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Abstract

A stochastic micromechanical model is presented for predicting probabilistic characteristics of elastic mechanical prop-
erties of an isotropic functionally graded material (FGM) subject to statistical uncertainties in material properties of con-
stituents and their respective volume fractions. The model involves non-homogeneous, non-Gaussian random field
representation of phase volume fractions and random variable description of constituent material properties, a three-phase
Mori–Tanaka model for underlying micromechanics and homogenization, and a novel dimensional decomposition method
for obtaining probabilistic descriptors of effective FGM properties. Four numerical examples involving statistical proper-
ties of input random fields, limited experimental validation, and the second-moment characteristics and probability density
functions of effective mechanical properties of FGM illustrate the proposed stochastic model. The results indicate that the
model provides both accurate and computationally efficient estimates of probabilistic characteristics of effective FGM
properties.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are two-
or multi-phase particulate composites in which
material composition and microstructure vary spa-
tially in the macroscopic length scale to meet a
desired functional performance. The absence of
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sharp interfaces in FGM reduces material property
mismatch, which can lead to significant improve-
ment in damage resistance and mechanical durabil-
ity (Suresh and Mortensen, 1998). Therefore, FGMs
are of great interest in disciplines as diverse as
civil infrastructure, aerospace propulsion, micro-
electronics, biomechanics, nuclear power, and nano-
technology (Suresh, 2001). However, the extent to
which an FGM can be tailored to produce a target
mechanical performance – i.e., the design of FGM –
strongly depends on the resultant effective proper-
ties and, more importantly, on how these properties
relate to its microstructure. Therefore, predicting
.
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Fig. 1. Schematic representation of a three-phase FGM.
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mechanical, thermal, or other relevant properties
for a given microstructure and its spatial distribu-
tion plays a significant role in the design of FGM.

In classical micromechanics (Mura, 1991;
Nemat-Nasser and Hori, 1999), a wide variety of
models exists for predicting effective properties of
heterogeneous materials, such as rules of mixture
and their bounds (Mura, 1991; Nemat-Nasser and
Hori, 1999), the Hashin–Shtrikman model (Hashin
and Strikman, 1963), the Eshelby’s equivalent inclu-
sion theory (Eshelby, 1957), the self-consistent
model (Hill, 1965), the mean-field theory (Weng,
1984), and the Mori–Tanaka model (Mori and
Tanaka, 1973). For FGM applications, a higher-
order thermoelastic theory was developed by cou-
pling local and global effects (Aboudi et al., 1996).
Recently, an elastic model including pair-wise parti-
cle interaction and gradient effects of phase volume
fraction has also appeared (Yin et al., 2004). The
determination of effective properties has also been
demonstrated using the Voronoi cell finite element
method (VCFEM) (Grujicic and Zhang, 1998).
Although these predictive models are continuously
evolving, they are strictly deterministic. In other
words, microstructural features, such as phase vol-
ume fraction, shape and spatial arrangement of an
included phase, and other relevant characteristics,
must be defined locally with absolute certainty. This
fundamental determinism of the classical microme-
chanics is a practical concern because there is sam-
ple-to-sample variability in FGM microstructural
features (Ferrante and Graham-Brady, 2005). Fur-
thermore, a viable FGM manufacturing technology
to create a pre-determined microstructural profile
can be produced only in a statistical sense. Using
mean or median values of random microstructural
details as input for predicting deterministic effective
properties is not always meaningful, as it does not
provide any measures of the stochastic behavior of
FGM. As a few researchers have already pointed
out, a predictive micromechanical model must
include statistical variability of phase volume frac-
tions as random input (Ferrante and Graham-
Brady, 2005; Buryachenko and Rammerstorfer,
2001). Therefore, it makes sense to formulate and
explore the FGM micromechanics problem in a sto-
chastic framework.

This paper presents a stochastic micromechanical
model for predicting probabilistic characteristics of
elastic mechanical properties of an isotropic FGM
subject to statistical uncertainties in volume frac-
tions of particle and porosity and constituent mate-
rial properties. The model involves (1) non-
homogeneous, non-Gaussian random field represen-
tation of phase volume fractions and random
variable description of constituent material proper-
ties; (2) a three-phase Mori–Tanaka model for
underlying micromechanics and homogenization;
and (3) novel dimensional decomposition methods
for probabilistic descriptors of effective mechanical
properties. Section 2 describes the problem of inter-
est, random field and random variable models of
various input parameters, and the three-phase
Mori–Tanaka model. Section 3 explains the newly
developed decomposition methods for predicting
statistical moments and probability density func-
tions of effective mechanical properties of FGM.
Four examples involving statistical properties of
input random fields, limited experimental valida-
tions, and stochastic characteristics of effective
properties of FGM illustrate the proposed model
in Section 4. Finally, Section 5 provides conclusions
from this work.
2. Stochastic micromechanics

2.1. Problem definition

Consider a three-phase FGM heterogeneous
body with domain D � R3 and a schematic illustra-
tion of its microstructure, as shown in Fig. 1. The
microstructure includes three distinct material
phases: phase 1 (grey), phase 2 (black), and phase
3 (white), each of which represents an isotropic
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and linear-elastic material. The stochastic elasticity
tensors of these three phases, denoted by C (1),
C (2), and C (3), can be expressed by (Mura, 1991;
Nemat-Nasser and Hori, 1999)

C ðiÞ ¼ miEi

ð1þ miÞð1� 2miÞ
1� 1þ Ei

ð1þ miÞ
I ;

i ¼ 1; 2; 3; ð1Þ

where the symbol � denotes tensor product; Ei and
mi are respectively elastic modulus and Poisson’s
ratio of phase i; and 1 and I are respectively second-
and fourth-rank identity tensors. In general, Ei and
mi are random variables because of statistical varia-
tion in the material properties of each constituent
phase. One phase defines the matrix material, and
the remaining two characterize ellipsoidal particles.
Two classes of particles allow modeling multi-phase
FGM with distinct properties of its first (grey or
black) and second (white) classes of inclusions.
Material porosities, if they exist, can also be conve-
niently modeled as voids by employing degenerative
Fig. 2. Three macroscopic regions and associated RVEs in microscopic
and (c) particle–matrix region 3.
properties of the second class of particles, leading to
two-phase porous FGMs.

Fig. 2 illustrates three disjoint FGM regions in
the macroscopic length scale (x) with subdomains
D1, D2, and D3, where D ¼

S3
i¼1Di; Di \Dj ¼ ;,

i 5 j. The particle–matrix region 1 ðD1Þ, depicted
in Fig. 2(a), comprises particles from phase 2 mate-
rial (black) embedded in the matrix material, which
is phase 1 (grey). The particle–matrix role reverses
in region 3 ðD3Þ, where particles and matrix are
phase 1 (grey) and phase 2 (black) materials, respec-
tively, as shown in Fig. 2(c). In the transition region
2 ðD2Þ, illustrated by Fig. 2(b), the definition of par-
ticle or matrix is ambiguous as both phases have
interpenetrated each other, forming intertwined
clusters. If there are porosities, phase 3 material
(white) may exist as voids in each region with a dis-
tribution depending on the fabrication process.

Let x 2 D � R3 define a point in the macroscopic
length scale. The volume fractions of material
phases 1, 2, and 3 are respectively denoted by
/1(x), /2(x), and /3(x), each of which is bounded
length scale (n); (a) particle–matrix region 1; (b) transition region 2
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between 0 and 1 and satisfy the constraint
/1(x) + /2(x) + /3(x) = 1. The volume fractions
are stochastic and must be modeled as random fields
due to their spatial variability. A representative vol-
ume element (RVE) at x characterizes material het-
erogeneity in the microscopic length scale with the
coordinate system n � (n1,n2,n3). Since the FGM
microstructure varies in the macroscopic length
scale, two distinct points in Fig. 2 will have two
distinct RVEs. For an RVE associated with
x 2 D1 [D3, volume fractions of the matrix, the
first class of particles, and the second class of parti-
cles, respectively denoted by /m(x), /p(x), and
/m(x), are related to volume fractions of constituent
materials as

/mðxÞ ¼
/1ðxÞ; if x 2 D1;

/2ðxÞ; if x 2 D3;

�
ð2Þ

/pðxÞ ¼
/2ðxÞ; if x 2 D1;

/1ðxÞ; if x 2 D3;

�
ð3Þ

and

/mðxÞ ¼ /3ðxÞ ¼ 1� /mðxÞ � /pðxÞ;
if x 2 D1 [D3: ð4Þ

A major objective of stochastic micromechanics is
to obtain probabilistic characteristics of effective
properties when random elastic properties of its
constituents (e.g., Ei and mi) and random volume
fractions of any two material phases (e.g., /2(x)
and /3(x)) are prescribed.
2.2. Stochastic description of volume fractions by

random fields

Let ðX;F; PÞ be a probability space, where X is the
sample space, F is the r-algebra of subsets of X, and
P is the probability measure, and RN be an N-dimen-
sional real vector space. Defined on the probability
triple ðX;F; P Þ endowed with the expectation opera-
tor E, consider a non-homogeneous (non-stationary),
non-Gaussian, random field /i(x); i = 1,2,3, which
has mean li(x) and standard deviation ri(x). The
standardized phase volume fraction

~/iðxÞ ¼
/iðxÞ � liðxÞ

riðxÞ
; ð5Þ

which has zero mean and unit variance, is at least
a weakly homogeneous (stationary) random field
with prescribed covariance function C~/i

ðsÞ �
E½~/iðxÞ~/iðxþ sÞ� and marginal cumulative distribu-
tion function F ið~/iÞ such that 0 6 /i(x) 6 1 with
probability one.

2.2.1. Translation random field

Consider a zero-mean, homogeneous, Gaussian
random field ai(x) with the covariance function
CaiðsÞ � E½aiðxÞaiðxþ sÞ�, which is continuous over
D. If Gi is a real-valued, monotonic, differentiable
function, the standardized phase volume fraction

~/iðxÞ ¼ Gi½aiðxÞ� ð6Þ

can be viewed as a memoryless transformation of
the Gaussian image field ai(x). From the condition
that the marginal distribution and the covariance
function of ~/iðxÞ coincide with specified target func-
tions Fi and C~/i

, respectively, it can be shown that
(Grigoriu, 1995)

GiðaiÞ ¼ F �1
i ½UðaiÞ� ð7Þ

and

C~/i
ðsÞ¼

Z 1

�1

Z 1

�1
Giðg1ÞGiðg2Þu2ðg1;g2;CaiðsÞÞdg1 dg2;

ð8Þ

where UðaiÞ �
R ai

�1ð1=
ffiffiffiffiffiffi
2p
p
Þ expð�g2=2Þdg is the

standard Gaussian distribution function and
u2ðg1; g2;CaiÞ is the bivariate standard Gaussian den-
sity function with the correlation coefficient Cai . For
given values of Fi and C~/i

ðsÞ, Gi can be calculated
from Eq. (7) and the required covariance function
CaiðsÞ of ai(x) can be solved from Eq. (8), if the target
scaled covariance function C~/i

ðsÞ=C~/i
ð0Þ lie in the

range (Grigoriu, 1995)

E½GiðaiÞGið�aiÞ� � E½GiðaiÞ�2

E½GiðaiÞ2� � E½GiðaiÞ�2
6

C~/i
ðsÞ

C~/i
ð0Þ 6 1: ð9Þ

In many applications, Inequality (9) is satisfied,
leading to the standardized volume fraction ~/iðxÞ
that can be mapped to the associated Gaussian
image field ai(x).

2.2.2. Karhunen–Loève approximation

Let {ki,k,wi,k(x)}, k = 1,2, . . . ,1, be the eigen-
values and eigenfunctions of CaiðsÞ � E½aiðxÞai

ðxþ sÞ� � Ciðx1; x2Þ; x1 = x, x2 = x + s that satisfy
the integral equation (Davenport and Root, 1958)Z

D

Ciðx1; x2Þwi;kðx2Þdx2 ¼ ki;kwi;kðx1Þ;

8k ¼ 1; 2; . . . ;1: ð10Þ
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The eigenfunctions are orthogonal in the sense thatZ
D

wi;kðxÞwi;lðxÞdx ¼ dkl;

8k; l ¼ 1; 2; . . . ;1; ð11Þ

where dkl is the Kronecker delta. The Karhunen–
Loève (K–L) representation of ai(x) is

aiðxÞ ¼
X1
k¼1

Zi;k

ffiffiffiffiffiffi
ki;k

p
wi;kðxÞ; ð12Þ

where Zi,k, k = 1, . . . ,1 is an infinite sequence of
uncorrelated Gaussian random variables, each of
which has zero mean and unit variance. In practice,
the infinite series of Eq. (12) must be truncated,
yielding a K–L approximation

âiðxÞ ¼
XM

k¼1

Zi;k

ffiffiffiffiffiffi
ki;k

p
wi;kðxÞ; ð13Þ

which approaches ai(x) in the mean square sense as
the positive integer M!1. Finite element (Gha-
nem and Spanos, 1991) or mesh-free (Rahman and
Xu, 2005) methods can be readily applied to obtain
eigensolutions of any covariance function and do-
main of the random field. For linear or exponential
covariance functions and simple domains, the eigen-
solutions can be evaluated analytically (Ghanem
and Spanos, 1991).

Once CaiðsÞ and its eigensolutions are determined,
the parameterization of ~/iðxÞ is achieved by the K–L
approximation of its Gaussian image, i.e.,

~/iðxÞ ffi Gi

XM

k¼1

Zi;k

ffiffiffiffiffiffi
ki;k

p
wi;kðxÞ

" #
: ð14Þ

According to Eq. (14), the K–L approximation pro-
vides a parametric representation of the standardized
volume fraction ~/iðxÞ and, hence, of /i(x) with M

random variables. The random field description of
/i(x) allows a volume fraction to have random fluctu-
ation at a point x in the macroscopic length scale.

2.3. Stochastic description of constituent material
properties by random variables

In addition to spatially variant random volume
fractions, the constituent properties of material
phases can be stochastic. Defined on the same prob-
ability space ðX;F; PÞ, let Ei and mi denote the elas-
tic modulus and Poisson’s ratio, respectively, of the
ith material phase. Therefore, the random vector
fE1;E2;E3; m1; m2; m3gT 2 R6 describes stochastic elas-
tic properties of all three constituents. Unlike volume
fractions, however, the constituent properties are
spatially invariant in the macroscopic (x) length scale.
In addition, for a given x 2 D, the volume fractions
and constituent properties, although both stochastic,
do not vary spatially in the microscopic (n) length
scale. The probability density function of constituent
material properties is either assumed or derived from
available material characterization data.

If N is the total number of possible random vari-
ables including 2M random variables due to the dis-
cretization of random fields ~/2ðxÞ and ~/3ðxÞ and six
random constituent properties, the maximum value
of N is 2M + 6. Hence, an input random vector
R¼fZ2;1; . . . ;Z2;M ;Z3;1; . . . ;Z3;M ;E1;E2;E3;m1;m2;m3gT 2
RN characterizes uncertainties from all sources in an
FGM and is completely described by its known
joint probability density function fRðrÞ : RN 7!R.

2.4. Effective properties at particle–matrix regions

Consider a single, linear-elastic, isotropic, ellip-
soidal particle of domain Xp and elasticity tensor
C (p), which is embedded in an infinitely large
linear-elastic isotropic matrix of domain Xm and
elasticity tensor C (m), as shown in Fig. 3(a). The sin-
gle particle–matrix system, which has a local coordi-
nate system n � (n1,n2,n3), is subjected to a uniform
far-field stress r0. Let e(n) and r(n) define local elas-
tic strain and stress fields, respectively, inside the
particle (n 2 Xp). Using the Eshelby’s equivalent
inclusion method (Eshelby, 1957), the decomposi-
tion of the elasticity problem depicted in Fig. 3(a)
for an infinite domain yields

eðnÞ ¼ e0 þ S : e�; n 2 Xp; ð15Þ
rðnÞ ¼ r0 þ C ðmÞ 	 ½S � I � : e�; n 2 Xp; ð16Þ

where symbols ‘‘Æ’’ and ‘‘:’’ denote tensor contrac-
tions between two fourth-rank tensors and between
fourth- and second-rank tensors, respectively, e0 =
[C(m)]�1 : r0, eigenstrain e* = [(C(p) � C(m)) Æ S +
C(m)]�1 Æ (C(m) � C(p)) Æ [C(p)]�1 : r0, T(n,g) is the
fourth-rank Green’s function tensor that depends
on the shear modulus and Poisson’s ratio of the
matrix material, and S ¼

R
Xp

Tðn; gÞdg is the
fourth-rank Eshelby’s interior-point tensor. For an
ellipsoidal domain, S is independent of n 2 Xp, lead-
ing to constant stress and strain inside the particle.

For the FGM, consider an RVE at x 2 D1 [D3,
where an infinite number of ellipsoidal particles
from both classes, each with respective total
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Fig. 3. Micromechanics: (a) Eshelby’s equivalent inclusion; (b) homogenization.
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domains Xp(x) and Xm(x) and respective elasticity
tensors C (p) and C (m), are filled in a matrix of
domain Xm(x) and elasticity tensor C (m), as shown
in Fig. 3(b). Since phase volume fractions of a given
RVE depend on x, the matrix and total particle
domains with their volumes Vm(x), Vp(x), and
Vm(x) are spatially variant. So are the volume-
averaged strains at the matrix, the first class of par-
ticles, and the second class of particles, which are

defined as �emðxÞ � ½1=V mðxÞ�
R

V mðxÞ eðnÞdn, �epðxÞ �
½1=V pðxÞ�

R
V pðxÞ eðnÞdn, and emðxÞ � ½1=V mðxÞ�
R

V mðxÞ eðnÞdn, respectively. Using the equilibrium
equation, these average strains can be related to
the far-field uniform stress

r0 ¼ /pðxÞC ðpÞ : �epðxÞ þ/mðxÞC ðmÞ : �emðxÞ
þ ½1�/pðxÞ �/mðxÞ�C ðmÞ : �emðxÞ; x 2D1 [D3:

ð17Þ
By applying the Mori–Tanaka model, which in-
volves Eshelby’s equivalent-inclusion solution for
infinite number of particles and the assumption that
an additional particle does not significantly change
volume fractions, the relationship between average
particle strain and average matrix strain can be
obtained as (Mori and Tanaka, 1973)

�epðxÞ ¼ ½I � S 	 ½C ðmÞ��1 	 ðC ðpÞ � C ðmÞÞ��1
: �emðxÞ;

x 2 D1 [D3; ð18Þ
�emðxÞ ¼ ½I � S 	 ½C ðmÞ��1 	 ðC ðmÞ � C ðmÞÞ��1

: �emðxÞ;
x 2 D1 [D3: ð19Þ

Using Eqs. (17)–(19), three unknown volume-aver-
aged strains �emðxÞ, �epðxÞ, and �emðxÞ can be calculated
at any macroscopic point x 2 D1 [D3 for known
values of applied stress, volume fractions and elas-
ticity tensors of material phases, and Eshelby’s inte-
rior-point tensor.

Let CðxÞ denote the effective elasticity tensor at
a point x 2 D1 [D3. Based on the equilibrium
equation,

r0 ¼ CðxÞ : �eðxÞ; x 2 D1 [D3; ð20Þ
where

�eðxÞ � /pðxÞ�epðxÞ þ /mðxÞ�emðxÞ
þ ½1� /pðxÞ � /mðxÞ��emðxÞ; x 2 D1 [D3

ð21Þ
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is the volume-averaged strain in the homogenized
RVE that can be calculated following the solution
of Eqs. (17)–(19) for �emðxÞ, �epðxÞ, and �emðxÞ. There-
fore, the effective tensor CðxÞ can be evaluated from
Eq. (20) when r0 and �eðxÞ are known. Defining

CðxÞ ¼ �mðxÞEðxÞ
½1þ �mðxÞ�½1� 2�mðxÞ� 1� 1þ EðxÞ

½1þ �mðxÞ� I

ð22Þ

the effective elastic modulus EðxÞ and effective
Poisson’s ratio �mðxÞ can thus be evaluated at any
macroscopic point x 2 D1 [D3.

2.5. Effective properties at transition region

The particle and matrix are well-defined when a
phase volume fraction is close to 0 or 1. However,
when a volume fraction is in the vicinity of 0.5, it
is difficult to identify the particle or the matrix
phase, as in the transition region 2. Consequently,
the homogenized elastic fields for a transition region
cannot be determined from a classical microme-
chanical analysis. However, in a realistic FGM,
the transition region D2, which lies between bound-
aries oD1 and oD3 as shown in Fig. 2, is much smal-
ler than the particle–matrix regions 1 and 3. In that
case, the effective properties at the transition region
can be approximated using interpolation of the
micromechanical results of particle–matrix regions.

In the macroscopic scale, consider collections of
K points fx1

k 2 oD1; k ¼ 1; . . . Kg and fx3
k 2 oD3;

k ¼ 1; . . . Kg located at boundaries oD1 and oD3,
respectively. Let f�e1ðx1

kÞ; k ¼ 1; . . . Kg and f�e3ðx3
kÞ;

k ¼ 1; . . . Kg represent volume-averaged strains of
homogenized RVEs at fx1

k 2 oD1; k ¼ 1; . . . Kg
and fx3

k 2 oD3; k ¼ 1; . . . Kg, respectively, which
can be determined from particle–matrix equations
(e.g., Eqs. (17)–(19) and (21)). The interpolated vol-
ume-averaged strain of a homogenized RVE at the
transition zone depends on volume-averaged strains
at boundaries oD1 and oD3 and a judiciously chosen
interpolation function w(x). The interpolation func-
yðr; xÞ ¼ y0ðxÞ þ
XN

i¼1

yiðri; xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ŷ1ðr;xÞ

þ
XN

i1;i2¼1
i1<i2

yi1i2ðri1 ; ri2 ; xÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ŷ2ðr;xÞ

þ 	 	 	 þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl
¼ŷSðr;xÞ
tion can be derived by forcing continuity, differen-
tiability, and other relevant properties of average
strains. Implicitly,

�eðxÞ ¼ f �e1ðx1
1Þ; . . . ;�e1ðx1

KÞ; �e3ðx3
1Þ; . . . ;�e3ðx3

KÞ; wðxÞ
� �

;

x 2 D2; ð23Þ

which, when combined with Eqs. (20) and (22),
yields effective elastic properties at a macroscopic
point x 2 D2 in the transition region. Explicit forms
of f and w(x) depend on the FGM geometry and
gradation properties.

Eqs. (15)–(23) provide a deterministic micro-
mechanics framework for predicting effective
properties of FGM. However, any statistical uncer-
tainties in volume fractions and constituent material
properties, represented by a random vector R, must
be propagated through these micromechanical
equations. Therefore, an effective FGM property is
not only spatially variant, but also randomly depen-
dent on R, and should be expressed as a function of
both x and R. Henceforth, let y(R;x) describe a gen-
eric, but relevant elastic property (e.g., the effective
elastic modulus or the effective Poisson’s ratio) at
x 2 D for a given FGM problem of interest. In gen-
eral, for a given spatial location (x), the multivariate
function y(r;x) is implicit and can only be viewed as
a high-dimensional input–output mapping, where
the evaluation of the output function y for a given
input r requires classical micromechanical analysis.
Therefore, methods employed in stochastic microm-
echanics must be capable of generating accurate
probabilistic characteristics of y(R;x) with an
acceptably small number of output function
evaluations.
3. Dimensional decomposition method

At a given x 2 D, consider a continuous, differen-
tiable, real-valued function y(r;x) that depends on
r ¼ fr1; . . . ; rNgT 2 RN . A dimensional decomposi-
tion of y(r;x), described by Xu and Rahman
(2004, 2005)
XN

i1;...;iS¼1
i1<			<iS

yi1			iS ðri1 ; . . . ; ris ; xÞ

fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ 	 	 	 þ y12...Nðr1; . . . ; rN ; xÞ;

ð24Þ
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can be viewed as a finite hierarchical expansion of
an output function in terms of its input variables
with increasing dimensions, where y0(x) is a
constant with respect to r, yi(ri;x) is a univariate
component function representing individual contri-
bution to y(r;x) by input variable ri acting alone,
yi1i2ðri1 ; ri2 ; xÞ is a bivariate component function
describing cooperative influence of two input vari-
ables ri1 and ri2 ; yi1...iS ðri1 ; . . . ; riS ; xÞ is an S-variate
component function quantifying cooperative effects
of S input variables ri1 ; . . . ; riS , and so on. If

ŷSðr; xÞ ¼ y0ðxÞ þ
XN

i¼1

yiðri; xÞ þ
XN

i1;i2¼1
i1<i2

yi1i2
ðri1 ; ri2 ; xÞ

þ 	 	 	 þ
XN

i1;...;iS¼1
i1<			<iS

yi1...iS ðri1 ; . . . ; ris ; xÞ ð25Þ

represents a general S-variate approximation of
y(r;x), the univariate (S = 1) and bivariate (S = 2)
approximations ŷ1ðr; xÞ and ŷ2ðr; xÞ respectively
provide two- and three-term approximants of the fi-
nite decomposition in Eq. (24). Similarly, trivariate,
quadrivariate, and other higher-variate approxima-
tions can be derived by appropriately selecting the
value of S. In the limit, when S = N, ŷSðr; xÞ con-
verges to the exact function y(r;x). In other words,
Eq. (25) generates a hierarchical and convergent
sequence of approximations of y(r;x).

3.1. Lower-variate approximations

Consider univariate and bivariate approxima-
tions of y(r;x), defined by

ŷ1ðr; xÞ � ŷ1ðr1; . . . ; rN ; xÞ

�
XN

i¼1

yðc1; . . . ; ci�1; ri; ciþ1; . . . ; cN ; xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼yiðri ;xÞ

�ðN � 1Þyðc; xÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼y0ðxÞ

ð26Þ

and

ŷ2ðr;xÞ � ŷ2ðr1; . . . ; rN ;xÞ

�
XN

i1 ;i2¼1
i1<i2

yðc1; . . . ;ci1�1; ri1 ;ci1þ1; . . . ;ci2�1;ri2 ;ci2þ1; . . . ;cN ;xÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼yi1 i2

ðri1 ;ri2 ;xÞ

þ
XN

i¼1

�ðN � 2Þyðc1; . . . ;ci�1;ri;ciþ1; . . . ;cN ;xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼yiðri ;xÞ

þ ðN � 1ÞðN � 2Þ
2

yðc;xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼y0ðxÞ

; ð27Þ
respectively, where c = {c1, . . . ,cN}T is a reference
point in the input domain of R, y(c;x) � y(c1, . . . ,
cN;x), yi(ri;x) � y(c1, . . . ,ci�1, ri, ci+1, . . . ,cN;x) and
yi1i2ðri1 ; ri2 ; xÞ � yðc1; . . . ; ci1�1; ri1 ; ci1þ1; . . . ; ci2�1; ri2 ;
ci2þ1; . . . ; cN ; xÞ. Based on the authors’ past experi-
ence, the mean point of random input defines a suit-
able reference point. These univariate or bivariate
approximations should not be viewed as first- or
second-order Taylor series expansions nor do they
limit the nonlinearity of y(r;x). In fact, all higher-
order univariate or bivariate terms of y(r;x) are
included in Eqs. (26) or (27), which should therefore
generally provide a higher-order approximation of a
multivariate function than equations derived from
first- or second-order Taylor expansions.
3.2. Lagrange interpolations

Consider the univariate component function
yi(ri;x) � y(c1, . . . ,ci�1, ri,ci+1, . . . ,cN;x) in Eq. (26)
or (27). If for sample points ri ¼ rðjÞi ; j ¼ 1; . . . ; n
of R, n distinct function values yðc1; . . . ; ci�1; r

ðjÞ
i ;

ciþ1; . . . ; cN ; xÞ; j ¼ 1; . . . ; n are given, the function
value for an arbitrary ri can be obtained by the
Lagrange interpolation

yiðri; xÞ ¼
Xn

j¼1

fjðriÞyðc1; . . . ; ci�1; r
ðjÞ
i ; ciþ1; . . . ; cN ; xÞ;

ð28Þ

where fjðriÞ �
Qn

k¼1;k 6¼jðri � rðkÞi Þ=
Qn

k¼1;k 6¼jðr
ðjÞ
i � rðkÞi Þ

is the Lagrange shape function. The same idea can
be applied to approximate the bivariate component
function

yi1i2ðri1 ; ri2 ; xÞ ¼
Xn

j2¼1

Xn

j1¼1

fj1
ðri1Þfj2

ðri2Þyðc1; . . . ; ci1�1; r
ðj1Þ
i1 ;

ci1þ1; . . . ; ci2�1; r
ðj2Þ
i2 ; ci2þ1; . . . ; cN ; xÞ;

ð29Þ

where yi1i2ðr
ðj1Þ
i1 ; rðj2Þ

i2 ; xÞ � yðc1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1;

. . . ; ci2�1; r
ðj2Þ
i2 ; ci2þ1; . . . ; cN ; xÞ; j1; j2 ¼ 1; . . . ; n. The

procedure is repeated for all univariate and bivariate
component functions, i.e., for all yi(ri;x), i = 1, . . . ,N

and for all yi1i2ðri1 ; ri2 ; xÞ; i1; i2 ¼ 1; . . . ;N , leading to
the univariate approximation

ŷ1ðR;xÞ ¼
XN

i¼1

Xn

j¼1

fjðRiÞyðc1; . . . ;ci�1; r
ðjÞ
i ;ciþ1; . . . ;cN ;xÞ

� ðN � 1Þyðc;xÞ ð30Þ
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and to the bivariate approximation

ŷ2ðR;xÞ�
XN

i1 ;i2¼1
i1<i2

Xn

j2¼1

Xn

j1¼1

fj1
ðRi1 Þfj2

ðRi2 Þyðc1; . . . ;ci1�1;r
ðj1Þ
i1 ;

ci1þ1; . . . ;ci2�1;r
ðj2Þ
i2 ;ci2þ1; . . . ;cN ;xÞ

�ðN �2Þ
XN

i¼1

Xn

j¼1

fjðRiÞyðc1; . . . ;ci�1;r
ðjÞ
i ;ciþ1; . . . ;cN ;xÞ

þðN �1ÞðN �2Þ
2

yðc;xÞ: ð31Þ
3.3. Monte Carlo simulation

Once the Lagrange shape functions fj(ri) and
deterministic coefficients y(c;x), yðc1; . . . ; ci�1; r

ðjÞ
i ;

ciþ1; . . . ; cN ; xÞ, and yðc1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1; . . . ;

ci2�1; r
ðj2Þ
i2 ; ci2þ1; . . . ; cN ; xÞ are generated, Eqs. (30)

and (31) provide explicit approximations of an effec-
tive elastic property in terms of random input R.
Therefore, any probabilistic characteristics of the
effective property, including its statistical moments
and probability density function, can be easily eval-
uated by performing Monte Carlo simulation on
Eqs. (30) and (31). For example, the lth moment
of an effective elastic property y(R;x) at a point
x 2 D is

E½ylðR; xÞ� ¼ Lim
NS!1

1

N S

XNS

m¼1

ŷl
Sðrm; xÞ

" #
;

l ¼ 1; 2; . . . ;1; ð32Þ

where rm is the mth sample of R, ŷSðrm; xÞ is the S-
variate approximation of y(rm;x), and NS is the
sample size. By setting l = 1 and 2, and S = 1 or 2
in Eq. (32), the univariate (S = 1) or bivariate
(S = 2) approximations of the mean and standard
deviation of an effective property can be obtained.
The probability density function of an effective
property can also be determined in a similar man-
ner, e.g., by developing histograms from the gener-
ated samples. Since Eqs. (30) and (31) do not
require solving additional micromechanical equa-
tions, the embedded Monte Carlo simulation can
be efficiently conducted for any sample size. Note
that y(R;x) is a non-homogeneous output random
field and hence, both the moments and probability
density function of y(R;x) depend on x 2 D.

The stochastic methods involving univariate (Eq.
(30)) or bivariate (Eq. (31)) approximations, n-point
Lagrange interpolation (Eq. (28) or (29)), and asso-
ciated Monte Carlo simulation are defined as the
univariate or bivariate decomposition method in this
paper.

3.4. Computational effort

The univariate and bivariate approximations
require numerical function evaluations of y(r;x)
(e.g., solving micromechanical equations) to deter-
mine coefficients yðc; xÞ; yðc1; . . . ; ci�1; r

ðjÞ
i ; ciþ1; . . . ;

cN ; xÞ, and yðc1; . . . ; ci1�1; r
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1; r

ðj2Þ
i2 ;

ci2þ1; . . . ; cN ; xÞ for i, i1, i2 = 1, . . . ,N and j, j1, j2 =
1, . . . ,n. Hence, the computational effort required
by the proposed method can be viewed as numeri-
cally solving a micromechanics problem at several
deterministic input defined by user-selected sample
points of R. There are n and n2 numerical evalua-
tions of y(r;x) involved in Eqs. (28) and (29), respec-
tively. Therefore, the total cost for the univariate
decomposition method entails a maximum of
nN + 1 function evaluations, and for the bivariate
approximation, N(N � 1)n2/2 + nN + 1 maximum

function evaluations are required. If the selected
sample points include a common sample point in
each coordinate ri, the number of function evalua-
tions reduces to (n � 1)N + 1 and N(N � 1) ·
(n � 1)2/2 + (n � 1)N + 1 for univariate and bivari-
ate methods, respectively.

The stochastic framework presented here in con-
junction with the Mori–Tanaka model is not limited
to a specific micromechanical formulation. For
problems requiring more advanced deterministic
formulations entailing finite element or other
numerical analyses can be easily incorporated by
replacing Eqs. (15)–(23) with their relevant equa-
tions or algorithms. In other words, any output
function y(R;x) associated with a selected determin-
istic micromechanical formulation is applicable for
subsequent stochastic analysis. However, all numer-
ical results reported in this paper are based on the
Mori–Tanaka model.

4. Numerical examples

Four FGM examples including a limited effort of
deterministic experimental validation are presented
to illustrate various aspects of the stochastic micro-
mechanical model developed. The material compo-
sition in Examples 1, 3, and 4 varies along a single
dimension (x), leading to spatially-variant volume
fractions /i(x); i = 1,2,3. Since /1(x) + /2(x) +
/3(x) = 1, only two volume fractions must be spec-
ified, such as the material volume fraction /2(x) of



Table 1
Second-moment characteristics of volume fractions in three
FGMs

Parameters Cenosphere
polyester (i = 2)a

Ni–MgO
(i = 3)b

Ni3Al–TiC
(i = 3)b

ai,0 0 0.069 0.034
ai,1 0.109 0.85 0.087
ai,2 4.25 �3.67 �0.936
ai,3 �9.762 12.866 2.831
ai,4 8.629 �17.181 �3.543
ai,5 �2.748 7.356 1.618
bi,0 0 0.012 0.001
bi,1 0.178 0.118 0.014
bi,2 �0.309 �0.976 �0.078
bi,3 0.155 3.461 0.156
bi,4 0 �4.798 �0.14
bi,5 0 2.205 0.049
ci 5 5 5

a For particle: l2ðxÞ ¼
P5

j¼0a2;jxj; r2ðxÞ ¼
P5

j¼0b2;jxj; C~/2
ðsÞ ¼

expð�c2jsjÞ.
b For porosity: l3ðxÞ ¼

P5
j¼0a3;jxj; r3ðxÞ ¼

P5
j¼0b3;jxj; C~/3

ðsÞ¼
expð�c3jsjÞ.
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phase 2 and the porosity volume fraction /3(x) of
phase 3. In all examples, /i(x) is a one-dimensional
Beta random field, which has the marginal probabil-
ity density function (Ferrante and Graham-Brady,
2005)

fið/iÞ ¼
1

Bðqi ;tiÞ
/qi�1

i ð1� /iÞ
ti�1
; 0 6 /i 6 1

0; otherwise

(
;

ð33Þ

where qi and ti are distribution parameters, B(qi, ti) =
C(qi)C(ti)/C(qi + ti) is the beta function, and
CðsÞ �

R1
0

expð�gÞgs�1 dg is the Gamma function.
It has mean liðxÞ ¼

P5
j¼0ai;jxj and standard devia-

tion riðxÞ ¼
P5

j¼0bi;jxj, where ai,j and bi,j are polyno-
mial coefficients. The standardized volume fraction
~/iðxÞ � ½/iðxÞ � liðxÞ�=riðxÞ, which has zero mean
and unit variance, is also a Beta random field with
its marginal probability distribution obtained from
the prescribed Beta distribution of /i(x). In Exam-
ples 1, 3, and 4, the covariance function of ~/iðxÞ is
C~/i
ðsÞ � E½~/iðxÞ~/iðxþ sÞ� ¼ expð�cijsjÞ, where ci is

the correlation distance parameter. The transition
region in Examples 3 and 4 is defined by
0.4 6 /2(x) 6 0.6.

In Examples 3 and 4, the univariate or bivariate
decomposition method employed to calculate prob-
abilistic characteristics of effective properties was
formulated in the Gaussian image (u space) of the
original space (r space) of the random input R.
The reference point c = 0 and n = 3 was selected.
In the u space, sample points ðc1; . . . ; ci�1; u

ðjÞ
i ;

ciþ1; . . . ; cN Þ and ðc1; . . . ; ci1�1; u
ðj1Þ
i1 ; ci1þ1; . . . ; ci2�1;

uðj2Þ
i2 ; ci2þ1; . . . ; cNÞ were chosen with ci = 0 and uni-

formly distributed points uðjÞi or uðj1Þ
i1 or uðj2Þ

i2 ¼
�1; 0; 1. Therefore, (n � 1)N + 1 and (n � 1)2N

(N � 1)/2 + (n � 1)N + 1 function evaluations are
involved in univariate and bivariate methods,
respectively.

4.1. Example 1

The first example entails evaluation of the ade-
quacy of the K–L approximation for representing
random phase volume fractions in three types of
FGM. In type 1, a two-phase cenosphere-polyester
FGM, prepared by dispersing aluminum silicate
cenospheres (phase 2) in a polyester resin matrix
(phase 1) (Parameswaran and Shukla, 2000), was
examined. A three-phase Ni–MgO FGM compris-
ing Ni (phase 1), MgO (phase 2), and porosity
(phase 3) and another three-phase Ni3Al–TiC
FGM comprising Ni3Al (phase 1), TiC (phase 2),
and porosity (phase 3) define the remaining two
FGM types (Zhai et al., 1993). In each FGM, the
particle or porosity volume fraction varies along a
single coordinate 0 6 x 6 t, where t denotes the
total length of the variation. Measured volume
fractions of cenosphere (i.e., /2(x) in type 1) and
porosity (i.e., /3(x) in types 2 and 3) reported by
Parameswaran and Shukla (2000) and Zhai et al.
(1993) were employed to characterize li(x), ri(x),
and C~/i

ðsÞ. The parameters of these input functions
are listed in Table 1. These second-moment proper-
ties, along with the assumption of Beta marginal
distribution, completely describe the statistical char-
acteristics of random volume fractions. In all three
FGM types, the number of terms retained in the
K–L approximation of the volume fraction was
M = 16.

For 0 < C~/i
< 1, Eq. (8) was solved to determine

the required covariance function CaiðsÞ. The
Cai � C~/i

plot, depicted in Fig. 4, suggests that Cai

is, indeed, very close to C~/i
. Therefore, CaiðsÞ can

also be satisfactorily approximated by the exponen-
tial covariance kernel. The eigensolutions of CaiðsÞ
were obtained analytically (Ghanem and Spanos,
1991).

Fig. 5(a) presents experimentally measured scat-
ter plots of the cenosphere volume fraction as a
function of the normalized spatial coordinate
(x/t). The scatter is due to sample-to-sample
variability observed in various specimens of the
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Fig. 5. Cenosphere volume fraction: (a) experiment; (b)
simulation.
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Fig. 6. Porosity volume fraction in Ni–MgO FGM.
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Fig. 7. Porosity volume fraction in Ni3Al–TiC FGM.
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cenosphere-polyester FGM (Parameswaran and
Shukla, 2000). By generating realizations of stan-
dard Gaussian random variables Zi,k; i = 2;
k = 1, . . . , 16 and invoking Eqs. (5) and (14), sam-
ples of the cenosphere volume fraction were
determined. The predicted (simulated) samples of
the cenosphere volume fraction, presented in
Fig. 5(b), are in close agreement with experimental
samples in Fig. 5(a). The second-moment proper-
ties of the simulated volume fraction were obtained
from the experimental data.

Figs. 6 and 7 show simulated samples of random
volume fractions of porosity in the Ni–MgO FGM
and the Ni3Al–TiC FGM, which are plotted against
relative volume fractions VMgO/(VMgO + VNi) and
V TiC=ðV TiC þ V Ni3AlÞ, respectively, where V indicates
volume and its subscripts denote material phases.
The predicted samples from the proposed random
field model with calibrated second-moment proper-
ties and assuming Beta marginal distribution com-
pare well with experimental data (Zhai et al.,
1993) available at selected points. Both experimen-



Table 3
Predicted and experimental elastic moduli of non-porous
composite

Particle volume
fraction, %

E=Em
a

Predicted Experimental (Cohen and
Ishai, 1967)
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tal data and simulated samples indicate larger
porosity and larger scatter of porosity in Ni–MgO
FGM than in Ni3Al–TiC FGM. Figs. 5–7 demon-
strate the usefulness of the proposed random field
model in accurately simulating spatial variability
of phase volume fractions.
8 1.22 1.15
12 1.32 1.21
15.75 1.42 1.4
18.25 1.49 1.52
22.25 1.61 1.68
23.25 1.65 1.73
23.5 1.66 1.74
26.25 1.75 1.86
26.75 1.76 1.89
27.75 1.8 2

a E ¼ effective elastic modulus; Em = elastic modulus of
matrix.

Table 4
Predicted and experimental elastic moduli of porous composite

Particle
volume
fraction, %

Porosity
volume
fraction, %

E=Em
a

Predicted Experimental
(Cohen and Ishai,
1967)

12 30.5 0.68 0.66
15.75 10 1.11 1.15
18.25 38 0.65 0.57
22.25 25 0.97 1.13
23.25 21.5 1.06 1.07
23.5 20 1.1 1.17
26.25 31.25 0.87 0.81
26.75 10 1.43 1.73
27.75 6.5 1.57 1.9
33.25 14 1.49 1.48
4.2. Example 2

The objective of Example 2 is to deterministically
validate the three-phase Mori–Tanaka model, i.e.,
Eqs. (15)–(22) in predicting effective properties of
heterogeneous materials. The validation effort is
focused on evaluating effective elastic modulus ðEÞ
of three types of composites in which the particle
and/or porosity are uniformly distributed (Cohen
and Ishai, 1967): (1) porous matrix, where porosity
in the epoxy matrix (50% shell epicote 815 and
50% versamid 140 by weight) ranges from 1.7% to
34%; (2) non-porous composite, where silica (Ottawa
sand) particles in the epoxy matrix have volume
fractions varying from 8% to 27.75%; and (3) porous

composite, where both silica particles and porosity
co-exist and have respective volume fractions vary-
ing from 12% to 33.25% and 10% to 30.5%. The
elastic properties of constituents are: Em =
22,000 kg/cm2; Ep = 750,000 kg/cm2; vm = 0.3; and
mp = 0.25, where the subscripts m and p indicate
matrix and particle, respectively (Cohen and Ishai,
1967). No statistical uncertainties were included
in this example. The micromechanical analysis of
the porous matrix was conducted by forcing
Table 2
Predicted and experimental elastic moduli of porous matrix

Porosity volume
fraction, %

E=Em
a

Predicted Experimental (Cohen and
Ishai, 1967)

1.7 0.97 0.97
7.9 0.85 0.79
9 0.83 0.82

13.5 0.76 0.72
15 0.73 0.69
16.75 0.71 0.68
18.2 0.69 0.64
20.9 0.65 0.62
26 0.58 0.57
28 0.56 0.55
32 0.51 0.48
34 0.49 0.45

a E ¼ effective elastic modulus; Em = elastic modulus of
matrix.

a E ¼ effective elastic modulus; Em = elastic modulus of
matrix.
/p(x) = /m(x) and using degenerative properties of
voids. For the non-porous composite, /m(x) = 0.

Tables 2–4 respectively list predicted values of
the normalized effective modulus E=Em for porous
matrix, non-porous composite, and porous compos-
ite, calculated for various input values of porosity
and/or particle volume fractions. Compared with
experimental measurements of E=Em, also presented
in Tables 2–4, the Mori–Tanaka model provides
reasonably accurate estimates of the effective prop-
erties of heterogeneous materials considered in this
study. The average errors in the prediction relative
to experimental results are 4.7%, 5.5%, and 8.5%
for porous matrix, non-porous composite, and por-
ous composite, respectively.
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Fig. 8. Mean and standard deviation of effective modulus of
cenosphere-polyester FGM.
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4.3. Example 3

Consider again three FGM types defined in
Example 1. The two-phase cenosphere-polyester
FGM (type 1) includes polyester and cenosphere
as phases 1 and 2. The three-phase Ni–MgO FGM
(type 2) includes Ni, MgO, and porosity; and the
three-phase Ni3Al–TiC FGM (type 3) includes
Ni3Al, TiC, and porosity as phases 1, 2, and 3. In
addition to random field models of stochastic
volume fractions of phase 2 (cenosphere) in type 1
and of stochastic volume fractions of phase 3
(porosity) in types 2 and 3, the elastic moduli E1

and E2 and Poisson’s ratios m1 and m2 of constituent
materials were assumed to be independent lognor-
mal random variables. Means and coefficients of
variation of these constituents for each FGM are
defined in Table 5. Using M = 16 for the K–L
approximations of ~/2ðxÞ or ~/3ðxÞ, the total number
of random variables is N = M + 4 = 20. The uni-
variate decomposition method was employed to cal-
culate second-moment characteristics of the effective
properties of all three FGMs.

Fig. 8 depicts plots of both predicted mean and
standard deviation of the effective elastic modulus
of the cenosphere-polyester FGM for 0 6 x/t 6 1.
The high-low experimental data of Parameswaran
and Shukla (2000), plotted in Fig. 8, indicate good
agreement between experimental and predicted
means when x/t 6 0.75. However, the predicted
Table 5
Statistical properties of constituents in three FGMsa

Random variable Mean Coefficient of variation, %

Cenosphere-polyesterb

E1 (GPa) 3.6 0.1
E2 (GPa) 6 0.15
m1 0.41 0.1
m2 0.35 0.15

Ni–MgOc

E1 (GPa) 146 0.1
E2 (GPa) 104 0.1
m1 0.35 0.1
m2 0.16 0.1

Ni3Al–TiCd

E1 (GPa) 199 0.15
E2 (GPa) 460 0.15
m1 0.295 0.15
m2 0.19 0.15

a Random variables are independent and lognormal.
b 1 = polyester; 2 = cenosphere.
c 1 = Ni; 2 = MgO.
d 1 = Ni3Al; 2 = TiC.
mean at x/t = 0.86 is much lower than its experi-
mental value. The underprediction did not improve
when using the results of an alternative microme-
chanical model that includes particle interactions
(Yin et al., 2004), also plotted in Fig. 8. It is not
clear why the experimental modulus at x/t = 0.86
is larger than both micromechanical predictions.

Fig. 9(a) and (b) present second-moment charac-
teristics of effective modulus and effective Poisson’s
ratio, respectively, of the Ni–MgO FGM, obtained
by the proposed stochastic model. The statistics are
plotted against the relative volume fraction VMgO/
(VMgO + VNi). The predicted mean curves correlate
well with the experimental trend. Deterministic
results from two alternative models based on the
mean-field theory (Zhai et al., 1993) and VCFEM
(Grujicic and Zhang, 1998), plotted in Fig. 9(a)
and (b), also indicate their satisfactory performance.
The predicted means employing the Mori–Tanaka
model and deterministic results by the mean-field
theory (Zhai et al., 1993), the particle interaction
model (Yin et al., 2004) and VCFEM (Grujicic and
Zhang, 1998) for the Ni3Al–TiC FGM, presented
in Fig. 10(a) and (b) for effective elastic modulus
and Poisson’s ratio, respectively, also compare fairly
well with the associated experimental data.

In addition to the mean response, the decomposi-
tion method provides standard deviations of the
effective properties of both Ni–MgO and Ni3Al–
TiC FGMs, calculated without (option 1) and with
(option 2) variability of constituent material proper-
ties, as shown in Figs. 9 and 10. Due to the small
randomness of the porosity volume fraction of
Ni3Al–TiC FGM (Fig. 7), the standard deviations
of the effective properties calculated without constit-
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Fig. 9. Mean and standard deviation of effective properties of
Ni–MgO FGM: (a) elastic modulus; (b) Poisson’s ratio.

Table 6
Statistical properties of constituents in an FGMa

Random variable Mean Coefficient of variation (%)

E1 (GPa) 199 0.1
E2 (GPa) 460 0.15
m1 0.295 0.1
m2 0.19 0.15

a Random variables are independent and lognormal.
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Fig. 10. Mean and standard deviation of effective properties of
Ni3Al–TiC FGM: (a) elastic modulus; (b) Poisson’s ratio.
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uent material property variations in Fig. 10(a) and
(b) are also small and hence negligible. However,
the standard deviations of the effective elastic mod-
ulus of the Ni–MgO FGM in Fig. 9(a), which entails
large randomness of the porosity volume fraction
(Fig. 6), are dependent on variations of both the
constituent material property and porosity volume
fraction. In both FGMs, the randomness of the
porosity volume fraction has a negligible effect on
the variability of the Poisson’s ratio.

4.4. Example 4

The final example entails evaluating probability
density functions of effective FGM properties by
propagating input uncertainties via the stochastic
micromechanical model developed. Consider again
an FGM system with the material composition
varying along a single coordinate 0 6 x 6 t, where
t denotes the total length of the variation. Means
and coefficients of variation of constituent elastic
properties, which follow independent lognormal dis-
tribution, are defined in Table 6. The particle (phase
2) and porosity (phase 3) volume fractions /2(x)
and /3(x) were modeled as non-homogeneous, Beta
random fields with respective means l2ðxÞ ¼ �x and
l3ðxÞ ¼ 0:1�xð1� �xÞ, respective standard deviations
r2ðxÞ ¼ 0:6�xð1� �xÞ and r3ðxÞ ¼ 0:1�xð1� �xÞ, where
�x ¼ x=t and covariance functions C~/2

ðsÞ ¼ C~/2
ðsÞ ¼

expð�5jsjÞ. The Gaussian image field ai(x) of ~/iðxÞ
was parameterized using 8 random variables. There-
fore, the input random vector is R ¼ fZ2;1; . . . ;
Z2;8; Z3;1; . . . ; Z3;8; E1; E2; m1; m2gT 2 RN , where the
total number of random variables is N = 2 · 8 +
4 = 20.

Fig. 11(a) and (b) compare predicted probability
densities and/or histograms of the effective elastic



100 150 200 250 300 350 400 450

Effective Young's modulus, GPa

0.000

0.004

0.008

0.012

0.016

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n,

 1
/G

Pa

Monte Carlo (106)

Univariate (41)

Bivariate (801)

x/t = 0.5

0.15 0.20 0.25 0.30 0.35

Effective Poisson's ratio

0

5

10

15

20

25

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Monte Carlo (106 )

Univariate (41)

Bivariate (801)

x/t = 0.5
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modulus and Poisson’s ratio at x/t = 0.5 by the uni-
variate and bivariate decomposition methods and
the direct Monte Carlo simulation involving 106

samples. The decomposition method, which entails
Monte Carlo analysis employing the univariate or
bivariate approximations in Eqs. (11) or (12), per-
mits inexpensive calculation of the effective modulus
by sidestepping additional micromechanical
analyses. Compared with the direct Monte Carlo
simulation, the univariate method retaining only
individual effects of random variables yields a very
accurate estimate of the probability densities of
the effective properties. The bivariate method, which
includes both individual and cooperative effects of
random variables, also provides excellent results.
No meaningful difference in the results of univariate
and bivariate methods was observed in this particu-
lar example. Therefore, the univariate method can
be employed for subsequent calculations. Using
n = 3 and N = 20, the univariate and bivariate
decomposition methods involve only 41 and 801
function evaluations (micromechanical analyses),
respectively, whereas 106 analyses were performed
by the direct Monte Carlo simulation. Therefore,
the decomposition method developed, in particular
the univariate version, is not only accurate, but also
computationally efficient.

Using the univariate decomposition method, the
probability densities of the effective elastic modulus
at x/t = 0.3 and 0.7 are presented in Fig. 12(a); and
the probability densities of the Poisson’s ratio at
x/t = 0.3 and 0.7 are presented in Fig. 12(b). These
probability densities, which can be evaluated at any
spatial location, should provide useful information
for reliability analysis and reliability-based design
optimization of FGMs.
5. Conclusions

A stochastic micromechanical model was devel-
oped for predicting probabilistic characteristics of
elastic mechanical properties of an isotropic func-
tionally graded material (FGM) subject to statistical
uncertainties in material properties of constituents
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and their respective volume fractions. The model
involves: (1) non-homogeneous, non-Gaussian ran-
dom field representation of phase volume fractions
and random variable description of constituent
material properties; (2) a three-phase Mori–Tanaka
model for underlying micromechanics and homoge-
nization; and (3) a novel dimensional decomposi-
tion method for obtaining statistical moments and
probabilistic density functions of effective FGM
properties. The proposed decomposition results in
a finite, hierarchical, and convergent series for an
effective elastic property of interest. The computa-
tional effort in finding probabilistic characteristics
of an effective property can be viewed as performing
deterministic micromechanical analyses at selected
input defined by sample points. Hence, alternative
micromechanical formulations can be easily embed-
ded in the proposed stochastic model. Results of
numerical examples indicate that the stochastic
model developed provides accurate representation
of spatial variability in phase volume fractions and
yields accurate probabilistic characteristics of effec-
tive elastic properties of FGM. The underlying
deterministic analysis employing a three-phase
Mori–Tanaka model also provides excellent predic-
tion of effective properties of several heterogeneous
media examined in this work. The computational
efforts required by the univariate and bivariate ver-
sions of the decomposition method are linear and
quadratic with respect to the number of random
variables involved. Therefore, the model developed
is also computationally efficient when compared
with the direct Monte Carlo simulation.
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