicted nor-

malized stress intensity factors under uniform

crack face pressure loading for d4 = 0.25, and

d4 = 10 respectively, obtained by the proposed
method, and those of Oztuk and Erdogan (1999)

for m = 0.15, 0.3, and 0.45 and ba = 0.5, and 1.0.

Tables 11 and 12 provide a similar comparison

for an orthotropic plate under uniform crack face

shear loading. The agreement between the results

of the proposed method and Oztuk and Erdogan�s
(1999) analytical solution is excellent.

6.3. Example 3: Four-point bending specimen

under mixed-mode loading

Gu and Asaro (1997) investigated the effect of

material orthotropy on mixed-mode SIFs in

FGMs by considering a four-point bending speci-

men with exponentially varying Young�s moduli,

shear modulus, and Poisson�s ratio. Fig. 6(a)
shows the geometry and boundary conditions of

the four-point bending specimen. Due to symmet-

ric geometry and loading with respect to the crack,

only a half model of the beam was analyzed, as

shown in Fig. 6(b). Fig. 6(c) shows details of

FEM mesh discretization for the half beam model

involving 1357 nodes, 396 8-noded quadrilateral

elements, and 32 focused quarter-point 6-noded
triangular elements in the vicinity of the crack

tip. Point loads of magnitude P are applied at



Table 9

The effect of Poisson�s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face pressure

loading (j = 5.0)

ba d4 = 0.25 Proposed method Oztuk and Erdogan (1999)

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
1.2463 1.2545 1.2625 1.2516 1.2596 1.2674

KIIðaÞ=r0

ffiffiffiffiffiffi
pa

p
0.1264 0.1270 0.1275 0.1259 0.1259 0.1259

1.0 KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
1.5596 1.5750 1.5901 1.5589 1.5739 1.5884

KIIðaÞ=r0

ffiffiffiffiffiffi
pa

p
0.2580 0.2588 0.2595 0.2555 0.2557 0.2558

Table 10

The effect of Poisson�s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face pressure

loading (j = 5.0)

ba d4 = 10 Proposed method Oztuk and Erdogan (1999)

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
1.0599 1.0605 1.0610 1.0748 1.0776 1.0804

KIIðaÞ=r0

ffiffiffiffiffiffi
pa

p
0.1235 0.1238 0.1241 0.1252 0.1252 0.1251

1.0 KIðaÞ=r0

ffiffiffiffiffiffi
pa

p
1.1746 1.1757 1.1769 1.1892 1.1955 1.2017

KIIðaÞ=r0

ffiffiffiffiffiffi
pa

p
0.2500 0.2503 0.2506 0.2511 0.2512 0.2512

Table 11

The effect of Poisson�s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face shear loading

(j = 5.0)

ba d4 = 0.25 Proposed method Oztuk and Erdogan (1999)

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0
ffiffiffiffiffiffi
pa

p
�0.1921 �0.1912 �0.1903 �0.1980 �0.1971 �0.1963

KIIðaÞ=s0
ffiffiffiffiffiffi
pa

p
0.9600 0.9614 0.9627 0.9898 0.9915 0.9931

1.0 KIðaÞ=s0
ffiffiffiffiffiffi
pa

p
�0.3177 �0.3159 �0.3141 �0.3203 �0.3186 �0.3169

KIIðaÞ=s0
ffiffiffiffiffiffi
pa

p
0.9556 0.9587 0.9617 0.9888 0.9921 0.9953

Table 12

The effect of Poisson�s ratio on the normalized stress intensity factors for an orthotropic plate under uniform crack face shear loading

(j = 5.0)

ba d4 = 10 Proposed method Oztuk and Erdogan (1999)

m 0.15 0.30 0.45 0.15 0.30 0.45

0.5 KIðaÞ=s0
ffiffiffiffiffiffi
pa

p
�0.0328 �0.0328 �0.0328 �0.0366 �0.0365 �0.0365

KIIðaÞ=s0
ffiffiffiffiffiffi
pa

p
0.9419 0.9419 0.9419 0.9956 0.9961 0.9965

1.0 KIðaÞ=s0
ffiffiffiffiffiffi
pa

p
�0.0625 �0.0625 �0.0625 �0.0660 �0.0657 �0.0654

KIIðaÞ=s0
ffiffiffiffiffiffi
pa

p
0.9355 0.9357 0.9358 0.9913 0.9925 0.9938
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the nodes (x1, x2) = (10, �1.0) and (x1, x2) =

(11, 1.0). Displacement boundary conditions are

prescribed such that (u1, u2) = (0, 0) for the node
at (x1, x2) = (0, �1.0), and u1 = 0 for the node at

(x1, x2) = (0, 0). Young�s moduli, the shear modu-

lus, and Poisson�s ratio are exponential functions



a=3 P

0.25

0.5
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x2

x1
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h2=1

P
L=11.5

(a)

(b)

(c)

E11(x2)

E22(x2)

a=3 a=3 PP

0.5
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0.5
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Fig. 6. Four-point bend specimen under mixed mode loading: (a) Geometry and loads; (b) Half model; (c) FEM discretization (1357

nodes, 396 8-noded quadrilateral elements, and 32 focused quarter-point 6-noded triangular elements).
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of x2 given by: E11ðx2Þ ¼ E0
11e

bx2 , E22ðx2Þ ¼ E0
22e

bx2 ,

m12ðx2Þ ¼ m012ð1þ ex2Þebx2 , m21ðx2Þ ¼ m021 ð1þ ex2Þ�
ebx2 , and G12ðx2Þ ¼ E22ðx2Þ=½2ð

ffiffiffi
k

p
þm21 ðx2ÞÞ�,where

k = E22(x2)/E11(x2). Notice that k = 1/d4, as

explained in Eqs. (85) and (86). The following data

were used for the FEM analysis: a = 3.0, h1/

h2 = 1.0, e = �0.9, and P = 1.0.

Fig. 7(a) and (b) provide a comparison of the

SIF jKjh3=21 =Pl with jKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

q
, and the
phase angle w ¼ tan�1ðKII=KIÞ, respectively, ob-

tained by the proposed continuum shape sensitiv-

ity method with those values reported by Gu

and Asaro (1997). There is quite good agreement

between the two solutions, although Gu and Asaro

(1997) did not provide geometry data. Notice that

as bh1 increases, both the SIF and the phase angle
w increase, and the material orthotropy (measured

by k = E22/E11) shows significant influence on the

results. Moreover, for a fixed bh1, as k increases
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Fig. 7. Four-point bend specimen under mixed mode loading:

(a) normalized mixed-mode SIFs jKjh3=21 =Pl; (b) phase angle

w ¼ tan�1ðKII=KIÞ.
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the SIF increases; however, the phase angle

decreases.
7. Summary and conclusions

A new continuum shape sensitivity method
was developed for calculating mixed-mode stress-

intensity factors for a stationary crack in two-

dimensional, linear-elastic, isotropic FGMs having

an arbitrary geometry. The method involves the

material derivative concept taken from continuum

mechanics, the mutual potential energy release

rate, and direct differentiation. Since the governing

variational equation is differentiated prior to dis-
cretization, the resulting sensitivity equations are

independent of approximate numerical techniques,

such as the finite element method, boundary
element method, mesh-free method, or others.

The discrete form of the mutual potential energy

release rate is simple and easy to calculate, as it

only requires multiplication of displacement vec-

tors and stiffness sensitivity matrices. By judi-
ciously selecting the velocity field, the method

only requires displacement response in a subdo-

main close to the crack tip, thus rendering it com-

putationally efficient. Three numerical examples,

including both mode-I and mixed-mode problems,

are presented to evaluate the accuracy of fracture

parameters calculated using the proposed method.

Comparisons have been made between the stress-
intensity factors predicted by the proposed method

and available reference solutions in the literature,

generated either analytically or numerically using

various other fracture integrals or analyses. An

excellent agreement is obtained between the results

of the proposed method and previously obtained

solutions. Therefore, shape sensitivity analysis

provides an attractive alternative for the fracture
analysis of cracks in homogeneous and non-homo-

geneous orthotropic materials.
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