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A Spline Dimensional Decomposition for Uncertainty Quantification in High
Dimensions\ast 

Sharif Rahman\dagger and Ramin Jahanbin\dagger 

Abstract. This study debuts a new spline dimensional decomposition (SDD) for uncertainty quantification
analysis of high-dimensional functions, including those endowed with high nonlinearity and
nonsmoothness, if they exist, in a proficient manner. The decomposition creates a hierarchical expan-
sion for an output random variable of interest with respect to measure-consistent orthonormalized
basis splines (B-splines) in independent input random variables. A dimensionwise decomposition of
a spline space into orthogonal subspaces, each spanned by a reduced set of such orthonormal splines,
results in SDD. Exploiting the modulus of smoothness, the SDD approximation is shown to converge
in mean-square to the correct limit. The computational complexity of the SDD method is polyno-
mial, as opposed to exponential, thus alleviating the curse of dimensionality to the extent possible.
Analytical formulae are proposed to calculate the second-moment properties of a truncated SDD
approximation for a general output random variable in terms of the expansion coefficients involved.
Numerical results indicate that a low-order SDD approximation of nonsmooth functions calculates
the probabilistic characteristics of an output variable with an accuracy matching or surpassing those
obtained by high-order approximations from several existing methods. Finally, a 34-dimensional
random eigenvalue analysis demonstrates the utility of SDD in solving practical problems.

Key words. polynomial chaos expansion, polynomial dimensional decomposition, sparse grids, spline chaos
expansion
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1. Introduction. Uncertainty quantification, commonly referred to as UQ, is concerned
with characterizing, propagating, and managing statistical variability in computer models of
complex systems [27, 30]. It is usually performed in conjunction with stochastic methods that
estimate the statistical moments, probability law, and other relevant properties of an output
variable of interest. A family of popular methods, namely, the polynomial chaos expansion
(PCE) [2, 31] and polynomial dimensional decomposition (PDD) methods [23], is premised on
the smoothness property of the output function because the polynomial basis of the expansion
or decomposition is also smooth and globally supported. Although these polynomial-based
methods have played a central role in UQ for many years, their main drawback is inflexi-
bility. While PCE and PDD seem to do all right with sufficiently low expansion orders or
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degrees1 meant for smooth functions, they are inflicted with uncontrolled fluctuations if the
expansion order is excessively high, causing unreliable predictions of stochastic performance
for nonsmooth functions. This observation suggests that in order to attain better approxi-
mation quality for nonsmooth functions on a large domain, one should work with smoothly
connected piecewise polynomials, a.k.a splines, of relatively low expansion orders and smaller
subdomains.

Recently, a spline chaos expansion (SCE), comprising orthonormalized basis splines (B-
splines) in input random variables, has been developed to tackle locally pronounced, highly
nonlinear, or nonsmooth functions [25]. The expansion is similar to PCE, but, by swapping
polynomials for B-splines, SCE achieves a greater flexibility in selecting expansion orders and
dealing with subdomains. In consequence, a low-degree SCE approximation with an adequate
mesh size produces a markedly more accurate estimate of the output variance of a nonsmooth
function than the commonly used PCE with overly large expansion orders. However, due to
the tensor-product structure, SCE, like PCE, suffers from the curse of dimensionality. The
curse becomes worse for SCE as there are substantially more basis functions in SCE than in
PCE. Since PDD, equipped with a desirable dimensional hierarchy of input variables, is able
to deflate PCE's curse of dimensionality to the extent possible, there is a cautious optimism
that the same feat can be repeated in the context of SCE. This is the chief motivation for this
work.

The B-splines have been exploited to build the sparse-grid methods [10, 28], but they
are not orthogonal with respect to the probability measure of input random variables. More
often than not, the resultant approximations are only C0-continuous at element boundaries,
as is also the case for the multielement collocation method [9]. More notably, these methods
are entrenched in the referential dimensional decomposition (RDD) [21], also known as an-
chored decomposition [12] or cut-HDMR [20], of a high-dimensional function. In contrast, the
method developed in this work is founded on the analysis-of-variance (ANOVA) dimensional
decomposition (ADD), which is generally superior to RDD. Indeed, an error analysis reveals
the suboptimality of RDD approximations, indicating that an RDD approximation, regardless
of how the reference point is selected, cannot be better than an ADD approximation for the
same degrees of interaction [21].

This paper presents a new, alternative dimensionwise orthogonal expansion, referred to
as spline dimensional decomposition or SDD, for a general UQ analysis of high-dimensional
functions, including those featuring nonsmoothness, subject to independent but otherwise ar-
bitrary probability measures of input random variables. It focuses on the fundamentals and
mathematical aspects of SDD, followed by a few applications. Readers interested in further
applications to isogeometric analysis and latter developments of an optimal version should
consult the companion papers [7, 14]. The paper is organized as follows. Section 2 starts with
mathematical preliminaries and assumptions. A brief account of univariate B-splines, includ-
ing their orthonormalized version, is presented in section 3. Section 4 explains the construction
of dimensionwise multivariate B-splines for generating an orthonormal basis of a spline space
of interest. Section 5 properly introduces SDD for a square-integrable random variable and

1The nouns degree and order are used synonymously in this paper when referring to a polynomial or spline
expansion.D
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then affirms the convergence and optimality of SDD. The formulae for the mean and variance
of an SDD approximation are also deduced. Numerical results from two example problems
are discussed in section 6. Section 7 demonstrates the power of the SDD method by solving
a large-scale engineering problem from the automotive industry. Finally, the conclusions are
drawn in section 8.

2. Input random variables. Let \BbbN := \{ 1, 2, . . .\} , \BbbN 0 := \BbbN \cup \{ 0\} , and \BbbR := ( - \infty ,+\infty )
represent the sets of positive integer (natural), nonnegative integer, and real numbers, respec-
tively. Denote by [ak, bk] a finite closed interval, where ak, bk \in \BbbR , bk > ak. Then, given
N \in \BbbN , \BbbA N = \times N

k=1[ak, bk] represents a closed bounded domain of \BbbR N .
Let (\Omega ,\scrF ,\BbbP ) be a probability space, where \Omega is a sample space representing an abstract

set of elementary events, \scrF is a \sigma -algebra on \Omega , and \BbbP : \scrF \rightarrow [0, 1] is a probability measure.
Defined on this probability space, consider an N -dimensional input random vector X :=
(X1, . . . , XN )\intercal , describing the statistical uncertainties in all system parameters of a stochastic
or UQ problem. Denote by F\bfX (x) := \BbbP (\cap N

i=1\{ Xk \leq xk\} ) the joint distribution function of
X. The kth component of X is a random variable Xk, which has the marginal probability
distribution function FXk

(xk) := \BbbP (Xk \leq xk). The nonzero, finite integer N represents the
number of input random variables and is often referred to as the dimension of the stochastic
or UQ problem. Albeit subjective, here, the stochastic dimension exceeding 10 is considered
to be a high-dimensional UQ problem.

A set of assumptions on input random variables used or required by SDD is as follows.

Assumption 2.1. The input random vectorX := (X1, . . . , XN )\intercal satisfies all of the following
conditions:

1. All component random variables Xk, k = 1, . . . , N , are statistically independent, but
not necessarily identically distributed.

2. Each input random variable Xk is defined on a bounded interval [ak, bk] \subset \BbbR . There-
fore, all moments of Xk exist, that is, for all l \in \BbbN 0,

\BbbE 
\Bigl[ 
X l

k

\Bigr] 
:=

\int 
\Omega 
X l

k(\omega )d\BbbP (\omega ) <\infty ,

where \BbbE is the expectation operator with respect to the probability measure \BbbP .
3. Each input random variable Xk has absolutely continuous marginal probability distri-

bution function FXk
(xk) and continuous marginal probability density function fXk

(xk) :=
\partial FXk

(xk)/\partial xk with a bounded support [ak, bk] \subset \BbbR . Consequently, with items 1 and 2
in mind, the joint probability distribution function F\bfX (x) and joint probability density
function f\bfX (x) := \partial NF\bfX (x)/\partial x1 \cdot \cdot \cdot \partial xN of X are obtained from

F\bfX (x) =

N\prod 
k=1

FXk
(xk) and f\bfX (x) =

N\prod 
k=1

fXk
(xk),

respectively, with a bounded support \BbbA N \subset \BbbR N of the density function.

Assumption 2.1 warrants the existence of a relevant sequence of orthogonal polynomi-
als or splines consistent with the input probability measure. The discrete distributions and
dependent variables are not considered in the paper.D
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Given the abstract probability space (\Omega ,\scrF ,\BbbP ) of X, there is an image probability space
(\BbbA N ,\scrB N , f\bfX dx), where \BbbA N is the image of \Omega from the mappingX : \Omega \rightarrow \BbbA N and \scrB N := \scrB (\BbbA N )
is the Borel \sigma -algebra on \BbbA N \subset \BbbR N . Appropriate statements and objects in the abstract
probability space have obvious counterparts in the associated image probability space. Both
probability spaces will be used in the paper.

3. Univariate orthonormal splines. Let x = (x1, . . . , xN ) be an arbitrary point in \BbbA N . For
the coordinate direction k, k = 1, . . . , N , define a nonnegative integer pk \in \BbbN 0 and a positive
integer nk \geq (pk + 1) \in \BbbN , representing the degree and total number of basis functions,
respectively. Then, a knot sequence

(3.1)
\bfitxi k := \{ \xi k,ik\} 

nk+pk+1
ik=1 = \{ ak = \xi k,1, \xi k,2, . . . , \xi k,nk+pk+1 = bk\} ,
\xi k,1 \leq \xi k,2 \leq \cdot \cdot \cdot \leq \xi k,nk+pk+1

is defined on the interval [ak, bk] \subset \BbbR by a nondecreasing sequence of real numbers, where \xi k,ik
is the ikth knot with ik = 1, 2, . . . , nk + pk + 1 representing the knot index for the coordinate
direction k. A knot \xi k,ik may appear up to pk + 1 times. Therefore, the knot sequence can
also be written as

(3.2) \bfitxi k = \{ ak =

mk,1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,1, . . . , \zeta k,1,

mk,2 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,2, . . . , \zeta k,2, . . . ,

mk,rk - 1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,rk - 1, . . . , \zeta k,rk - 1,

mk,rk
\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  

\zeta k,rk , . . . , \zeta k,rk = bk\} ,
ak = \zeta k,1 < \zeta k,2 < \cdot \cdot \cdot < \zeta k,rk - 1 < \zeta k,rk = bk,

where \zeta k,jk , jk = 1, . . . , rk, are rk unique knots, each of which has multiplicity 1 \leq mk,jk \leq 
pk+1. A knot sequence is said to be (pk+1)-open if the first and last knots appear pk+1 times.
Furthermore, a knot sequence is said to be (pk+1)-open with simple knots if it is (pk+1)-open
and all interior knots appear only once. A (pk+1)-open knot sequence with or without simple
knots is commonly found in applications [3]. For further details, read Appendix A of this
paper or Chapter 2 of the book by Cottrell, Hughes, and Bazilevs [3].

3.1. Standard B-splines. Let \bfitxi k be a general knot sequence of length at least pk + 2 for
the interval [ak, bk], as defined by (3.1). Denote by Bk

ik,pk,\bfitxi k
(xk) the ikth univariate B-spline

function with degree pk \in \BbbN 0 for the coordinate direction k. Given the zero-degree basis
functions,

Bk
ik,0,\bfitxi k

(xk) :=

\Biggl\{ 
1, \xi k,ik \leq xk < \xi k,ik+1,

0 otherwise

for k = 1, . . . , N , all higher-order B-spline functions on \BbbR are defined recursively by the Cox-de
Boor formula [4, 6, 19]

Bk
ik,pk,\bfitxi k

(xk) :=
xk  - \xi k,ik

\xi k,ik+pk  - \xi k,ik
Bk

ik,pk - 1,\bfitxi k
(xk) +

\xi k,ik+pk+1  - xk
\xi k,ik+pk+1  - \xi k,ik+1

Bk
ik+1,pk - 1,\bfitxi k

(xk),

where 1 \leq k \leq N , 1 \leq ik \leq nk, 1 \leq pk <\infty , and 0/0 is considered as zero.
The B-spline functions are endowed with a number of desirable properties [4, 6, 19]. They

are nonnegative, locally supported on a subinterval, linearly independent, and committed toD
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partition of unity [3]. A B-spline is also everywhere pointwise C\infty -continuous except at the
knots \zeta k,ik of multiplicity mk,ik , where it is Cpk - mk,ik -continuous, provided that 1 \leq mk,ik <
pk + 1. Some of these properties will be exploited in the development of SDD.

3.2. Spline space. Suppose for nk > pk \geq 0 a knot sequence \bfitxi k has been specified on the
interval [ak, bk]. The associated spline space of degree pk, denoted by \scrS k,pk,\bfitxi k , is conveniently
defined using an appropriate polynomial space. Define such a polynomial space as a finite-
dimensional linear space

\Pi pk :=

\Biggl\{ 
g(xk) =

pk\sum 
l=0

ck,lx
l
k : ck,l \in \BbbR 

\Biggr\} 
of real-valued polynomials in xk of degree at most pk.

Definition 3.1 (see Schumaker [26]). For nk > pk \geq 0, let \bfitxi k be a (pk + 1)-open knot
sequence on the interval [ak, bk], as defined by (3.2) with mk,1 = mk,rk = pk + 1. Then the
space
(3.3)

\scrS k,pk,\bfitxi k :=

\left\{           
gk : [ak, bk] \rightarrow \BbbR : there exist polynomials gk,1, gk,2, . . . , gk,rk - 1 in \Pi pk

such that gk(xk) = gk,ik(xk) for xk \in [\zeta k,ik , \zeta k,ik+1), ik = 1, . . . , rk  - 1,

and
\partial jkgk,ik - 1

\partial xk
(\zeta k,ik) =

\partial jkgk,ik
\partial xk

(\zeta k,ik) for jk = 0, 1, . . . , pk  - mk,ik ,

ik = 2, . . . , rk  - 1

\right\}           
is defined as the spline space of degree pk with distinct knots \zeta k,1, . . . , \zeta k,rk of multiplicities
mk,1 = pk + 1, 1 \leq mk,2 \leq pk + 1, . . ., 1 \leq mk,rk - 1 \leq pk + 1, mk,rk = pk + 1.

The spline space is uniquely described by distinct interior knots \zeta k,2, . . . , \zeta k,rk - 1 of mul-
tiplicities mk,2, . . . ,mk,rk - 1. Indeed, the multiplicities determine the structure of \scrS k,pk,\bfitxi k by
regulating the smoothness of the splines at interior knots. For instance, if mk,ik = pk + 1,
ik = 2, . . . , rk  - 1, then two polynomial pieces gk,ik - 1 and gk,ik in the subintervals associated
with the knot \xi k,ik are unattached, possibly creating a jump discontinuity at \xi k,ik . In this
case, \scrS k,pk,\bfitxi k will be the roughest space of splines. If mk,ik < pk + 1, ik = 2, . . . , rk  - 1,
then the two aforementioned polynomial pieces are joined smoothly in the sense that the
first pk  - mk,ik derivatives are all continuous across the knot. More specifically, if mk,ik = 1,
ik = 2, . . . , rk  - 1, then there are simple knots with the corresponding spline space becoming
the smoothest space of piecewise polynomials of degree at most pk.

Proposition 3.2. The spline space \scrS k,pk,\bfitxi k is a linear space of dimension

(3.4) dim\scrS k,pk,\bfitxi k = nk =

rk - 1\sum 
ik=2

mk,ik + pk + 1.

Proposition 3.3. For nk > pk \geq 0, let \bfitxi k be a (pk + 1)-open knot sequence on the interval
[ak, bk]. Denote by

(3.5)
\Bigl\{ 
Bk

1,pk,\bfitxi k
(xk), . . . , B

k
nk,pk,\bfitxi k

(xk)
\Bigr\} 
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a set of nk B-splines of degree pk. Then

\scrS k,pk,\bfitxi k := span\{ Bk
ik,pk,\bfitxi k

(xk)\} ik=1,...,nk
.

3.3. Orthonormalized B-splines. The B-splines presented in the previous subsection, al-
though they form a basis of the spline space \scrS k,pk,\bfitxi k , are not orthogonal with respect to
the probability measure fXk

(xk)dxk. A popular choice for building an orthogonal or or-
thonormal basis is the well-known Gram--Schmidt procedure [11]. However, it is known to be
ill-conditioned. In this section, a linear transformation, originally proposed during the devel-
opment of SCE [25], is briefly summarized here in three steps to generate their orthonormal
version, as follows.

1. Given the set of B-splines in (3.5), replace any one of its elements with an arbitrary
nonzero constant, thus creating an auxiliary set. Without loss of generality, substitute
the first element of (3.5) with 1, producing an nk-dimensional vector

(3.6) Pk(Xk) := (1, Bk
2,pk,\bfitxi k

(Xk), . . . , B
k
nk,pk,\bfitxi k

(Xk))
\intercal 

of the elements of the auxiliary set. The auxiliary B-splines in (3.6) are also linearly
independent [25].

2. Assemble an nk \times nk spline moment matrix

Gk := \BbbE [Pk(Xk)P
\intercal 
k(Xk)],

which exists because Xk has finite moments up to order 2pk, as mandated by Assump-
tion 2.1. Furthermore, it is symmetric and positive-definite, ensuring the Cholesky
factorization: Gk = QkQ

\intercal 
k, where Qk is an nk \times nk lower-triangular matrix.

3. Employ a whitening transformation to generate an nk-dimensional vector of orthonor-
malized B-splines

(3.7) \bfitpsi k(Xk) = QkPk(Xk),

consisting of the components \psi k
ik,pk,\bfitxi k

(Xk), ik = 1, . . . , nk, k = 1, . . . , N .

The whitening transformation in (3.7) is a linear transformation that alters Pk(Xk) into
\bfitpsi k(Xk) in such a way that the latter has uncorrelated random splines. The transformation is
called ``whitening"" because it converts one random vector to the other, which has statistical
properties akin to that of a white noise vector [15, 24].

Proposition 3.4. Given the preamble of Proposition 3.3 and linear independence of auxiliary
B-splines, the set of elements of \bfitpsi k(xk) from (3.7) also spans the spline space \scrS k,pk,\bfitxi k , that is,

\scrS k,pk,\bfitxi k := span\{ \psi k
ik,pk,\bfitxi k

(xk)\} ik=1,...,nk
.

Figure 1 presents a set of six second-order (p = 2) B-spline functions on [ - 1, 1] with
the uniformly spaced knot sequence \bfitxi = \{  - 1, - 1, - 1, - 0.5, 0, 0.5, 1, 1, 1\} before and afterD
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orthonormalization. The standard B-splines in Figure 1(a) are derived from the Cox--de Boor
formula. They are nonnegative and locally supported but not orthonormal with respect to
the probability measure of the random variable X defined on [ - 1, 1]. Consider three cases of
X following uniform, truncated Gaussian and Beta measures with their probability densities
fX : [ - 1, 1] \rightarrow \BbbR \setminus ( - \infty , 0] defined by

fX(x) =

\left\{                   

1

2
(uniform),

2\phi (2x+ 1)

\Phi (3) - \Phi ( - 1)
(truncated Gaussian),

\Gamma (5)(x+ 1)2(1 - x)

16\Gamma (3)\Gamma (2)
(Beta).

Figure 1. A set of B-splines associated with the knot sequence \bfitxi = \{  - 1, - 1, - 1, - 0.5, 0, 0.5, 1, 1, 1\} and
order p = 2: (a) nonorthonormal basis; (b) orthonormal basis for uniform measure; (c) orthonormal basis for
truncated Gaussian measure; (d) orthonormal basis for Beta measure.
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Here, \Phi (\cdot ) and \phi (\cdot ) are the probability distribution and density functions, respectively, of
a standard Gaussian random variable. Given these probability densities and the Cholesky
factorization of respective spline moment matrices, Figures 1(b) through 1(d) describe the
associated orthonormalized B-splines. They depend not only on the spacing of knots but
also on the probability measure of X. Note that after orthonormalization, the nonconstant
B-splines are neither nonnegative nor locally supported. Having orthonormal basis functions,
however, is essential before proceeding with SDD.

3.4. Statistical properties. Similar to Pk(Xk), \bfitpsi k(Xk) is also a function of random input
variable Xk. The first- and second-moment properties of \bfitpsi k(Xk) are [25]

(3.8) \BbbE [\bfitpsi k(Xk)] = (1, 0, . . . , 0)\intercal 

and

(3.9) \BbbE 
\bigl[ 
\bfitpsi k(Xk)\bfitpsi 

\intercal 
k(Xk)

\bigr] 
= Ink

,

respectively, where Ink
is the nk \times nk identity matrix.

The orthonormalized B-splines engender Fourier-like series expansion in a Hilbert space,
resulting in succinct forms of the expansion and second-moment properties of an output
random variable of interest.

4. Multivariate orthonormal splines. From Assumption 2.1, the joint probability density
function of the input vector X = (X1, . . . , XN )\intercal is the product of marginal density functions.
Therefore, measure-consistent multivariate orthonormal B-splines in x are easily constructed
[25], but their number will skyrocket if N is too large. To circumvent the escalation, appro-
priate dimensionwise tensor products of measure-consistent univariate B-splines are proposed
instead.

For N \in \BbbN , denote by \{ 1, . . . , N\} an index set, so that u = \{ k1, . . . , k| u| \} \subseteq \{ 1, . . . , N\} is a
subset, including the empty set \emptyset , with cardinality 0 \leq | u| \leq N . Let Xu := (Xk1 , . . . , Xk| u| )

\intercal ,
a subvector of X, be defined on the abstract probability space (\Omega u,\scrF u,\BbbP u), where \Omega u is
the sample space of Xu, \scrF u is a \sigma -algebra on \Omega u, and \BbbP u is a probability measure. The
corresponding image probability space is (\BbbA u,\scrB u, f\bfX udxu), where \BbbA u := \times k\in u\BbbA \{ k\} \subset \BbbR | u| is
the image sample space of Xu, \scrB u is the Borel \sigma -algebra on \BbbA u, and f\bfX u(xu) is the marginal
probability density function of Xu supported on \BbbA u. Under Assumption 2.1,

f\bfX u(xu) =
\prod 
k\in u

fXk
(xk) =

| u| \prod 
l=1

fXkl
(xkl), xu := (xk1 , . . . , xk| u| )

\intercal .

4.1. Dimensionwise orthonormalized B-splines. For each k \in u \not = \emptyset , suppose the knot
sequence \bfitxi k on the interval \BbbA \{ k\} = [ak, bk], number of basis functions nk, and degree pk have
been specified. The associated vector of measure-consistent univariate orthonormal splines in
xk is

\bfitpsi k(xk) := (\psi k
1,pk,\bfitxi k

(xk), . . . , \psi 
k
nk,pk,\bfitxi k

(xk))
\intercal , k \in u.D
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Correspondingly, the spline space is \scrS k,pk,\bfitxi k , as expressed by (3.3). To define tensor-product
B-splines in xu and the associated spline space, define a multi-index pu := (pk1 , . . . , pk| u| ) \in 
\BbbN | u| 
0 , representing the degrees of splines in all | u| coordinate directions. Denote by \Xi u :=

\{ \bfitxi k1 , . . . , \bfitxi k| u| \} a family of all | u| knot sequences. Because of the tensor nature of the resulting
space, many properties of univariate splines carry over, described as follows.

Definition 4.1. Given pu := (pk1 , . . . , pk| u| ) \in \BbbN | u| 
0 and \Xi u := \{ \bfitxi k1 , . . . , \bfitxi k| u| \} , the tensor-

product spline space, denoted by \scrS u
\bfp u,\bfXi u

, is defined by

(4.1) \scrS u
\bfp u,\bfXi u

:=
\bigotimes 
k\in u

\scrS k,pk,\bfitxi k =

| u| \bigotimes 
l=1

\scrS kl,pkl ,\bfitxi kl
,

where the symbol
\bigotimes 

implies a tensor product.

It is clear from Definition 4.1 that \scrS u
\bfp u,\bfXi u

is a linear space of dimension\prod 
k\in u

nk,

where nk, the dimension of the spline space \scrS k,pk,\bfitxi k , is obtained from (3.4) when each knot
sequence is chosen according to (3.2). Each spline function gu \in \scrS u

\bfp u,\bfXi u
is defined on a

| u| -dimensional rectangular domain

\BbbA u :=\times 
k\in u

\BbbA k =\times 
k\in u

[ak, bk].

Define another multi-index iu := (ik1 , . . . , ik| u| ) and denote by

\scrI u,\bfn u :=
\Bigl\{ 
iu = (ik1 , . . . , ik| u| ) : 1 \leq ikl \leq nkl , l = 1, . . . , | u| 

\Bigr\} 
\subset \BbbN | u| 

the associated multi-index set. The index set has cardinality

| \scrI u,\bfn u | =
\prod 
k\in u

nk,

which tallies with the dimension of \scrS u
\bfp u,\bfXi u

. For the coordinate direction kl, define by

Ikl = rkl  - 1

the number of subintervals corresponding to the knot sequence \bfitxi kl with rkl distinct knots.
Then the partition, defined by the knot sequences \bfitxi k1 , . . . , \bfitxi k| u| , splits the | u| -dimensional

rectangle \BbbA u := \times k\in u[ak, bk] into smaller rectangles\Bigl\{ 
xu = (xk1 , . . . , xk| u| ) : \zeta kl,jkl \leq xkl < \zeta kl,jkl+1

, l = 1, . . . , | u| 
\Bigr\} 
, jkl = 1, . . . , Ikl ,
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where \zeta kl,jkl is the jklth distinct knot in the coordinate direction kl. A mesh is defined by
the partition of \BbbA u into such rectangular elements. Define the largest element size in each
coordinate direction kl by

hu,kl := max
jkl=1,...,Ikl

\Bigl( 
\zeta kl,jkl+1  - \zeta kl,jkl

\Bigr) 
, l = 1, . . . , | u| .

Then, given the knot sequences \Xi u = \{ \bfitxi k1 , . . . , \bfitxi k| u| \} ,

hu := (hu,k1 , . . . , hu,k| u| ) and hu := max
l=1,...,| u| 

hu,kl

define a vector of the largest element sizes in all | u| coordinates and the global mesh size,
respectively, for the domain \BbbA u.

Given the univariate B-splines in all | u| coordinate directions, a formal definition of tensor-
product multivariate B-splines in xu is defined as follows.

Definition 4.2. Let X := (X1, . . . , XN )\intercal : (\Omega ,\scrF ) \rightarrow (\BbbA N ,\scrB N ) be a vector of N \in \BbbN input

random variables fulfilling Assumption 2.1. Given a specified degree p = (p1, . . . , pN ) \in \BbbN | u| 
0

and family of knot sequences \Xi = \{ \bfitxi 1, . . . , \bfitxi N\} , suppose the univariate orthonormal B-
splines consistent with the marginal probability measures in all coordinate directions have
been obtained as the sets \{ \psi k

1,pk,\bfitxi k
(xk), . . . , \psi 

k
nk,pk,\bfitxi k

(xk)\} , k = 1, . . . , N . Then, for \emptyset \not = u =

\{ k1, . . . , k| u| \} \subseteq \{ 1, . . . , N\} with pu = (pk1 , . . . , pk| u| ) \in \BbbN | u| 
0 and \Xi u = \{ \bfitxi k1 , . . . , \bfitxi k| u| \} in mind,

the multivariate orthonormal B-splines in xu = (xk1 , . . . , xk| u| ) consistent with the probability
measure f\bfX u(xu)dxu are

\Psi u
\bfi u,\bfp u,\bfXi u

(xu) =
\prod 
k\in u

\psi k
ik,pk,\bfitxi k

(xk) =

| u| \prod 
l=1

\psi k
ikl ,pkl ,\bfitxi kl

(xkl), iu = (ik1 , . . . , ik| u| ) \in \scrI u,\bfn u .

4.2. Dimensionwise orthogonal decomposition of spline spaces. An orthogonal decom-
position of spline spaces entailing dimensionwise splitting leads to SDD. Here, to facilitate
such splitting of the spline space \scrS u

\bfp u,\bfXi u
for any \emptyset \not = u = \{ k1, . . . , k| u| \} \subseteq \{ 1, . . . , N\} , limit the

index ikl , l = 1, . . . , | u| , associated with the klth variable xkl , to run from 2 to nkl . That is,
remove the first constant element of \bfitpsi k(xk) to form a reduced basis\Bigl\{ 

\psi k
2,pk,\bfitxi k

(xk), . . . , \psi 
k
nk,pk,\bfitxi k

(xk)
\Bigr\} 
, k \in u,

spanning the corresponding spline space

\=\scrS k,pk,\bfitxi k := span
\Bigl\{ 
\psi k
ik,pk,\bfitxi k

(xk)
\Bigr\} 
ik=2,...,nk

\subset \scrS k,pk,\bfitxi k .

Here, \=\scrS k,pk,\bfitxi k is a subspace of \scrS k,pk,\bfitxi k of functions, which have zero means because each
element of the reduced basis has a zero mean, as per (3.8). It is orthogonal to the subspace
1 := span\{ 1\} of constant functions. This induces an orthogonal decomposition of

(4.2) \scrS k,pk,\bfitxi k = 1\oplus \=\scrS k,pk,\bfitxi k ,D
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good for any k \in u. From (3.8) and (3.9), any two distinct subspaces \=\scrS k,pk,\bfitxi k and \=\scrS l,pl,\bfitxi l are
orthogonal to each other whenever k \not = l or ik \not = il. Therefore, combining (4.1) and (4.2), the
spline space \scrS u

\bfp u,\bfXi u
becomes

(4.3) \scrS u
\bfp u,\bfXi u

=
\bigotimes 
k\in u

\bigl( 
1\oplus \=\scrS k,pk,\bfitxi k

\bigr) 
= 1\oplus 

\bigoplus 
\emptyset \not =v\subseteq u

\bigotimes 
k\in v

\=\scrS k,pk,\bfitxi k = 1\oplus 
\bigoplus 

\emptyset \not =v\subseteq u

\=\scrS v
\bfp v ,\bfXi v

with the symbol \oplus representing an orthogonal sum and

\=\scrS v
\bfp v ,\bfXi v

:=
\bigotimes 
k\in v

\=\scrS k,pk,\bfitxi k

defining a subspace of \scrS v
\bfp v ,\bfXi v

.
Since the decomposition in (4.3) is valid for any \emptyset \not = u \subseteq \{ 1, . . . , N\} , set u = \{ 1, . . . , N\} 

in (4.3) to obtain \scrS \bfp ,\bfXi , which defines the space of all real-valued splines associated with
p = (p1, . . . , pN ) \in \BbbN N

0 and \Xi = \{ \bfitxi 1, . . . , \bfitxi N\} . Then, swapping v for u in (4.3) produces yet
another orthogonal decomposition of

\scrS \bfp ,\bfXi =
N\bigotimes 
k=1

\bigl( 
1\oplus \=\scrS k,pk,\bfitxi k

\bigr) 
= 1\oplus 

\bigoplus 
\emptyset \not =u\subseteq \{ 1,...,N\} 

N\bigotimes 
k=1

\=\scrS k,pk,\bfitxi k = 1\oplus 
\bigoplus 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\=\scrS u
\bfp u,\bfXi u

,

comprising 2N distinct subspaces. Accordingly, a spline function g \in \scrS \bfp ,\bfXi is also decomposed
as

(4.4) g(x) = g\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

gu(xu)

into 2N distinct terms, where g\emptyset \in 1 and gu(xu) \in \=\scrS u
\bfp u,\bfXi u

are various component functions,
describing a constant or an | u| -variate interaction effect of xu = (xk1 , . . . , xk| u| ) on g when
| u| = 0 or | u| > 0. The expansion in (4.4), referred to as dimensional decomposition by
Rahman [21], is unique as long as the probability measure of X is fixed. The decomposition,
first presented by Hoeffding [13] in relation to his seminal work on U -statistics, has been
studied by many researchers [8, 12, 16, 18, 20, 21, 29].

For a product-type probability measure f\bfX (x)dx, as assumed here, the component func-
tions of g can be obtained as [21]

g\emptyset =

\int 
\BbbA N

g(x)f\bfX (x)dx,(4.5a)

gu(xu) =

\int 
\BbbA N - | u| 

g(xu,x - u)f\bfX  - u(x - u)dx - u  - 
\sum 
v\subset u

gv(Xv),(4.5b)

where  - u = \{ 1, . . . , N\} \setminus u is a complementary set of u \subseteq \{ 1, . . . , N\} and f\bfX  - u(x - u) is the
marginal density function of X - u. The decomposition in (4.4) with its component functions
obtained from (4.5a) and (4.5b) is the well-known ANOVA decomposition [8, 29]. Readers
interested in other variants of dimensional decomposition, such as those obtained for a Dirac
measure and a non-product-type probability measure, are referred to the works of Griebel and
Holtz [12] and Rahman [22], respectively.D
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4.3. Statistical properties. When the input random variables X1, . . . , XN , instead of real
variables x1, . . . , xN , are inserted in the argument, the multivariate splines \Psi u

\bfi u,\bfp u,\bfXi u
(Xu),

\emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in \scrI u,\bfn u , become functions of random input variables. Therefore, it is
important to establish their second-moment properties, to be exploited in section 6. However,
as the dimensionwise decomposition, described in the previous subsection, excludes the first
constant element of \bfitpsi kl

(xkl), the definition of a reduced index set, expressed by

\=\scrI u,\bfn u :=
\Bigl\{ 
iu = (ik1 , . . . , ik| u| ) : 2 \leq ikl \leq nkl , 1 \leq l \leq | u| 

\Bigr\} 
\subset (\BbbN \setminus \{ 1\} )| u| ,

is required. The principal difference between \=\scrI u,\bfn u and \scrI u,\bfn u stems from the fact that the
former index set restricts the range of index ikl , l = 1, . . . , | u| , to vary from 2 to nkl . As a
result, any reduction of the degree of interaction of the corresponding multivariate spline basis
below | u| is avoided.

The reduced index set has cardinality

| \=\scrI u,\bfn u | :=
\prod 
k\in u

(nk  - 1).

It is elementary to verify that the sum

1 +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

| \=\scrI u,\bfn u | = 1 +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\prod 
k\in u

(nk  - 1) =
N\prod 
k=1

nk,

thus matching the dimension of \scrS \bfp ,\bfXi .

Proposition 4.3. Let X := (X1, . . . , XN )\intercal : (\Omega ,\scrF ) \rightarrow (\BbbA N ,\scrB N ) be a vector of N \in \BbbN input
random variables fulfilling Assumption 2.1. Then, for \emptyset \not = u, v \subseteq \{ 1, . . . , N\} , iu \in \=\scrI u,\bfn u, and
jv \in \=\scrI v,\bfn v , the first- and second-order moments of multivariate orthonormal B-splines are

\BbbE 
\bigl[ 
\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)

\bigr] 
= 0

and

\BbbE 
\bigl[ 
\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)\Psi 

v
\bfj v ,\bfp v ,\bfXi v

(Xv)
\bigr] 
=

\Biggl\{ 
1 u = v and iu = jv,

0 otherwise,

respectively.

The statistical properties of univariate orthonormal B-splines in (3.8) and (3.9) lead to
the desired result of Proposition 4.3.

4.4. Orthonormal basis. The following proposition shows that a reduced set of multivari-
ate orthonormal splines from Definition 4.2 span the spline space of interest.

Proposition 4.4. Let X := (X1, . . . , XN )\intercal : (\Omega ,\scrF ) \rightarrow (\BbbA N ,\scrB N ) be a vector of N \in \BbbN input
random variables fulfilling Assumption 2.1 and Xu := (Xk1 , . . . , Xk| u| )

\intercal : (\Omega u,\scrF u) \rightarrow (\BbbA u,\scrB u),

\emptyset \not = u \subseteq \{ 1, . . . , N\} , be a subvector of X. Then \{ \Psi \bfi u,\bfp u,\bfXi u(xu) : iu \in \=\scrI u,\bfn u\} , the reduced set ofD
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multivariate orthonormal B-splines for a chosen degree pu and family of knot sequences \Xi u,
consistent with the probability measure f\bfX u(xu)dxu, is a basis of \=\scrS u

\bfp u,\bfXi u
, that is,

\=\scrS u
\bfp u,\bfXi u

= span
\bigl\{ 
\Psi u

\bfi u,\bfp u,\bfXi u
(xu)

\bigr\} 
\bfi u\in \=\scrI u,\bfn u

= span
\Bigl\{ 
\psi k
ik,pk,\bfitxi k

(xk)
\Bigr\} 
ik=2,...,nk

.

Moreover,

\scrS \bfp ,\bfXi = 1\oplus 
\bigoplus 

\emptyset \not =u\subseteq \{ 1,...,N\} 

span
\bigl\{ 
\Psi u

\bfi u,\bfp u,\bfXi u
(xu)

\bigr\} 
\bfi u\in \=\scrI u,\bfn u

=1\oplus 
\bigoplus 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\bigotimes 
k\in u

span
\bigl\{ 
\psi k
ik,pk,\bfitxi 

(xk)
\bigr\} 
ik=2,...,nk

.

The statistical properties in Proposition 4.3 result in linear independence of the elements
of \{ \Psi u

\bfi u,\bfp u,\bfXi u
(xu)\} \bfi u\in \=\scrI u,\bfn u

. The desired results can be obtained readily.
The multivariate and univariate orthonormalized B-splines described in this paper are both

consistent with an arbitrary probability measure of input random variables with bounded do-
mains. For unbounded domains, such as those associated with Gaussian random variables,
appropriate probability preserving transformations are required. In this case, a random vari-
able with an unbounded domain needs to be mapped to another random variable with a
bounded domain. Readers interested in additional details and examples are referred to the
authors' other works [7, 14].

5. Spline dimensional decomposition. Given an input random vector X := (X1, . . .,
XN )\intercal : (\Omega ,\scrF ) \rightarrow (\BbbA N ,\scrB N ) with known probability density function f\bfX (x) on \BbbA N \subset \BbbR N ,
designate by y(X) := y(X1, . . . , XN ) a real-valued, square-integrable, measurable transfor-
mation on (\Omega ,\scrF ). Here, y : \BbbA N \rightarrow \BbbR represents an output function from a mathematical
model, describing relevant stochastic performance of a complex system. A principal objective
of UQ is to estimate accurately, if it is not possible to determine exactly, the probabilistic
characteristics of y(X). More often than not, y is assumed to belong to a reasonably large
function class, such as the well-known L2 space.

Corresponding to the image probability space (\BbbA N ,\scrB N , f\bfX dx), let

L2(\BbbA N ,\scrB N , f\bfX dx) :=

\biggl\{ 
y : \BbbA N \rightarrow \BbbR :

\int 
\BbbA N

| y(x)| 2 f\bfX (x)dx <\infty 
\biggr\} 

define a weighted L2-space of interest. Clearly, L2(\BbbA N ,\scrB N , f\bfX dx) is a Hilbert space, which is
endowed with an inner product

(y(x), z(x))L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) :=

\int 
\BbbA N

y(x)z(x)f\bfX (x)dx

and induced norm

\| y(x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) =
\sqrt{} 
(y(x), y(x))L2(\BbbA N ,\scrB N ,f\bfX d\bfx ).

Similarly, for the abstract probability space (\Omega ,\scrF ,\BbbP ), there is an isomorphic Hilbert space

L2(\Omega ,\scrF ,\BbbP ) :=
\biggl\{ 
Y : \Omega \rightarrow \BbbR :

\int 
\Omega 
| y(X(\omega ))| 2 d\BbbP (\omega ) <\infty 

\biggr\} 
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of equivalent classes of output random variables Y = y(X) with the corresponding inner
product

(y(X), z(X))L2(\Omega ,\scrF ,\BbbP ) :=

\int 
\Omega 
y(X(\omega ))z(X(\omega ))d\BbbP (\omega )

and norm

\| y(X)\| L2(\Omega ,\scrF ,\BbbP ) :=
\sqrt{} 
(y(X), y(X))L2(\Omega ,\scrF ,\BbbP ).

It is elementary to show that y(X(\omega )) \in L2(\Omega ,\scrF ,\BbbP ) if and only if y(x) \in L2(\BbbA N ,\scrB N , f\bfX dx).

5.1. SDD approximation. An SDD approximation of a square-integrable random variable
y(X) \in L2(\Omega ,\scrF ,\BbbP ) is simply its dimensionwise orthogonal projection onto the spline space
\scrS \bfp ,\bfXi , formally presented as follows.

Theorem 5.1. Let X := (X1, . . . , XN )\intercal : (\Omega ,\scrF ) \rightarrow (\BbbA N ,\scrB N ) be a vector of N \in \BbbN input
random variables fulfilling Assumption 2.1. Suppose the degree and family of knot sequences in

all coordinate directions have been specified as p = (p1, . . . , pN ) \in \BbbN | u| 
0 and \Xi = \{ \bfitxi 1, . . . , \bfitxi N\} ,

respectively. For \emptyset \not = u \subseteq \{ 1, . . . , N\} and Xu := (Xk1 , . . . , Xk| u| )
\intercal : (\Omega u,\scrF u) \rightarrow (\BbbA u,\scrB u), with

pu = (pk1 , . . . , pk| u| ) \in \BbbN | u| 
0 and \Xi u = \{ \bfitxi k1 , . . . , \bfitxi k| u| \} in mind, denote by \{ \Psi u

\bfi u,\bfp u,\bfXi u
(Xu) :

iu \in \=\scrI u,\bfn u\} a reduced set comprising multivariate orthonormal B-splines that is consistent with
the probability measure f\bfX u(xu)dxu. Then, for any random variable y(X) \in L2(\Omega ,\scrF ,\BbbP ), a
hierarchically expanded Fourier-like series in multivariate orthonormal splines in Xu, referred
to as the SDD approximation of y(X), is derived as

(5.1) y\bfp ,\bfXi (X) := y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u,\bfn u

Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(Xu),

where the SDD expansion coefficients y\emptyset \in \BbbR and Cu
\bfi u,\bfp u,\bfXi u

\in \BbbR , \emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in 
\=\scrI u,\bfn u, are defined as

(5.2) y\emptyset := \BbbE [y(X)] :=

\int 
\BbbA N

y(x)f\bfX (x)dx,

(5.3) Cu
\bfi u,\bfp u,\bfXi u

:= \BbbE 
\bigl[ 
y(X)\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)

\bigr] 
:=

\int 
\BbbA N

y(x)\Psi u
\bfi u,\bfp u,\bfXi u

(xu)f\bfX (x)dx, iu \in \=\scrI u,\bfn u .

Proof. If y(x) \in L2(\BbbA N ,\scrB N , f\bfX dx), then an orthogonal projection operator

P\scrS \bfp ,\bfXi 
: L2(\BbbA N ,\scrB N , f\bfX dx) \rightarrow \scrS \bfp ,\bfXi ,

defined by

(5.4) P\scrS \bfp ,\bfXi 
y := y\emptyset +

\sum 
\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u,\bfn u

Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(xu),
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can be established. By definition of the random vector X, the set\bigl\{ 
1,\Psi u

\bfi u,\bfp u,\bfXi u
(Xu) : \emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in \=\scrI u,\bfn u

\bigr\} 
is a basis of the spline subspace \scrS \bfp ,\bfXi of L2(\Omega ,\scrF ,\BbbP ), inheriting the properties of the basis\bigl\{ 

1,\Psi u
\bfi u,\bfp u,\bfXi u

(xu) : \emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in \=\scrI u,\bfn u

\bigr\} 
of the spline subspace \scrS \bfp ,\bfXi of L2(\BbbA N ,\scrB N , f\bfX dx). Here, with a certain abuse of notation,
\scrS \bfp ,\bfXi is used as a set of spline functions of both real variables (x) and random variables (X).
Therefore, (5.4) yields the expansion in (5.1).

To derive the expressions of the expansion coefficients, define a second-moment error,

(5.5) e\mathrm{S}\mathrm{D}\mathrm{D} := \BbbE 

\Biggl[ 
y(X) - y\emptyset  - 

\sum 
\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u,\bfn u

Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(Xu)

\Biggr] 2

,

committed by the SDD approximation. Differentiate both sides of (5.5) with respect to y\emptyset 
and Cu

\bfi u,\bfp u,\bfXi u
, \emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in \=\scrI u,\bfn u , to write

(5.6)

\partial e\mathrm{S}\mathrm{D}\mathrm{D}

\partial y\emptyset 
=

\partial 

\partial y\emptyset 
\BbbE 

\Biggl[ 
y(X) - y\emptyset  - 

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv)

\Biggr] 2

= \BbbE 

\Biggl[ 
\partial 

\partial y\emptyset 

\Biggl\{ 
y(X) - y\emptyset  - 

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv)

\Biggr\} 2\Biggr] 

= 2\BbbE 

\Biggl[ \Biggl\{ 
y\emptyset +

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv) - y(X)

\Biggr\} 
\times 1

\Biggr] 
= 2 \{ y\emptyset  - \BbbE [y(X)]\} 

and
(5.7)

\partial e\mathrm{S}\mathrm{D}\mathrm{D}

\partial Cu
\bfi u,\bfp u,\bfXi u

=
\partial 

\partial Cu
\bfi u,\bfp u,\bfXi u

\BbbE 

\Biggl[ 
y(X) - y\emptyset  - 

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv)

\Biggr] 2

= \BbbE 

\Biggl[ 
\partial 

\partial Cu
\bfi u,\bfp u,\bfXi u

\Biggl\{ 
y(X) - y\emptyset  - 

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv)

\Biggr\} 2\Biggr] 

= 2\BbbE 

\Biggl[ \Biggl\{ 
y\emptyset +

\sum 
\emptyset \not =v\subseteq \{ 1,...,N\} 

\sum 
\bfi v\in \=\scrI v,\bfn v

Cv
\bfi v ,\bfp v ,\bfXi v

\Psi v
\bfi v ,\bfp v ,\bfXi v

(Xv) - y(X)

\Biggr\} 
\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)

\Biggr] 
= 2

\bigl\{ 
Cu
\bfi u,\bfp u,\bfXi u

 - \BbbE 
\bigl[ 
y(X)\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)

\bigr] \bigr\} 
.

Here, the second, third, and last lines of both (5.6) and (5.7) are obtained by interchang-
ing the differential and expectation operators, performing the differentiation, and swapping
the expectation and summation operators and applying (3.8) and (3.9), respectively. Set-
ting \partial e\mathrm{S}\mathrm{D}\mathrm{D}/\partial y\emptyset = 0 in (5.6) and \partial e\mathrm{S}\mathrm{D}\mathrm{D}/\partial C

u
\bfi u,\bfp u,\bfXi u

= 0 in (5.7) yields (5.2) and (5.3),
respectively.D
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Proposition 5.2. The SDD approximation y\bfp ,\bfXi (X) is the best approximation of y(X) in the
sense that

\BbbE [y(X) - y\bfp ,\bfXi (X)]2 = inf
g\in \scrS \bfp ,\bfXi 

\BbbE [y(X) - g(X)]2

or, equivalently,

\| y(x) - y\bfp ,\bfXi (x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) = inf
g\in \scrS \bfp ,\bfXi 

\| y(x) - g(x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ).

Proof. Any spline function g \in \scrS \bfp ,\bfXi can be expressed by

(5.8) g(X) = \=y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u

\=Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(Xu)

with some real-valued coefficients \=y\emptyset and \=Cu
\bfi u,\bfp u,\bfXi u

, \emptyset \not = u \subseteq \{ 1, . . . , N\} , iu \in \=\scrI u. To minimize

\BbbE [\{ y(X) - g(X)\} 2], its derivatives with respect to the coefficients must be zero, that is,

\partial 

\partial \=y\emptyset 
\BbbE 
\bigl[ 
\{ y(X) - g(X)\} 2

\bigr] 
=

\partial 

\partial \=Cu
\bfi u,\bfp u,\bfXi u

\BbbE 
\bigl[ 
\{ y(X) - g(X)\} 2

\bigr] 
= 0, iu \in \=\scrI u.

From the preceding paragraph, for instance, (5.6) and (5.7) and the following text, the deriv-
atives are zero only when the coefficients \=y\emptyset and \=Cu

\bfi u,\bfp u,\bfXi u
match the Fourier coefficients y\emptyset 

and Cu
\bfi u,\bfp u,\bfXi u

of SDD defined in (5.2) and (5.3). Therefore, the SDD approximation is the
best one from the function pool \scrS \bfp ,\bfXi , as claimed.

Proposition 5.3. For any y(X) \in L2(\Omega ,\scrF ,\BbbP ), let y\bfp ,\bfXi (X) from (5.1) be the SDD approxi-
mation associated with a chosen degree p and family of knot sequences \Xi . Then the residual
error y(X) - y\bfp ,\bfXi (X) is orthogonal to the subspace

\scrS \bfp ,\bfXi = 1\oplus 
\bigoplus 

\emptyset \not =u\subseteq \{ 1,...,N\} 

span
\bigl\{ 
\Psi u

\bfi u,\bfp u,\bfXi u
(Xu)

\bigr\} 
\bfi u\in \=\scrI u,\bfn u

\subseteq L2(\Omega ,\scrF ,\BbbP ).

Proof. Let g described in (5.8), with any real-valued coefficients \=y\emptyset and \=Cu
\bfi u,\bfp u,\bfXi u

, \emptyset \not = u \subseteq 
\{ 1, . . . , N\} , iu \in \=\scrI u, be an arbitrary element of \scrS \bfp ,\bfXi . Then

\BbbE [\{ y(X) - y\bfp ,\bfXi (X)\} g(X)]

= \BbbE 

\left[  \left\{   y(X) - y\emptyset  - 
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfj u\in \=\scrI u

Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfj u,\bfp u,\bfXi u

(Xu)

\right\}   
\times 

\left\{   \=y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u

\=Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(Xu)

\right\}   
\right]  

= y\emptyset \=y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u

Cu
\bfi u,\bfp u,\bfXi u

\=Cu
\bfi u,\bfp u,\bfXi u

 - y\emptyset \=y\emptyset  - 
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 

\sum 
\bfi u\in \=\scrI u

Cu
\bfi u,\bfp u,\bfXi u

\=Cu
\bfi u,\bfp u,\bfXi u

= 0,D
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where the second equality follows from (5.2), (5.3), and Proposition 4.3. Hence, the proposition
is proved.

5.2. Error bound and convergence. The results in this section show an error bound
describing the approximation power of SDD proposed. However, a theoretical clarification on
the boundedness of a linear operator and a formal definition of modulus of smoothness need
to be presented first.

Proposition 5.4. The projection operator P\scrS \bfp ,\bfXi 
: L2(\BbbA N ,\scrB N , f\bfX dx) \rightarrow \scrS \bfp ,\bfXi is a linear,

bounded operator.

The proof is omitted here as it is similar to the one presented for the projection operator
in the context of SCE [25]. Interested readers should consult the prior work.

Definition 5.5 (see Schumaker [26]). Given a positive integer \alpha k \in \BbbN and 0 < hk \leq (bk  - 
ak)/\alpha k, the \alpha kth modulus of smoothness of a function y \in L2[ak, bk] in the L2-norm is defined
by

\omega \alpha k
(y;hk)L2[ak,bk] := sup

0\leq uk\leq hk

\bigm\| \bigm\| \Delta \alpha k
uk
y
\bigm\| \bigm\| 
L2[ak,bk - \alpha kuk]

, hk > 0,

where

\Delta \alpha k
uk
y(hk) :=

\alpha k\sum 
i=0

( - 1)\alpha k - i

\biggl( 
\alpha k

i

\biggr) 
y(hk + iuk)

is the \alpha kth forward difference of y at hk for any 0 \leq uk \leq hk.
Moreover, given a multi-index \bfitalpha = (\alpha 1, . . . , \alpha N ) \in \BbbN N and any vector u \geq 0, let

\Delta \bfitalpha 
\bfu =

N\prod 
k=1

\Delta \alpha k
uk
.

Then the \bfitalpha -modulus of smoothness of a function y \in L2[\BbbA N ] in the L2-norm is the function
defined by

\omega \bfitalpha (y;h)L2[\BbbA N ] := sup
\bfzero \leq \bfu \leq \bfh 

\| \Delta \bfitalpha 
\bfu y\| L2[\BbbA N

\bfitalpha ,\bfu ]
, h > 0,

where

\BbbA N
\bfitalpha ,\bfu =

\bigl\{ 
x \in \BbbA N : x+\bfitalpha \otimes u \in \BbbA N

\bigr\} 
, \bfitalpha \otimes u = (\alpha 1u1, . . . , \alpha NuN ).

Lemma 5.6 (see Rahman [25]). Let L2(\BbbA N ) be an unweighted Hilbert space defined as

L2
\bigl( 
\BbbA N

\bigr) 
:=

\biggl\{ 
y : \BbbA N \rightarrow \BbbR :

\int 
\BbbA N

| y(x)| 2dx <\infty 
\biggr\} 
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with standard norm \| \cdot \| L2(\BbbA N ). Then, for any function y(x) \in L2(\BbbA N ,\scrB N , f\bfX dx), it holds
that

\| y(x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) \leq 
\sqrt{} 
\| f\bfX (x)\| L\infty (\BbbA N ) \| y(x)\| L2(\BbbA N ) ,

where \| \cdot \| L\infty (\BbbA N ) is the infinity norm. Here, it is further assumed that f\bfX \in L\infty (\BbbA N ).

Proposition 5.7. For any y(X) \in L2(\Omega ,\scrF ,\BbbP ), a sequence of SDD approximations
\{ y\bfp ,\bfXi (X)\} \bfh >\bfzero , with h = (h1, . . . , hN ) representing a vector of the largest element sizes, con-
verges to y(X) in mean-square, i.e.,

lim
\bfh \rightarrow \bfzero 

\BbbE 
\Bigl[ 
| y(X) - y\bfp ,\bfXi (X)| 2

\Bigr] 
= 0.

Furthermore, the sequence of SDD approximations converges in probability, that is, for any
\epsilon > 0,

lim
\bfh \rightarrow \bfzero 

\BbbP (| y(X) - y\bfp ,\bfXi (X)| > \epsilon ) = 0,

and converges in distribution, that is, for all points \xi \in \BbbR where F (\xi ) is continuous,

lim
\bfh \rightarrow \bfzero 

F\bfp ,\bfXi (\xi ) = F (\xi )

such that F\bfp ,\bfXi (\xi ) := \BbbP (y\bfp ,\bfXi (X) \leq \xi ) and F (\xi ) := \BbbP (y(X) \leq \xi ) are distribution functions of
y\bfp ,\bfXi (X) and y(X), respectively. If F (\xi ) is continuous on \BbbR , then the distribution functions
converge uniformly.

Proof. According to Proposition 5.4, P\scrS \bfp ,\bfXi 
is a linear, bounded operator. With the tensor

modulus of stiffness in mind, use Lemma 5.6 and Theorem 12.8 of Schumaker's book [26] to
claim that the L2-error from the SDD approximation is bounded by

\| y(x) - y\bfp ,\bfXi (x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) \leq C\omega \bfp +\bfone (y;h)L2(\BbbA N ),

where C is a constant depending only on p, N , and f\bfX (x), and p+ 1 = (p1 + 1, . . . , pN + 1).
From Definition 5.5, as hk approaches zero, so does 0 \leq uk \leq hk. Taking the limit uk \rightarrow 0

inside the integral of the L2 norm, which is permissible for a finite interval and uniformly
convergent integrand, the forward difference

lim
uk\rightarrow 0

\Delta \alpha k
uk
y(xk) = y(xk)

\alpha k\sum 
i=0

( - 1)\alpha k - i

\biggl( 
\alpha k

i

\biggr) 
= 0,

as the sum vanishes for any \alpha k \in \BbbN . Consequently, the coordinate modulus of smoothness

\omega \alpha k
(y;hk)L2[ak,bk] \rightarrow 0 as hk \rightarrow 0 \forall \alpha k \in \BbbN .

Following similar considerations, the tensor modulus of smoothness

\omega \bfitalpha (y;h)L2(\BbbA N ) \rightarrow 0 as h \rightarrow 0 \forall \bfitalpha \in \BbbN N .D
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Therefore,

lim
\bfh \rightarrow \bfzero 

\| y(x) - y\bfp ,\bfXi (x)\| L2(\BbbA N ,\scrB N ,f\bfX d\bfx ) = 0,

thus proving the mean-square convergence of y\bfp ,\bfXi (X) to y(X) for any degree p \in \BbbN N
0 .

In addition, as the SDD approximation converges in mean-square, it does so in probability.
Moreover, as the expansion converges in probability, it also converges in distribution.

5.3. Truncation. According to (5.1), the full SDD contains
\prod N

k=1 nk basis functions or
coefficients. Therefore, SDD also suffers from the curse of dimensionality if all terms of
SDD are retained in the concomitant expansion. However, in a practical setting, the output
function y(X) is likely to have an effective dimension [1] much lower than N , meaning that the
right side of (5.1) can be effectively approximated by a sum of lower-dimensional component
functions of y\bfp ,\bfXi (X) but still maintain all random variables X of a high-dimensional UQ
problem.

A straightforward approach to achieving this truncation entails keeping all orthonormal
splines in at most 1 \leq S \leq N variables, thereby retaining the degrees of interaction among
input variables less than or equal to S. The result is an S-variate SDD approximation

(5.9) yS,\bfp ,\bfXi (X) := y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 
1\leq | u| \leq S

\sum 
\bfi u\in \=\scrI u,\bfn u

Cu
\bfi u,\bfp u,\bfXi u

\Psi u
\bfi u,\bfp u,\bfXi u

(Xu)

of y(X), comprising

(5.10) LS,\bfp ,\bfXi = 1 +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 
1\leq | u| \leq S

\prod 
k\in u

(nk  - 1) \leq 
N\prod 
k=1

nk

expansion coefficients including y\emptyset . Here, the upper bound of LS,\bfp ,\bfXi kicks in only when S = N ,
in which case there is no gain in computational efficiency by the SDD approximation. However,
if S << N , as is anticipated to hold in real-life applications, the number of coefficients in
the SDD approximation drops precipitously, ushering in substantial savings of computational
effort.

It is important to clarify a few things about the truncated SDD proposed. First, the right
side of (5.9) contains sums of at most S-dimensional orthonormal splines, representing at
most S-variate SDD component functions of y\bfp ,\bfXi (X). Therefore, the term ``S-variate"" used
for the truncated SDD approximation should be interpreted in the context of including at
most S-degree interaction of input variables, even though yS,\bfp ,\bfXi (X) is strictly an N -variate
function.

Second, if S = N , then yN,\bfp ,\bfXi (X) = y\bfp ,\bfXi (X). Therefore, the sequence of SDD approxi-
mations \{ yS,\bfp ,\bfXi (X)\} 1\leq S\leq N, \bfh >\bfzero converges to y(X) in mean-square, that is,

lim
S\rightarrow N, \bfh \rightarrow \bfzero 

\BbbE 
\Bigl[ 
| y(X) - yS,\bfp ,\bfXi (X)| 2

\Bigr] 
= 0.
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Furthermore, the sequence of SDD approximations converges in probability, that is, for any
\epsilon > 0,

lim
S\rightarrow N, \bfh \rightarrow \bfzero 

\BbbP (| y(X) - yS,\bfp ,\bfXi (X| > \epsilon ) = 0,

and converges in distribution, that is, for any \xi \in \BbbR ,

lim
S\rightarrow N, \bfh \rightarrow \bfzero 

FS,\bfp ,\bfXi (\xi ) = F (\xi )

such that FS,\bfp ,\bfXi (\xi ) := \BbbP (yS,\bfp ,\bfXi (X) \leq \xi ) is the distribution function of yS,\bfp ,\bfXi (X).
Finally, the properties entailing the best approximation and the residual error being or-

thogonal, as described by Propositions 5.2 and 5.3, also apply in the context of the truncated
SDD approximation.

5.4. Computational effort. Due to identical hierarchical structures of function decom-
positions, the SDD method has the same order of computational complexity as the existing
PDD method. To expound on SDD's scalability with respect to the problem size or stochastic
dimension N , consider the univariate (S = 1) SDD approximation y1,\bfp ,\bfXi (X) and bivariate
(S = 2) SDD approximation y2,\bfp ,\bfXi (X), expressed by

(5.11) y1,\bfp ,\bfXi (X) = y\emptyset +

N\sum 
k=1

nk\sum 
ik=2

Ck
ik,pk,\bfitxi k

\psi k
ik,pk,\bfitxi k

(Xk) and

y2,\bfp ,\bfXi (X) = y\emptyset +
N\sum 
k=1

nk\sum 
ik=2

Ck
ik,pk,\bfitxi k

\psi k
ik,pk,\bfitxi k

(Xk)+

+

N - 1\sum 
k1=1

N\sum 
k2=k1+1

nk1\sum 
ik1=2

nk2\sum 
ik2=2

C
\{ k1,k2\} 
(ik1 ,ik2 ),(pk1 ,pk2 ),\{ \bfitxi k1 ,\bfitxi k2\} 

\psi 
\{ k1,k2\} 
(ik1 ,ik2 ),(pk1 ,pk2 ),\{ \bfitxi k1 ,\bfitxi k2\} 

(Xk1 , Xk2) ,

(5.12)

respectively. In either approximation, the requisite computational effort can be judged by the
associated number of basis functions involved. For instance, in (5.11) and (5.12), there are,
respectively,

1 +
N\sum 
k=1

(nk  - 1) and 1 +
N\sum 
k=1

(nk  - 1) +
N - 1\sum 
k1=1

N\sum 
k2=k1+1

(nk1  - 1)(nk2  - 1)

basis functions. Hence, given the values of nk, k = 1, . . . , N , which are decided by p and \Xi ,
the computational effort with respect to N grows linearly for univariate approximation and
quadratically for bivariate approximation. For example, when N = 15 and n1 = \cdot \cdot \cdot = n15 =
5, the univariate and bivariate SDD approximations involve 61 and 1741 basis functions,
respectively. In contrast, the numbers of basis functions in the SCE and tensor-product-
truncated PCE approximations with five bases in each direction both jump to 515, which is
significantly greater than that required by either of the two SDD approximations. In general,D
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from (5.10), the computational effort by an S-variate SDD approximation scales S-degree-
polynomially with respect to N . Therefore, the computational complexity of a truncated
SDD is polynomial, as opposed to exponential, thereby deflating the curse of dimensionality
to a substantial extent.

5.5. A few special cases. The truncated SDD can be viewed as a generalized version
subsuming several well-known expansions, namely, SCE, PDD, and PCE, that are commonly
used or known in the UQ community. Three special cases clarify this observation.

1. Consider the first case where S = N . The resulting SDD approximation is the full
SDD, that is, yN,\bfp ,\bfXi (X) = y\bfp ,\bfXi (X). Then the terms of SDD can be reshuffled to be
written as

yN,\bfp ,\bfXi (X) = y\bfp ,\bfXi (X) =
\sum 
\bfi \in \scrI \bfn 

C\bfi ,\bfp ,\bfXi \Psi \bfi ,\bfp ,\bfXi (X),(5.13a)

C\bfi ,\bfp ,\bfXi :=

\int 
\BbbA N

y(x)\Psi \bfi ,\bfp ,\bfXi (x)f\bfX (x)dx,(5.13b)

involving a complete set of multivariate orthonormal B-splines \{ \Psi \bfi ,\bfp ,\bfXi (X) : i \in \scrI \bfn \} in
X and associated coefficients C\bfi , i \in \scrI \bfn . The last expression in (5.13a) with the coef-
ficients in (5.13b) represents the concomitant SCE approximation of y(X). Therefore,
when S = N , the pth-degree SDD is the same as the pth-degree SCE.

2. For the second case, let S < N . Given k = 1, . . . , N , 0 \leq pk < \infty , and an interval
[ak, bk] \subset \BbbR , denote by

(5.14) \bfitxi 
\prime 
k = \{ 

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
ak, . . . , ak,

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
bk, . . . , bk\} 

a (pk + 1)-open knot sequence with no internal knots, so that \Xi 
\prime 
= \{ \bfitxi \prime 

1, . . . , \bfitxi 
\prime 
N\} . For

the knot sequence \bfitxi 
\prime 
k in (5.14), the resulting B-splines are related to the well-known

Bernstein polynomials of degree pk. Since the set of Bernstein polynomials of degree
pk forms a basis of the polynomial space \Pi pk , the spline space \scrS 

k,pk,\bfitxi 
\prime 
k
= \Pi pk . Then,

going through the same dimensionwise tensor-product construction, it is trivial to show
that, indeed, the multivariate spline space \scrS 

S,\bfp ,\bfXi 
\prime is spanned by a set of hierarchically

ordered multivariate orthonormal polynomials \{ \Psi u
\bfi u
(xu) : \emptyset \not = u \subseteq \{ 1, . . . , N\} ,0 \leq 

iu \leq pu\} in xu, resulting in

y
S,\bfp ,\bfXi 

\prime (X) = y\emptyset +
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 
1\leq | u| \leq S

\sum 
\bfzero \leq \bfi u\leq \bfp u

Cu
\bfi u\Psi 

u
\bfi u(Xu),(5.15a)

Cu
\bfi u =

\int 
\BbbA N

y(x)\Psi u
\bfi u(xu)f\bfX (x)dx.(5.15b)

Hence, the S-variate SDD approximation in (5.15a) with coefficients derived from
(5.15b), associated with a specified degree p, is identical to the S-variate PDD ap-
proximation with the same degree p.
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3. Finally, set the condition S = N in the second case. Then the SDD approximation for
a specified degree p becomes

y
N,\bfp ,\bfXi 

\prime (X) = y
\bfp ,\bfXi 

\prime (X) =
\sum 

\bfzero \leq \bfi \leq \bfp 

C\bfi \Psi \bfi (X),(5.16a)

C\bfi =

\int 
\BbbA N

y(x)\Psi \bfi (x)f\bfX (x)dx,(5.16b)

comprising multivariate orthonormal polynomials \{ \Psi \bfi (X) : 0 \leq i \leq p\} in X. Hence,
the SDD approximation in (5.16a) with coefficients obtained from (5.16b) reduces to
a pth-degree PCE approximation.

5.6. Output statistics and other probabilistic characteristics. The truncated SDD ap-
proximation yS,\bfp ,\bfXi (X) can be viewed as a surrogate of y(X). Therefore, relevant probabilistic
characteristics of y(X), including its first two moments and its probability density function,
if it exists, can be estimated from the statistical properties of yS,\bfp ,\bfXi (X).

Applying the expectation operator on yS,\bfp ,\bfXi (X) in (5.9) and imposing Proposition 4.3, its
mean

(5.17) \BbbE [yS,\bfp ,\bfXi (X)] = y\emptyset = \BbbE [y(X)]

is independent of S, p, and \Xi . More importantly, the SDD approximation always yields the
exact mean, provided that the expansion coefficient y\emptyset is calculated exactly.

Applying the expectation operator again, this time on [yS,\bfp ,\bfXi (X)  - y\emptyset ]
2, and employing

Proposition 4.3 one more time results in the variance

(5.18) var [yS,\bfp ,\bfXi (X)] =
\sum 

\emptyset \not =u\subseteq \{ 1,...,N\} 
1\leq | u| \leq S

\sum 
\bfi u\in \=\scrI u,\bfn u

Cu2

\bfi u,\bfp u,\bfXi u
\leq var[y(X)]

of yS,\bfp ,\bfXi (X). Therefore, the second-moment properties of an SDD approximation in (5.17) and
(5.18) are solely determined by an appropriately truncated set of expansion coefficients. The
formulae for the mean and variance of the SDD approximation are similar to those reported for
the PDD approximation, although the respective expansion coefficients involved are not. The
primary reason for this similarity stems from the use of a hierarchically ordered orthonormal
basis in both expansions.

Being convergent in probability and in distribution, the probability distribution function
and density function of y(X), if it exists, can also be estimated by Monte Carlo simulation
(MCS) of the SDD approximation yS,\bfp ,\bfXi (X). With the expansion coefficients calibrated, the
simulation of yS,\bfp ,\bfXi (X) entails inexpensive evaluations of simple spline functions.

6. Numerical experiments. Two examples involving two- and five-dimensional output
functions of uniformly distributed random variables are presented. The objective is to evaluate
the approximation power of SDD in terms of the second-moment statistics and probability
distribution of y(X) and compare the new SDD results with those obtained from PCE, PDD,
and sparse-grid quadrature.D
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The coordinate degrees for the SDD approximation are identical, that is, p1 = \cdot \cdot \cdot = pN = p
(say), and so are the knot sequences for SDD, that is, \bfitxi 1 = \cdot \cdot \cdot = \bfitxi N = \bfitxi (say) with a mesh
comprising the largest element sizes h1 = \cdot \cdot \cdot = hN = h. The degree p and/or mesh size
h were varied as desired. The basis for a pth-degree PCE or PDD was obtained from an
appropriate set of Legendre orthonormal polynomials in input variables, whereas the basis
for an SDD, given a degree p and a knot sequence of mesh size h, was generated from the
Cholesky factorization of the spline moment matrix. Given the uniform distribution, the spline
moment matrix was constructed analytically. All knot sequences are (p+1)-open and consist
of uniformly spaced distinct knots with even numbers of elements. All expansion coefficients in
Example 1 were calculated exactly, whereas in Example 2, the coefficients were estimated by
least-squares regression. The relative error in Example 1 is defined as the absolute difference
between the exact and approximate variances, divided by the exact variance.

6.1. Example 1: A nonsmooth function. Defined on the square \BbbA 2 = [ - 1, 1]2, con-
sider a nonsmooth function of two uniformly distributed random variables X1 and X2, each
distributed over [ - 1, 1]:

y(X1, X2) = g(X1) + g(X2) +
1

5
g(X1)g(X2),

where, for i = 1, 2,

g(xi) =

\Biggl\{ 
1,  - 1 \leq xi \leq 0,

exp( - 10xi), 0 < xi \leq 1.

A graph of the function in Figure 1(a) indicates that y has a flat region on [ - 1, 0]2, and
then it falls off exponentially on both sides. Clearly, the function is continuous, but it has
discontinuous partial derivatives across the lines x1 = 0 and x2 = 0. Such functions are
difficult to approximate by polynomials.

Figures 2(b) through 2(f) present graphs of several approximations of y(x1, x2) from PCE
and SDD. The second-order PCE approximation in Figure 2(b) commits a relative variance
error of 0.178781, and is inadequate. The 20th-order PCE approximation in Figure 2(c) shows
improvements by reducing the errors to 2.19198\times 10 - 3, but not to a magnitude expected from
such an impractically high expansion order.

In contrast, the bivariate, linear (S = 2, p = 1) and bivariate, quadratic (S = 2, p = 2)
SDD approximations in Figures 1(d) and 1(e), obtained for a mesh size of h = 1/10 (I = 20),
match the exact function well, producing respective variance errors of 2.88408 \times 10 - 4 and
1.28264 \times 10 - 3. Clearly, the approximation quality of SDD, whether linear or quadratic,
surpasses that of the 20th-degree PDD approximations, yet the quality in Figure 2(e) is inferior
to that in 2(d). This apparent anomaly of a linear SDD approximation producing results a
cut above a quadratic SDD approximation can be explained by examining the knot sequences
used. Due to even numbers of elements, there exists a central knot in each coordinate direction
for the cases of p = 1 and p = 2. However, for p = 2, the first-order derivatives are continuous
across the central knot in both directions. This is why the quadratic SDD approximations
are smoother than the linear SDD approximations or the exact function. In this case, asD
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Figure 2. Graphs of functions in Example 1: (a) exact; (b) second-order PCE; (c) 20th-order PCE; (d)
bivariate, linear SDD; (e) bivariate, quadratic SDD with simple (``S"") knots; (f) bivariate, quadratic SDD with
repeated (``R"") central knots.
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y(x1, x2) is not differentiable at the central knot, the linear approximation outperforms the
quadratic approximation. Furthermore, if the central knot is repeated (multiplicity of two) in
the knot sequences, the quadratic SDD approximation, exhibited in Figure 2(f) is even better
than the linear SDD approximations, resulting in the variance error of 3.31017 \times 10 - 6. Any
distinction between the quadratic SDD approximation in 2(f) and the exact function y in 2(a)
is impalpable to the naked eye.

Although SDD enables a greater flexibility than PCE in exploiting low expansion orders,
a comparison between PCE and SDD approximations, including the well-studied sparse-grid
quadrature, pertaining to their computational efforts is warranted. Theoretically, such a
comparison can be made by examining the total numbers of requisite basis functions from
these methods. This was achieved by assessing (1) PCE approximations for ten distinct
values of p = 1, 2, 4, 6, 8, 10, 12, 14, 16, 20; (2) bivariate SDD approximations for two distinct
values of p = 1, 2, and ten distinct mesh sizes of h = 2, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/10;
and (3) sparse grids with the Clenshaw--Curtis quadrature rule for levels varying from one
through seven. Note that the number of bases for the sparse-grid method is equivalent to the
number of integration points.

Figure 3 depicts how the relative error in variance, calculated by various methods, decays
against the number of basis functions. From that figure, the sparse grids and PCE methods
struggle to provide results as accurate as those obtained by SDD methods of order (p) only
up to two. This is largely due to the nonsmoothness in the original function y. As explained
earlier, the errors are larger for quadratic SDD than for linear SDD, when simple knots
are used. If, however, repeated knots are placed, then the quadratic SDD method becomes
markedly more accurate than any other methods. Moreover, the convergence is steeper for
quadratic SDD with repeated knots than linear SDD. Overall, the numerical evidence from
this example reveals the significant contribution of the proposed SDD method in terms of both

Figure 3. Relative errors in the variances from PCE, sparse-grid, and SDD approximations in Example 1.
Note: the relative error is defined as the absolute difference between the exact and approximate variances, divided
by the exact variance. The symbols S and R indicate analysis with simple and repeated knots, respectively.
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efficiency and accuracy, while the rate of convergence is also substantially higher for functions
with harsh regularities.

6.2. Example 2: A cylinder under a pair of concentrated forces. The second example is
concerned with solving a stochastic partial differential equation (PDE) commonly encountered
in stochastic mechanics of solids. A 4-unit-long (L = 4) open cylinder with both ends fixed in
the longitudinal direction (z-axis) is subjected to a pair of collinear, concentrated pulling or
pushing forces F in the y direction, as shown in Figure 4(a). A positive or negative value of F
represents pulling or pushing forces, respectively. There are five independent and uniformly
distributed random variables in this problem, mean radius R, thickness t, Young's modulus
E, Poisson's ratio \nu , and concentrated force F , with their statistical properties described in
Table 1. Given the input random vector X = (R, t, E, \nu , F ), the underlying stochastic PDE
calls for finding the displacement u(z;X) and stress \bfitsigma (z;X) solutions at a spatial coordinate
z = (z1, z2, z3) \in \scrD \subset \BbbR 3, satisfying P -almost surely

(6.1)
\nabla \cdot \bfitsigma (z;X) = 0 in \scrD \subset \BbbR 3,

\bfitsigma (z;X) \cdot n(z;X), = \=t(z;X) on \partial \scrD t,
u(z;X) = \=u(z;X) on \partial \scrD u,

Figure 4. A cylinder subject to a pair of pulling or pushing forces: (a) geometry and loads; (b) FEA model.

Table 1
Statistical properties of random input in Example 2.

Random
variable

Mean
St.
dev.

Bounds of
distribution

R 1 0.0121 [0.979, 1.021]

t 0.1 0.0012 [0.098, 0.102]

E 1 0.0577 [0.9, 1.1]

\nu 1/3 0.0096 [0.95/3, 1.05/3]

F (\mathrm{a}) -0.0005 0.00057735 [ - 0.0015, 0.0005]

(\mathrm{a}) \mathrm{P}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} F = \mathrm{p}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}\mathrm{e}; \mathrm{n}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} F = \mathrm{p}\mathrm{u}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{c}\mathrm{e}\mathrm{s}.
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such that \partial \scrD t \cup \partial \scrD u = \partial \scrD , \partial \scrD t \cap \partial \scrD u = \emptyset . Here, \nabla := (\partial /\partial z1, \partial /\partial z2, \partial /\partial z3), \=t(z;X), is
the prescribed traction on \partial \scrD t, \=u(z;X) is the prescribed displacement on \partial \scrD u, and n(z;X)
is the unit outward normal vector. A finite-element analysis (FEA) model, comprising 1152
eight-noded, linear, hexahedral elements (two elements in the radial direction, 48 elements
in the circumferential direction, and 12 elements in the longitudinal direction) illustrated in
Figure 4(b), was developed to solve the associated Galerkin weak form of (6.1). The objective
of this example is to estimate, using the FEA computational model, various probabilistic
characteristics of the displacement field of the cylinder.

Two PDD methods and one SDD method were employed to calculate the second-moment
statistics of displacements: (1) the bivariate, first-order (S = 2, p = 1) PDD; (2) the bivariate,
fifth-order (S = 2, p = 5) PDD; and (3) the bivariate, linear (S = 2, p = 1) SDD with the
eight subintervals in each coordinate direction (I = 8). All orthogonal polynomials or splines
involved were determined analytically. However, unlike in Example 1, the expansion coeffi-
cients of PDD or SDD here cannot be calculated exactly. Alternatively, a linear regression
analysis was performed to estimate the coefficients in two steps: (1) draw Lr \in \BbbN samples
of random input X from their probability distributions and hence calculate for each input
sample the corresponding output sample of displacement from the FEA model and (2) con-
duct a least-squares best fit of the PDD or SDD approximation to Lr pairs of input-output
samples. Therefore, the PDD and SDD approximations in this example contain not only
projection errors, but also numerical errors due to regression. Nonetheless, all PDD and SDD
approximations require the same computational effort and are proportional to Lr, as all sam-
ple calculations (FEA) require practically the same effort. A sample size of Lr = 3000 was
chosen for regression and deemed adequate for this problem.

6.2.1. Second-moment characteristics. The behavior of a pulled or pushed cylinder is
often evaluated by examining the relative radial displacement of the two load points. Denote
by \Delta uy,F the absolute value of such relative displacement. Here, \Delta uy,F is an output random
variable of interest that depends on the random input X. More importantly, since F takes on
positive (pull) and negative (push) values, \Delta uy,F is a nonsmooth function of input variables.
Table 1 lists the mean and standard deviation of \Delta uy,F calculated by the three aforementioned
methods and a crude MCS. Due to the computational expense of FEA, the MCS was conducted
for a sample size of 50,000, which should be adequate for providing benchmark solutions of
the second-moment characteristics. The agreement between the means by PDD or SDD
approximations and MCS in Table 2 is very good. However, the SDD approximation is more
accurate than the first-order PDD approximation when estimating the standard deviation.

Table 2
Statistical properties of \Delta uy,F by various methods in Example 2.

Method Mean St. dev.

Bivariate, first-order PDD 0.217536503 0.135859716

Bivariate, fifth-order PDD 0.215657135 0.152458926

Bivariate, first-order SDD 0.215667677 0.152458835

Crude MCS (50,000 samples) 0.215366279 0.151960153
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The PDD method becomes competitive only when used in conjunction with the fifth-order
approximation. This is attributed to the nonsmooth response behavior where a low-order
SDD approximation can be adapted to produce more accurate results than those possible by
a low-order PDD approximation.

A similar second-moment analysis was performed for the root-mean-square (RMS) values

(
\sqrt{} 
u2x + u2y + u2z) of three displacement components (ux, uy, uz) at all finite-element nodes.

Figures 5(a) through 5(d) portray contour plots of the standard deviations of RMS displace-
ments obtained from MCS and three approximate methods defined in the preceding. When
comparing the PDD results in Figures 5(b) and 5(c) with the MCS-generated solution in
Figure 5(a), the first-order approximation is unsatisfactory, although the fifth-order approx-
imation produces the standard deviations well. Indeed, there are discernable differences in
the contour plots obtained for the first-order PDD approximation and MCS solution. In con-
trast, the standard deviations by the bivariate, linear SDD approximation in Figure 5(d) are
remarkably close to the MCS result in Figure 5(a). Therefore, a first-order SDD approxi-
mation with only eight subintervals (I = 8) demonstrates the superiority of SDD over PDD
approximations.

Figure 5. Contour plots of standard deviations of RMS displacements of the cylinder by various methods
in Example 2: (a) crude MCS (50,000 samples); (b) bivariate, first-order (S = 2, p = 1) PDD; (c) bivariate,
fifth-order (S = 2, p = 5) PDD; (d) bivariate, linear (S = 2, p = 1, I = 8) SDD.D
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Figure 6. Cumulative probability distribution function of \Delta uy,F by various methods in Example 2.

6.2.2. Probability distribution. Figure 6 illustrates the distribution functions of \Delta uy,F
obtained by the aforementioned methods, including MCS. The same 50,000 samples generated
for verifying the statistics in Table 2 were utilized for MCS estimates in Figure 5. However,
since a PDD or SDD yields an explicit approximation of \Delta uy,F in terms of multivariate poly-
nomials or splines, a relatively large sample size---a million in this example---was selected to
sample the approximation for estimating the corresponding distribution function. According
to Figure 6, the distribution functions by the linear SDD approximation and MCS match
extremely well over the entire support of \Delta uy,F . In contrast, the first- and fifth-order PDD
approximations produce satisfactory estimates of the distribution function only around the
mean; however, in the tail (lower) region, there are significant discrepancies. Additionally, the
distribution function obtained from a tenth-order approximation, similarly depicted in Figure
6, does not bring a tangible improvement to PDD. It is interesting to note that a fifth-order
PDD approximation, while it produces satisfactory second-moment properties, may not neces-
sarily accurately capture tails of distribution functions. This is because higher-order moments
are involved when estimating distribution functions.

It is important to clarify that the probabilistic results presented in this example should be
viewed in the context of a fixed FEA discretization of the cylinder. Moreover, as no meaningful
differences were found in the results of trivariate PDD or SDD approximations, their results
are not reported here.

7. Application. This section illustrates the effectiveness of the proposed SDD method
in solving a large-scale practical engineering problem. It involves predicting the dynamic
behavior of a sport utility vehicle (SUV) in terms of the statistical properties of natural
frequencies and mode shapes.D
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7.1. An SUV body-in-white model. An SUV body-in-white (BIW) model, referring to
the automotive design stage where only a car body's sheet metal components have been
welded together, is presented in Figure 7(a). It consists of the bare metal shell of the frame
body, including fixed windshields. An FEA mesh comprising 127,213 linear shell elements and
794,292 active degrees of freedom is depicted in 7(b). As displayed in Figure 7(a), the BIW
model contains 17 distinct materials having random properties, including 17 Young's moduli
and 17 mass densities. In total, there are 34 random variables as follows: X1 to X17 = Young's
moduli of materials 1 to 17; and X18 to X34 = mass densities of materials 1 to 17. Their
means, \mu i := \BbbE [Xi], i = 1, . . . , 34, are listed in Table 3. Each variable follows an independent,

Figure 7. Steady-state dynamic analysis of an SUV [32]: (a) BIW model; (b) FEA mesh.

Table 3
Mean values of random input variables for the SUV BIW model.

Young's Mass density, Young's Mass density,
Material mod.,GPa kg/m3 Material mod.,GPa kg/m3

1 207 9500 10 207 29,260
2 207 9500 11 207 30,930
3 207 8100 12 207 37,120
4 207 29,260 13 207 52,010
5 207 29,260 14 69 2700
6 207 37,120 15 69 2700
7 207 9500 16 20 1189
8 207 8100 17 200 1189
9 207 8100
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truncated Gaussian distribution with lower limit ai = 0.8\mu i, upper limit bi = 1.2\mu i, and
coefficient of variation vi = 0.1. The deterministic Poisson's ratios are as follows: 0.28 for
materials 1 through 13; 0.2 for materials 14 and 15; and 0.3 for materials 16 and 17. This is
an undamped system. Therefore, the damping factors for all materials are equal to zero.

7.2. Modal dynamics and results. A mode-based steady-state dynamic analysis was per-
formed to obtain eigensolutions of the BIWmodel. Such analysis is often required to determine
the frequency response functions, e.g., receptance, mobility, and inertance, resulting in a vehi-
cle body design with desired dynamic characteristics [32]. The Lanczos method [17] available
in ABAQUS (version 2019) [5] was employed for calculating several natural frequencies and
mode shapes.

Due to uncertainty in material properties, the eigensolutions of the SUV BIW model are
stochastic. Three univariate SDD methods, two with linear approximations (p = 1, I = 2, 4)
and one with a quadratic approximation (p = 2, I = 4), and crude MCS entailing 5000
samples were employed to find their second-moment properties. The expansion coefficients
of SDD were again estimated by least-squares regression from a MCS-generated experimental
design consisting of only 500 samples (FEA).

Table 4 lists the means and standard deviations of natural frequencies of the BIW model
associated with the first ten non-rigid-body modes, obtained using the aforementioned SDD
methods and MCS. A comparison between respective statistics of frequencies by these methods
points to a very good accuracy of all three SDD methods. For instance, the errors in the
standard deviations of the tenth natural frequency calculated by the three SDD methods
when compared with MCS are 4.9\%, 2.7\%, and 1.2\%, respectively. The precision of the
quadratic SDD approximation with four subintervals is especially high, yet it still requires
only 500 samples (FEA).

In addition, the L2-norm, that is, the square root of the sum of squares, of nodal dis-
placements at each node of the BIW model representing the magnitude of mode shape
was calculated. Figures 8(a) through 8(d) portray contour plots of standard deviations of

Table 4
Second-moment statistics of first ten natural frequencies of the BIW model by various methods.

Univariate SDDmethods (data size = 500 samples)

p = 1, I = 2 p = 1, I = 4 p = 2, I = 4
CrudeMCS

(5000 samples)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

Mode (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

1 2.2964 0.1422 2.2965 0.1425 2.2965 0.1426 2.2970 0.1438
2 6.3203 0.3784 6.3210 0.3785 6.3207 0.3784 6.3189 0.3795
3 8.2239 0.4158 8.2186 0.4234 8.2209 0.4358 8.2230 0.4360
4 8.3987 0.5015 8.3985 0.5025 8.3981 0.5033 8.3911 0.4989
5 8.9711 0.4170 8.9781 0.4367 8.9762 0.4458 8.9657 0.4787
6 10.9581 0.5235 10.9574 0.5247 10.9568 0.5267 10.9570 0.5359
7 13.2654 0.7706 13.2654 0.7728 13.2657 0.7770 13.2554 0.7681
8 13.3114 0.8055 13.3109 0.8064 13.3124 0.8080 13.3053 0.8051
9 14.8789 0.6353 14.8867 0.6693 14.8842 0.6816 14.8899 0.7009
10 15.7455 0.6074 15.7432 0.6210 15.7349 0.6308 15.7504 0.6385
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Figure 8. Contour plots of standard deviations of the 15th mode shape of the BIW model in logarithmic
scale by various methods: (a) crude MCS (5000 samples); (b) univariate SDD (p = 1, I = 2); (c) univariate
SDD (p = 1, I = 4); (d) univariate SDD (p = 2, I = 4).

the magnitude of an arbitrarily selected 15th mode shape (non-rigid-body), calculated us-
ing crude MCS and three SDD methods. Similar results can be generated for other mode
shapes if desired. Again, the SDD-generated mode shapes in Figures 8(b) through 8(d)
are remarkably close to those generated by crude MCS in Figure 8(a). For both natural
frequencies and mode shapes, the SDD methods deliver very accurate second-moment sta-
tistics, asking for only ten percent of the computational effort mandated by crude MCS.
Indeed, the success of conducting UQ analysis for the SUV BIW model comprising 34 ran-
dom variables demonstrates the viability of SDD in solving industrial-scale engineering prob-
lems.

8. Concluding remarks. A new dimensional decomposition, referred to as SDD, is intro-
duced for high-dimensional uncertainty quantification analysis of complex systems, includingD
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those featuring nonsmooth functions, subject to independent but otherwise arbitrary probabil-
ity measures of input random variables. From the decomposition, a square-integrable output
random variable is expanded in terms of hierarchically ordered measure-consistent multivari-
ate orthonormal B-splines in input random variables. A dimensionwise splitting of appropriate
spline spaces into orthogonal subspaces, each spanned by a reduced set of measure-consistent
orthonormal B-splines, was configured, resulting in an SDD of a general L2-function of in-
put variables. Under the prescribed assumptions, the set of measure-consistent orthonormal
B-splines forms a basis of each subspace, leading to an orthogonal sum of such sets of basis
functions, including the constant subspace, to span the space of all splines. The approxima-
tion quality of the expansion was demonstrated in terms of the modulus of smoothness of
the function, resulting in the mean-square convergence of SDD to the correct limit. The
weaker modes of convergence, such as those in probability and in distribution, transpire
naturally. The optimality of SDD, including deriving a few existing expansions as special
cases of SDD, was affirmed. A truncated SDD, obtained by retaining terms associated with
a chosen degree of interaction, contains products of univariate splines determined by the
same degree of interaction. Therefore, the computational complexity of a truncated SDD
is polynomial, as opposed to exponential, thus deflating the curse of dimensionality to the
magnitude possible. Analytical formulae are proposed to calculate the mean and variance
of an SDD approximation for a general output random variable in terms of the expansion
coefficients.

Numerical results entailing nonsmooth functions indicate that a low-order SDD approx-
imation equipped with an adequate mesh size is capable of estimating the second-moment
properties or probability distributions that are as or more accurate than those obtained from
a high-order PCE, PDD, and sparse-grid approximations. Finally, the success of conducting
UQ analysis for a 34-dimensional SUV BIW system demonstrates the practicality of the SDD
method in solving industrial-scale engineering problems.

Appendix A. Knot sequence. Let x = (x1, . . . , xN ) be an arbitrary point in \BbbA N . For
the coordinate direction k, k = 1, . . . , N , define a nonnegative integer pk \in \BbbN 0 and a positive
integer nk \geq (pk + 1) \in \BbbN , representing the degree and total number of basis functions,
respectively. In order to define B-splines, the concept of a knot sequence, also referred to as
a knot vector, for each coordinate direction k is needed.

A knot sequence \bfitxi k for the interval [ak, bk] \subset \BbbR , given nk > pk \geq 0, is a vector comprising
a nondecreasing sequence of real numbers

(A.1)
\bfitxi k := \{ \xi k,ik\} 

nk+pk+1
ik=1 = \{ ak = \xi k,1, \xi k,2, . . . , \xi k,nk+pk+1 = bk\} ,

\xi k,1 \leq \xi k,2 \leq \cdot \cdot \cdot \leq \xi k,nk+pk+1,

where \xi k,ik is the ikth knot with ik = 1, 2, . . . , nk + pk + 1 representing the knot index for the
coordinate direction k. The elements of \bfitxi k are called knots.

According to (A.1), there are a total of nk+pk+1 knots, which may be equally or unequally
spaced. To monitor knots without repetitions, denote by \zeta k,1, . . . , \zeta k,rk the rk distinct knotsD
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in \bfitxi k with respective multiplicities mk,1, . . . ,mk,rk . Then the knot sequence in (A.1) can also
be expressed by

(A.2) \bfitxi k = \{ ak =

mk,1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,1, . . . , \zeta k,1,

mk,2 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,2, . . . , \zeta k,2, . . . ,

mk,rk - 1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,rk - 1, . . . , \zeta k,rk - 1,

mk,rk
\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  

\zeta k,rk , . . . , \zeta k,rk = bk\} ,
ak = \zeta k,1 < \zeta k,2 < \cdot \cdot \cdot < \zeta k,rk - 1 < \zeta k,rk = bk,

which consists of a total number of

rk\sum 
jk=1

mk,jk = nk + pk + 1

knots. As shown in (A.2), each knot, whether interior or exterior, may appear 1 \leq mk,jk \leq 
pk + 1 times, where mk,jk is referred to as its multiplicity. The multiplicity has important
implications on the regularity properties of B-spline functions. A knot sequence is called open
if the end knots have multiplicities pk + 1. In this case, definitions of more specific knot
sequences are in order.

A knot sequence is said to be (pk +1)-open if the first and last knots appear pk +1 times,
that is, if

\bfitxi k = \{ ak =

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,1, . . . , \zeta k,1,

mk,2 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,2, . . . , \zeta k,2, . . . ,

mk,rk - 1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,rk - 1, . . . , \zeta k,rk - 1,

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,rk , . . . , \zeta k,rk = bk\} ,

ak = \zeta k,1 < \zeta k,2 < \cdot \cdot \cdot < \zeta k,rk - 1 < \zeta k,rk = bk.

A knot sequence is said to be (pk + 1)-open with simple knots if it is (pk + 1)-open and
all interior knots appear only once, that is, if

\bfitxi k = \{ ak =

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,1, . . . , \zeta k,1, \zeta k,2, . . . , \zeta k,rk - 1,

pk+1 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\underbrace{}  \underbrace{}  
\zeta k,rk , . . . , \zeta k,rk = bk\} ,

ak = \zeta k,1 < \zeta k,2 < \cdot \cdot \cdot < \zeta k,rk - 1 < \zeta k,rk = bk.

A (pk + 1)-open knot sequence with or without simple knots is commonly found in appli-
cations [3].
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